SRLLIFXEL:

University of Science and Technology of China

Flow Sensitive Analysis

Most content comes from http://cs.au.dk/~amoeller/spa/

KE

yuzhang@ustc.edu.cn

T EAFRRKKF
T HEIAF EERFIE

http://cs.au.dk/~amoeller/spa/

FRBAEZRL%S

University of Science and Technology of China

* Constant propagation analysis
* Live variables analysis

* Available expressions ana

Flow Sensitive Analysis 2

\

Il

() Constant Propagation Optimization FEBZLAL %G

University of Science and Technology of China

8
op o

S w®
“ace and e

var X,y,Z;

X 27;

y = input,

rd 2EX+Y;

it (x<0) { y=z-3; } else { y=12 }

output vy,

var x,vy,Z;

X = 27; var y;

y = input; — 1 .
:> Yy = Tnput;

? = 24HY; output 12;

it (0) { y=2z-3; } else { y=12 }

output vy;

https://github.com/cs-au-dk/TIP/blob/master/src/tip/analysis/ConstantPropagationAnalysis.scala

Flow Sensitive Analysis 3

https://github.com/cs-au-dk/TIP/blob/master/src/tip/analysis/ConstantPropagationAnalysis.scala

') Constant Propagation Analysis FEBLLLAG

&

9F

S

X
e '
“ene, o™

“Ice and T

Determine variables with a constant value

Flat |attice:

Flow Sensitive Analysis 4

.

® ok ° ° ¢ e k ‘
Constraints for Constant Propagation ‘#@ﬂé'&*é

[o
r\%i % o
“Nce and TeC

Essentially as for the Sign analysis...

Abstract operator for addition:

1 if n=1Lvm=1L
+(nm)=—= T elseif N=T Vvm=T
n+m otherwise

Flow Sensitive Analysis 5

FRBAEZRL%S

University of Science and Technology of China

* Constant propagation analysis
* Live variables analysis

* Available expressions ana

Flow Sensitive Analysis 6

.

(2))) Live Variables Analysis ¢RAZLLK S

University of Science and Technology of China

op o

S S
e, o
“ce and TeC

A variable is live at a program point its value may be read later in the
remaining execution

Undecidable, but the property can be conservatively approximated

The analysis must only reply dead if the variable is really dead
B No need to store the values of dead variables

Flow Sensitive Analysis 7

\

A Lattice for Liveness FRABZELX G

University of Science and Technology of China

o 5 %
Tene, e

N
0
e and T

A powerset lattice of program variables

var x,y,Z; L= {2{1'?‘2}; ;}

X = 1nput;
while (x=1) {

the trivial answer
}; — }{Jﬁf;E ; .Aﬁﬁgﬂfﬁ,s*"fﬁfﬂfrﬂ*

1t (y>3) x = x-y; LR
z = }{—4; .-""-J-J-l-__-‘__"x.
if (z20) x = x/2: iyl vzh iz

7 = E—l; Mﬁ}c{:\'l
x {yb {zi

W

&

}

output x;

Flow Sensitive Analysis 8

University of Science and Technology of China

.
or %

©))) The Control Flow Graph FEAZLL% g

— Y =

Z 0 “«X = X/2
var X,Y,Z;
X = 1nput; Jff;j/
while (x=1) { z =2z-1r¢
y = x/2;

1t (y>3) x = x-vy;

- output X

z = x-4;
it (220) x = x/2; i
z = z-1;

}

output x;

Flow Sensitive Analysis 9

A3 Setti FE LA
'(-))) Setting U ‘
g 2 g p University of Science and Technology of China

.
&

5
e
e

N
0
and Te°

For every CFG node v we have a variable [v]

B the subset of program variables that are live at the program point before v

Since the analysis Is conservative, the computed set may be too large

M7 H T T B
N o B R AR A
Auxiliary definition
B JOIN(v) = Uwesucc(v)ﬂw]] v

Flow Sensitive Analysis 10

‘(=) Liveness Constraints ruALAxS

o o
r*sz‘i \\<\°\°
“Nce and TeC

For the exit node
[exit] = @

For conditions and output
[if (E)] = [while E] = [loutput E]] = JOIN (v) U vars(E)

vars(E) = variables occurring in E

For assignments
[x = E]] = JOIN (v)\{x} U vars(E)

For variable declarations
[var x4, -, X, = JOIN (v)\{xq, "+, X5, }

For all other nodes right-hand sides are monotone
[v] = JOIN (v) since JOIN is monotone, and ...

Flow Sensitive Analysis 11

'(=))) Generated Constraints ruALAxS

.
&

9F

N
e '
o ce and Te

[exit] = @
[if (E)] = [[while E] = [output E]] = JOIN (v) U vars(E)

[var X,vy,z]=[z=1nput]\{x,y,z}
[x=1nput] = [x>1] \ {x}

[x>1] = ([y=x/2] v [output X]J)w {x} [x = E] = JOIN(v)\{x} U vars(E)
[y=x/2] = ([y>3]\{y}) v {x} [var xq, -, xp] = JOIN (W)\{xy, -+, %y}
[y>3] = [x=x-y] v [z=x-4] v {y}
[x=x-y] = ([z=x-4] \ {x}) v {X,y}
[z=x-4] = ([z>0] \ {z}) v {x} var X,vy,Z;
[z>0] = [x=x/2] v [z=z-1] uw{z} x = input;
[x=x/2] = ([z=z-1]\ () U fx} ~ WhiTe G

[v] = JOIN(v)

[z=2-1] = ([x>1] \ {z}) v {z} y = x/2; |
Il it (y=3) x = x-y;
t [output X] = [exit] w {X} S — x4
[exit] = & i (0) x = x/2:
z = z-1;
}
output x;

Flow Sensitive Analysis 12

X a

oy ¥ 6 LK K
- ».15\ d » é
g P Lea St S o I u t I o n University of Science and Technology of China

9F
S

(%

.

o
\
o0

[var Xx,vy,z]=[z=1nput]\{x,Vy.z} lentry] = &
[x=1nput] = [x>1] \ {x} Ivar x,y,z]=9
[x>1] = ([y=x/2] v [output x])wu {x} [Xx=1nput] =@
[y=x/2] = (Ly>3] \ {y}) v {x} [x>1] = {x}
[y>3] = [x=x-y] [z=x-4] U {y} Ty=x/2] = {x}
[x=x-y] = ([z=x-4] \ {x}) v {X,y} Iy>3] = {x,y}
[z=x-4] = ([2>0]\ {z)) U X Ixex-y] = (v}
[z>0] = [x=x/2] v [z=z-1] u {z} [z=x-4] = {x}
[x=x/2] = ([z=z-1] \ {X}) v {x}
[z=z-1] = ([x>1] \ {z}) v {2} [z>0] = {x,z}
t [output x] = [exit] w {X} [x=x/2] ={x,z}
[exit] = & [z=z-1] = {X,z}
[output x] ={x}
[exit] = &

[Many non-trivial answers!]

Flow Sensitive Analysis 13

Optimizations *OMzALxS

;
&
A
Sp O
S, and Te™

9F

Variables y and z are never live at the same time

=>they can share the same variable location

The value assigned in z=z-1 is never read

=>the assignment can be skipped

var x,¥Y,Z; var X,v¥Z;

X = Input; X = input;

while (x=1) { while (x=1) {
y = x/2; yz = x/2;
if (v>3) x = x-y: if (yz»3) x = x-yz: | *better register allocation
z = x-4; yz = x-4; ea few clock cycles saved
1t (z=0) x = x/2; 1t (yz=0) x = x/2;
z = z-1; }

1 output x;

output x;

Flow Sensitive Analysis 14

.

'(=))) Time Complexity(for the naive algorithm) +EAZLAX G

University of Science and Technology of China

c°;'

9F
3
S o
e, wade
“Nce and TeC

With n CFG nodes and k variables: LPECFGH ninodeEHERNER A
Y ‘;ég N) ?44

B the lattice L" has height k-n .

B so there are at most k - n iterations —RKIERFPRESEB EEHf: LN >L"

Subsets of Vars(the variables in the program) can be represented as
bitvectors:

B each element has size k

B each U, \, = operation takes time O(k)

Each iteration uses O(n) bitvector operations:
B so each iteration takes time O(k - n)

Total time complexity: O(k?n?)

Exercise: what is the complexity for the worklist algorithm?

Flow Sensitive Analysis 15

FRBAEZRL%S

University of Science and Technology of China

* Constant propagation analysis

* Live variables analysis

Flow Sensitive Analysis 16

.

'(-))) Available Expressions Analysis FEAZLAL %G

University of Science and Technology of China

o o

S, S
e, P\
“ce and TeC

A (non-trivial) expression is available at a program point if its current
value has already been computed earlier in the execution

The approximation generally includes too few expressions

B The analysis can only report “available” if the expression is definitely available

B No need to re-compute available expressions
(e.g. common subexpression elimination)

Flow Sensitive Analysis 17

A Lattice for Available Expressions "’@é"é‘ﬁ**é

&

9F
St
Nce

N
0
and Te°

A reverse powerset lattice of nontrivial expressions

var xX,y,z,a,b;

z = atb;

vy = a*b:

while (y > a+b) {
a = a+l;
x = a+b;

| = [2{a+b, a*h, y>a+b, El+l}; ::.}

Flow Sensitive Analysis 18

) Reverse Powerset Lattice *@”é'ﬁx*é

/ the trivial answer
%]

—-''-'-'-'_‘-'_

HH'“‘;———' - N —
e _""‘-\-______ ____:——_ _‘—\—______
e - -

la+b, .::ffb} {a+b, y>a+b} {a+b, a+l} {a*b, y>a+b} {a*b,a+l} {y>a+b,a+1}

-

fa+b, a‘f‘:b,_y:}a+b} {a+b, a*b, a+1} {a+b, y>a+b, a+1} {a*b, y>a+b, a+1}

{a+b, a*b, y>a+b, a+1}

Flow Sensitive Analysis 19

oy Flow Graph FRMHZLL XS

2 &
® ~— g 3
! &2 \G University of Science and Technology of China
and Te™

8
o oo
& o

ence

!

var x,y,z,a,b
var x,v,z,a,b; l

z = a+b; z=a+b
y = ab; 1
while (y > a+b) { y=a*b

a = a+l;
x = a+b;

20

Flow Sensitive Analysis

s & ¢
o\ . ¥ HZ2EKX
'(-))) Setting U ‘
g £ g p University of Science and Technology of China

8
&

5
S

N
0
and Te°

For every CFG node v we have a variable [v]

B the subset of expressions that are available at the program point after v

Since the analysis Is conservative, the computed set may be too
small

Auxiliary definition
]OIN(U) = nprred(v)[[W]]

Flow Sensitive Analysis 21

.

(2)) Auxiliary Functions FEBZLL XS

University of Science and Technology of China

&

o
3
©)
P
and Te¢

Seie, e

The function XI{x removes all expressions from X that contain a
reference to the variable x

The function exps(E) is defined as.

B exps(intconst) = @

B exps(x) =0
B exps(input) =@

B exps(E,0p E,) = {E; 0p E;} U exps(E,) U exps(E,)
but don't include expressions containing input

Flow Sensitive Analysis 22

Avallabllty Constraints ‘F’ @?4 % ;&rx fChé

For the entry node

[entry] = @

For conditions and output

[if (E)] = [while E] = [loutput E]] = JOIN (v) U exps(E)

For assignments
[x =E] = (JOIN(v) Uexps(E)) | x

For all other nodes
[v] = JOIN (v)

Flow Sensitive Analysis 23

FRAZLE*X S

University of Science and Technology of China

[entry]] = @
[entry]] % [if (E)] = [while E] = [output ET]
[var Xx,y,z,a,b] =[entry] =JOIN(v) U exps(E)
IZ At ’JI . 5(a+b)¢z [x =E] = (JOIN(v) Uexps(E)) | x
. b , [v] = JOIN (v)

[y=a*b] = [z=a+ h] U exps(a®b))\Vy
[y>a+b] = ([y=a*b] n [x=a+b]) U exps(y>a+b)
[a=a+1] = ([y>a+b] U exps(a+1))Nva var x,y,z,a,b;

= b
[x=a+b] = ([a=a+1] w exps(a+b))¥x f, It
[exit] = [y>a+b] while (y > a+b) {

a = a+l;

x = at+b;

}

Flow Sensitive Analysis 24

FEBZLLK g

rsity of Sci and Technology of Chin

var x,y,z,a,b] = [entry]
Z= a+3]-exps(a+b)¢z

[[
[[
[[
[y=a*b] = ([z= a+31 U exps(a*b)ly [y=a*b] = {a+b, a*b}
[y>a+b] = ([y=a*b] n [x=a+b]) U exps(y>a+b) I
. I
I [

ly=
a=a+1] = ([y>a+b] U exps(a+1))Va
[a=a+1] U exps(a+b)) x
exit] = [y>a+b]

x=a+b] = {a+b}
[exit] = {a+b}

[Many non-trivial answers!]

Flow Sensitive Analysis 25

Optimizations tORsLA RS

op o

S w®
“ace and e

We notice that a+b is available before the loop

The program can be optimized (slightly):

var x,y,z,a,b; var X,y,X,a,b,aplusb;
z = ath: aplusb = a+b;
y = a*b: z = aE;usb;

- y = a*b;
while (y > jﬁﬂi} { while (y > aplusb) {

a = a+l; a = a+l;

X = a+b; aplusb = a+b;
¥ X = aplusb;

¥ SN AR FRIE R,

TAEREAPSI AN RBSURE
Bt IO SORE, BT a1 S
8 5 A E, RKIEZ L2

Flow Sensitive Analysis 26

FRAZLE*X S

University of Science and Technology of China

Constant propagation analysis
Live variables analysis
Available expressions analysis
Very busy expressions analysis
Reaching definitions analysis
Initialized variables analysis

Flow Sensitive Analysis

27

.

(2))) Very Busy Expressions Analysis FEAZLL g

University of Science and Technology of China

op o

Sor S
e, oo
“ce and TeC

A (nontrivial) expression is very busy if it will definitely be evaluated
before its value changes —tssstEmsmstLeLen
RSB IR MIBA BRI

The approximation generally includes too few expressions
B the answer “verybusy” must be the true one

B Very busy expressions may be pre-computed
(e.g. loop hoisting)

Same lattice as for available expressions

Flow Sensitive Analysis 28

.

©))) An Example Program FEAZLL %G

University of Science and Technology of China

op o

S w®
e, et
“ce and T

var x,a,b;

X = 1nput;

a = x-1;

b = x-2;

while (x > 0) {
output a*b-x;
X = xX-1;

¥

output a*b;

The analysis shows that a*b is very busy

Flow Sensitive Analysis 29

University of Science and Technology of China

'-))) Code Hoisting F¥EAZLLK S

.
&

9F

X
e O
‘%,(,”% and 75

var x,a,b: var x,a,b,atimesb;
X = input; X = input;

a = x-1; a = x-1;

b = x-2; \ b = x-2;

while (x > 0) { | } atimesbh = a*b;
while (x > 0) {

output a*b-x;
X = x-1; output atimesb-x;
¥ X = x-1;

output a¥*b; }
output atimesb;

Flow Sensitive Analysis 30

(©))) Setting Up *OMzALxS

[&
"% S
“Nce and TeC

For every CFG node v we have a variable [v]

B the subset of expressions that are very busy at the program point before v

Since the analysis Is conservative, the computed set may be too
small

W J5 R 2k 42 Bfvery
busy 1 8EF Avery busy

Auxiliary definition
B JOIN(v) = nWESU,CC(U)HW]]

Flow Sensitive Analysis 31

Very Busy Constraints FE#ZLL %S

For the exit node
[exit] = @

For conditions and output
[if (E)] = [while E] = [loutput E]] = JOIN (v) U exps(E)

For assignments
[x =E] = JOIN(v) | x Uexps(E)

For all other nodes
[v] = JOIN (v)

Flow Sensitive Analysis 32

FRAZLE*X S

University of Science and Technology of China

Constant propagation analysis
Live variables analysis
Available expressions analysis
Very busy expressions analysis
Reaching definitions analysis
Initialized variables analysis

Flow Sensitive Analysis

33

Reaching Definitions Analysis FUBZLLL S

9, g
r\%i \\<‘°\c
“ce and T

The reaching definitions for a program point are those assignments
that may define the current values of variables

The conservative approximation may include too many possible
assignments

Flow Sensitive Analysis 34

\

[P

‘(=))) A Lattice for Reaching Definitions ¥RAZLL*X G

University of Science and Technology of China

8
op o

S

e '
“ene, o™
“Ice and T

The powerset lattice of assignments
| = (2{}(:1 nput, y=X/2, Xx=x-y, z=x-4, Xx=X/2, z=z—1}}(;)

var X,VY,Z;

X = 1nput;

while (x > 1) {
y = x/2;
1T (y>3) x = x-y;
z = X-4;
if (z>0) x
z = z-1;

¥

output x;

X/2;

Flow Sensitive Analysis 35

Reachmg Definitions Constraints FEAZLLES

rsity of Scie and Technology of Chin

The function XIx removes assignments to x from X

For assignments
[x =E] =JOIN(v) | x U {x = E}

For all other nodes
[v] = JOIN (v)

Auxiliary definition

B JOIN(v) = UWEpred(v)HW]]

Flow Sensitive Analysis 36

(=2)) Def-use Graph tORsLA RS

of &

3
S «©
e and Te

Reaching definitions define the def-use graph:

B like a CFG but with edges from def to use nodes

B basis for dead code elimination and code motion
HAEREER) A] g8 ik,

e FOREBG A
x=1nput — i R) I HH A2 AT A g

z=z-1

¥

x>1

y=X/2

output X

Flow Sensitive Analysis 37

.

())) Forward vs. Backward

FRAZLE*X S

University of Science and Technology of China

op o

S «©
e, -
“ce and TeC

A forward analysis:

B computes information about the past behavior

B examples: available expressions, reaching definitions

A backward analysis:

B computes information about the future behavior

B examples: liveness, very busy expressions

Flow Sensitive Analysis

38

9F
S,
Nce

\

& 24

'(=))) May vs. Must

N
'
and Te°

8
&

FRAZLE*X S

University of Science and Technology of China

A may analysis:

B describes information that is possibly true

B an over-approximation

B examples: liveness, reaching definitions

A must analysis:

B describes information that is definitely true

B an under-approximation

B examples: available expressions, very busy expressions

Flow Sensitive Analysis

39

) Classifying Analyses *%“éﬁﬂ}‘*é

I

example: reaching definitions example: liveness

[v] describes state after v [v] describes state before v

joinw) = Hgwg = Uw] joINW) = Lpwl = W
wepred(v) wepred(v) wesucc(v) wesuce(v)

example: available expressions example: very busy expressions

[v] describes state after v [v] describes state before v

joiINw) = Lwg = Mg

wesucclv) wesucc(v)

joINW) = L] = M[w]

wepred(v) wepred(v)

Flow Sensitive Analysis 40

FRAZLE*X S

University of Science and Technology of China

Constant propagation analysis
Live variables analysis
Available expressions analysis
Very busy expressions analysis
Reaching definitions analysis
Initialized variables analysis

Flow Sensitive Analysis

41

Inltlallzed Variables Analysis FEAZLLK S

rsity of Scie and Technology of Chin

Compute for each program point those variables that have definitely
been initialized in the past

(Called definite assignment analysis in Java and C#)

=»forward must analysis

Reverse powerset lattice of all variables

oIN@w) = (] [l

wepred(v)
« For assignments: [x = E]] = JOIN(v) U {x}
 For all others: [v] = JOIN (v)

Flow Sensitive Analysis 42

FEBZLAXE

University of Science and Technology of China

ILERLE

Flow Sensitive Analysis

43

