
Flow Sensitive Analysis

张昱
yuzhang@ustc.edu.cn

中国科学技术大学
计算机科学与技术学院

Most content comes from http://cs.au.dk/~amoeller/spa/

http://cs.au.dk/~amoeller/spa/

Flow Sensitive Analysis 2

Agenda

3

Constant Propagation Optimization

https://github.com/cs-au-dk/TIP/blob/master/src/tip/analysis/ConstantPropagationAnalysis.scala

Flow Sensitive Analysis

https://github.com/cs-au-dk/TIP/blob/master/src/tip/analysis/ConstantPropagationAnalysis.scala

Determine variables with a constant value

 Flat lattice:

4

Constant Propagation Analysis

Flow Sensitive Analysis

 Essentially as for the Sign analysis…

Abstract operator for addition:

5

Constraints for Constant Propagation

Flow Sensitive Analysis

6

Agenda

Flow Sensitive Analysis

A variable is live at a program point its value may be read later in the

remaining execution

Undecidable, but the property can be conservatively approximated

 The analysis must only reply dead if the variable is really dead

◼ No need to store the values of dead variables

7

Live Variables Analysis

Flow Sensitive Analysis

A powerset lattice of program variables

8

A Lattice for Liveness

Flow Sensitive Analysis

9

The Control Flow Graph

Flow Sensitive Analysis

 For every CFG node v we have a variable v

◼ the subset of program variables that are live at the program point before v

 Since the analysis is conservative, the computed set may be too large

Auxiliary definition

◼ JOIN 𝑣 = 𝑤∈𝑠𝑢𝑐𝑐(𝑣)ڂ 𝑤

10

Setting Up

分析出的是可能
的活跃变量集合

Flow Sensitive Analysis

 For the exit node

𝑒𝑥𝑖𝑡 = ∅

 For conditions and output

if (𝐸) = while 𝐸 = output 𝐸 = 𝐽𝑂𝐼𝑁(𝑣) ∪ 𝑣𝑎𝑟𝑠(𝐸)

 For assignments

𝑥 = 𝐸 = 𝐽𝑂𝐼𝑁(𝑣)\{𝑥} ∪ 𝑣𝑎𝑟𝑠(𝐸)

 For variable declarations

var 𝑥1, ⋯ , 𝑥𝑛 = 𝐽𝑂𝐼𝑁(𝑣)\{𝑥1, ⋯ , 𝑥𝑛}

 For all other nodes

𝑣 = 𝐽𝑂𝐼𝑁(𝑣)

11

Liveness Constraints

Flow Sensitive Analysis

𝑒𝑥𝑖𝑡 = ∅

if (𝐸) = while 𝐸 = output 𝐸 = 𝐽𝑂𝐼𝑁(𝑣) ∪ 𝑣𝑎𝑟𝑠(𝐸)

𝑥 = 𝐸 = 𝐽𝑂𝐼𝑁(𝑣)\{𝑥} ∪ 𝑣𝑎𝑟𝑠(𝐸)

var 𝑥1, ⋯ , 𝑥𝑛 = 𝐽𝑂𝐼𝑁(𝑣)\{𝑥1, ⋯ , 𝑥𝑛}

𝑣 = 𝐽𝑂𝐼𝑁(𝑣)

12

Generated Constraints

Flow Sensitive Analysis

13

Least Solution

Many non-trivial answers!
Flow Sensitive Analysis

 Variables y and z are never live at the same time

➔they can share the same variable location

 The value assigned in z=z-1 is never read

➔the assignment can be skipped

14

Optimizations

•better register allocation
•a few clock cycles saved

Flow Sensitive Analysis

 With n CFG nodes and k variables:

◼ the lattice Ln has height k∙n

◼ so there are at most k ∙ n iterations

 Subsets of Vars(the variables in the program) can be represented as

bitvectors:

◼ each element has size k

◼ each ∪, \, = operation takes time O(k)

 Each iteration uses O(n) bitvector operations:

◼ so each iteration takes time O(k ∙ n)

 Total time complexity: O(k2n2)

 Exercise: what is the complexity for the worklist algorithm?

15

Time Complexity(for the naive algorithm)

Ln是CFG中n个node要计算的程序点
状态的取值的范围

一次迭代的状态转移函数f: Ln →Ln

Flow Sensitive Analysis

16

Agenda

Flow Sensitive Analysis

A (non-trivial) expression is available at a program point if its current

value has already been computed earlier in the execution

 The approximation generally includes too few expressions

◼ The analysis can only report “available” if the expression is definitely available

◼ No need to re-compute available expressions

(e.g. common subexpression elimination)

17

Available Expressions Analysis

Flow Sensitive Analysis

A reverse powerset lattice of nontrivial expressions

18

A Lattice for Available Expressions

Flow Sensitive Analysis

19

Reverse Powerset Lattice

Flow Sensitive Analysis

20

Flow Graph

Flow Sensitive Analysis

 For every CFG node v we have a variable v

◼ the subset of expressions that are available at the program point after v

 Since the analysis is conservative, the computed set may be too

small

Auxiliary definition

JOIN 𝑣 = 𝑤∈𝑝𝑟𝑒𝑑(𝑣)ځ 𝑤

21

Setting Up

Flow Sensitive Analysis

 The function X↓x removes all expressions from X that contain a

reference to the variable x

 The function exps(E) is defined as:

◼ exps(intconst) = ∅

◼ exps(x) = ∅

◼ exps(input) = ∅

◼ exps(E1op E2) = {E1 op E2} ∪ exps(E1) ∪ exps(E2)

but don’t include expressions containing input

22

Auxiliary Functions

Flow Sensitive Analysis

 For the entry node

𝑒𝑛𝑡𝑟𝑦 = ∅

 For conditions and output

if (𝐸) = while 𝐸 = output 𝐸 = 𝐽𝑂𝐼𝑁(𝑣) ∪ 𝑒𝑥𝑝𝑠(𝐸)

 For assignments

𝑥 = 𝐸 = (𝐽𝑂𝐼𝑁 𝑣 ∪ 𝑒𝑥𝑝𝑠 𝐸) ↓ 𝑥

 For all other nodes

𝑣 = 𝐽𝑂𝐼𝑁(𝑣)

23

Availablity Constraints

Flow Sensitive Analysis

24

Generated Constraints

𝑒𝑛𝑡𝑟𝑦 = ∅

if (𝐸) = while 𝐸 = output 𝐸

= 𝐽𝑂𝐼𝑁(𝑣) ∪ 𝑒𝑥𝑝𝑠(𝐸)

𝑥 = 𝐸 = (𝐽𝑂𝐼𝑁 𝑣 ∪ 𝑒𝑥𝑝𝑠 𝐸) ↓ 𝑥

𝑣 = 𝐽𝑂𝐼𝑁(𝑣)

Flow Sensitive Analysis

25

Least Solution

Many non-trivial answers!

Flow Sensitive Analysis

We notice that a+b is available before the loop

 The program can be optimized (slightly):

26

Optimizations

引入临时变量记录表达式的值，便
于在表达式所引用的变量修改后重
新计算并记录新值，也便于后面实
施复写传播，发现更多优化机会

Flow Sensitive Analysis

27

Agenda

Flow Sensitive Analysis

A (nontrivial) expression is very busy if it will definitely be evaluated

before its value changes

 The approximation generally includes too few expressions

◼ the answer “verybusy” must be the true one

◼ Very busy expressions may be pre-computed

(e.g. loop hoisting)

 Same lattice as for available expressions

28

Very Busy Expressions Analysis

一个表达式在程序点非常忙当它无论沿

哪条路径从那个点到终止点都会被计算

Flow Sensitive Analysis

29

An Example Program

The analysis shows that a*b is very busy

Flow Sensitive Analysis

30

Code Hoisting

Flow Sensitive Analysis

 For every CFG node v we have a variable v

◼ the subset of expressions that are very busy at the program point before v

 Since the analysis is conservative, the computed set may be too

small

Auxiliary definition

◼ JOIN 𝑣 = 𝑤∈𝑠𝑢𝑐𝑐(𝑣)ځ 𝑤

31

Setting Up

必须其后的每条路径上都very
busy才能称为very busy

Flow Sensitive Analysis

 For the exit node

𝑒𝑥𝑖𝑡 = ∅

 For conditions and output

if (𝐸) = while 𝐸 = output 𝐸 = 𝐽𝑂𝐼𝑁(𝑣) ∪ 𝑒𝑥𝑝𝑠(𝐸)

 For assignments

𝑥 = 𝐸 = 𝐽𝑂𝐼𝑁 𝑣 ↓ 𝑥 ∪ 𝑒𝑥𝑝𝑠 𝐸

 For all other nodes

𝑣 = 𝐽𝑂𝐼𝑁(𝑣)

32

Very Busy Constraints

Flow Sensitive Analysis

33

Agenda

Flow Sensitive Analysis

 The reaching definitions for a program point are those assignments

that may define the current values of variables

 The conservative approximation may include too many possible

assignments

34

Reaching Definitions Analysis

Flow Sensitive Analysis

The powerset lattice of assignments

35

A Lattice for Reaching Definitions

Flow Sensitive Analysis

 The function X↓x removes assignments to x from X

 For assignments

𝑥 = 𝐸 = 𝐽𝑂𝐼𝑁 𝑣 ↓ 𝑥 ∪ {𝑥 = 𝐸}

 For all other nodes

𝑣 = 𝐽𝑂𝐼𝑁(𝑣)

Auxiliary definition

◼ JOIN 𝑣 = 𝑤∈𝑝𝑟𝑒𝑑(𝑣)ڂ 𝑤

36

Reaching Definitions Constraints

Flow Sensitive Analysis

Reaching definitions define the def-use graph:

◼ like a CFG but with edges from def to use nodes

◼ basis for dead code elimination and code motion

37

Def-use Graph

只有赋值语句才可能有出边，
表示该定值被引用；若定值
语句无出边则可删除

Flow Sensitive Analysis

A forward analysis:

◼ computes information about the past behavior

◼ examples: available expressions, reaching definitions

A backward analysis:

◼ computes information about the future behavior

◼ examples: liveness, very busy expressions

38

Forward vs. Backward

Flow Sensitive Analysis

A may analysis:

◼ describes information that is possibly true

◼ an over-approximation

◼ examples: liveness, reaching definitions

A must analysis:

◼ describes information that is definitely true

◼ an under-approximation

◼ examples: available expressions, very busy expressions

39

May vs. Must

Flow Sensitive Analysis

40

Classifying Analyses

Flow Sensitive Analysis

41

Agenda

Flow Sensitive Analysis

Compute for each program point those variables that have definitely

been initialized in the past

 (Called definite assignment analysis in Java and C#)

➔forward must analysis

Reverse powerset lattice of all variables

JOIN 𝑣 = ሩ

𝑤∈𝑝𝑟𝑒𝑑(𝑣)

𝑤

• For assignments: 𝑥 = 𝐸 = 𝐽𝑂𝐼𝑁 𝑣 ∪ {𝑥}

• For all others: 𝑣 = 𝐽𝑂𝐼𝑁(𝑣)

42

Initialized Variables Analysis

Flow Sensitive Analysis

Thanks

Flow Sensitive Analysis
43

