

Flow Sensitive Analysis

Most content comes from http://cs.au.dk/~amoeller/spa/

张昱

yuzhang@ustc.edu.cn 中国科学技术大学 计算机科学与技术学院

- Constant propagation analysis
- Live variables analysis
- Available expressions analysis
- Very busy expressions analysis
- Reaching definitions analysis
- Initialized variables analysis

Constant Propagation Optimization

https://github.com/cs-au-dk/TIP/blob/master/src/tip/analysis/ConstantPropagationAnalysis.scala

Constant Propagation Analysis

Determine variables with a constant value

□ Flat lattice:

Constraints for Constant Propagation

Essentially as for the Sign analysis...

□ Abstract operator for addition:

- Constant propagation analysis
- Live variables analysis
- Available expressions analysis
- Very busy expressions analysis
- Reaching definitions analysis
- Initialized variables analysis

Live Variables Analysis

A variable is *live* at a program point its value may be read later in the remaining execution

Undecidable, but the property can be conservatively approximated

□ The analysis must only reply **dead** if the variable is really dead

No need to store the values of dead variables

A Lattice for Liveness

□ A powerset lattice of program variables

var x,y,z;			
<pre>x = input;</pre>			
while (x>1) {			
y = x/2;			
if (y>3) x = x-y;			
z = x-4;			
if (z>0) x = x/2;			
z = z-1;			
}			
output x;			

The Control Flow Graph

For every CFG node v we have a variable **[v]**

the subset of program variables that are live at the program point before v

□ Since the analysis is conservative, the computed set may be too large

□ Auxiliary definition

 $IOIN(v) = \bigcup_{w \in succ(v)} \llbracket w \rrbracket$

Liveness Constraints

For the exit node

 $\llbracket exit \rrbracket = \emptyset$

- For conditions and output

 $\llbracket \text{if}(E) \rrbracket = \llbracket \text{while } E \rrbracket = \llbracket \text{output } E \rrbracket = IOIN(v) \cup vars(E)$

For assignments

 $[x = E] = JOIN(v) \setminus \{x\} \cup vars(E)$

For variable declarations

 $\llbracket \operatorname{var} x_1, \cdots, x_n \rrbracket = \operatorname{IOIN}(v) \setminus \{x_1, \cdots, x_n\}$

For all other nodes

 $\llbracket v \rrbracket = JOIN(v)$

right-hand sides are monotone since JOIN is monotone, and ...

vars(E) = variables occurring in E

Generated Constraints

$$\begin{bmatrix} var x, y, z \end{bmatrix} = \begin{bmatrix} z=input \end{bmatrix} \setminus \{x, y, z \} \\ \begin{bmatrix} x=input \end{bmatrix} = \begin{bmatrix} x>1 \end{bmatrix} \setminus \{x \} \\ \begin{bmatrix} x>1 \end{bmatrix} = (\begin{bmatrix} y=x/2 \end{bmatrix} \cup \begin{bmatrix} output x \end{bmatrix}) \cup \{x \} \\ \begin{bmatrix} x = \\ y=x/2 \end{bmatrix} = (\begin{bmatrix} y>3 \end{bmatrix} \setminus \{y\}) \cup \{x \} \\ \begin{bmatrix} y=x-2 \end{bmatrix} = (\begin{bmatrix} z=x-y \end{bmatrix} \cup \begin{bmatrix} z=x-4 \end{bmatrix} \cup \{y \} \\ \begin{bmatrix} z=x-y \end{bmatrix} = (\begin{bmatrix} z=x-4 \end{bmatrix} \setminus \{x\}) \cup \{x, y \} \\ \begin{bmatrix} z=x-4 \end{bmatrix} = (\begin{bmatrix} z>0 \end{bmatrix} \setminus \{z\}) \cup \{x \} \\ \begin{bmatrix} z=x-4 \end{bmatrix} = (\begin{bmatrix} z>0 \end{bmatrix} \setminus \{z\}) \cup \{x \} \\ \begin{bmatrix} z=x-4 \end{bmatrix} = (\begin{bmatrix} z>0 \end{bmatrix} \setminus \{z\}) \cup \{z \} \\ \begin{bmatrix} x=x/2 \end{bmatrix} = (\begin{bmatrix} z=z-1 \end{bmatrix} \setminus \{x\}) \cup \{z \} \\ \begin{bmatrix} output x \end{bmatrix} = \begin{bmatrix} exit \end{bmatrix} \cup \{x \} \\ \begin{bmatrix} exit \end{bmatrix} = \emptyset \end{bmatrix}$$

output x;

 $\begin{bmatrix} exit \end{bmatrix} = \emptyset$ $\begin{bmatrix} if (E) \end{bmatrix} = \llbracket while E \rrbracket = \llbracket output E \rrbracket = JOIN(v) \cup vars(E)$ $\llbracket x = E \rrbracket = JOIN(v) \setminus \{x\} \cup vars(E)$ $\llbracket var x_1, \dots, x_n \rrbracket = JOIN(v) \setminus \{x_1, \dots, x_n\}$ $\llbracket v \rrbracket = JOIN(v)$

x = x - y;

x = x/2;

Least Solution

中国納孕技术大学 University of Science and Technology of China

 $\llbracket var x, y, z \rrbracket = \llbracket z=input \rrbracket \setminus \{x, y, z\}$ $[x=input] = [x>1] \setminus \{x\}$ $[x>1] = ([y=x/2] \cup [output x]) \cup \{x\}$ $[[y=x/2]] = ([[y>3]] \setminus \{y\}) \cup \{x\}$ $[y>3] = [x=x-y] \cup [z=x-4] \cup \{y\}$ $[x=x-y] = ([z=x-4] \setminus \{x\}) \cup \{x,y\}$ $[[z=x-4]] = ([[z>0]] \setminus \{z\}) \cup \{x\}$ $[z>0] = [x=x/2] \cup [z=z-1] \cup \{z\}$ $[x=x/2] = ([z=z-1] \setminus \{x\}) \cup \{x\}$ $[[z=z-1]] = ([[x>1]] \setminus \{z\}) \cup \{z\}$ $[[output x]] = [[exit]] \cup \{x\}$ $[exit] = \emptyset$

 $[[entry]] = \emptyset$ [[var x,y,z]]=∅ [x=input] = Ø $[x>1] = \{x\}$ $[[y=x/2]] = \{x\}$ $[[y>3]] = \{x,y\}$ $[[x=x-y]] = \{x,y\}$ $[[z=x-4]] = \{x\}$ $[z>0] = \{x,z\}$ $[[x=x/2]] = \{x,z\}$ $[[z=z-1]] = \{x,z\}$ $[[output x]] = \{x\}$ $[exit] = \emptyset$

Many non-trivial answers!

□ Variables y and z are never live at the same time

→ they can share the same variable location

□ The value assigned in z=z-1 is never read

→the assignment can be skipped

var x,y,z; x = input;while (x>1) { y = x/2;if (y>3) x = x-y;z = x - 4;if (z>0) x = x/2;} z = z - 1;output x;

var x,yz; x = input; while (x>1) { yz = x/2; if (yz>3) x = x-yz; yz = x-4; if (yz>0) x = x/2; } output x;

better register allocationa few clock cycles saved

Time Complexity(for the naive algorithm)

□ With *n* CFG nodes and *k* variables:

- the lattice L^n has height $k \cdot n$
- so there are at most $k \cdot n$ iterations

Lⁿ是CFG中n个node要计算的程序点 状态的取值的范围

```
一次迭代的状态转移函数f: L<sup>n</sup>→L<sup>n</sup>
```

Subsets of Vars(the variables in the program) can be represented as bitvectors:

- each element has size k
- each \cup , \setminus , = operation takes time O(k)
- **Each iteration uses O(***n***) bitvector operations:**
 - so each iteration takes time $O(k \cdot n)$
- □ Total time complexity: O(k²n²)

Exercise: what is the complexity for the worklist algorithm?

- Constant propagation analysis
- Live variables analysis
- Available expressions analysis
- Very busy expressions analysis
- Reaching definitions analysis
- Initialized variables analysis

□ A (non-trivial) expression is *available* at a program point if its current value has already been computed earlier in the execution

□ The approximation generally includes *too few* expressions

- The analysis can only report *"available"* if the expression is definitely available
- No need to re-compute available expressions

(e.g. common subexpression elimination)

A Lattice for Available Expressions

中国純学技术大学 University of Science and Technology of China

A reverse powerset lattice of nontrivial expressions

```
var x,y,z,a,b;
z = a+b;
y = a*b;
while (y > a+b) {
    a = a+1;
    x = a+b;
}
```


Reverse Powerset Lattice

For every CFG node v we have a variable **[v]**

the subset of expressions that are available at the program point after v

Since the analysis is conservative, the computed set may be too small

Auxiliary definition $JOIN(v) = \bigcap_{w \in pred(v)} \llbracket w \rrbracket$

Auxiliary Functions

□ The function $X \downarrow x$ removes all expressions from X that contain a reference to the variable x

□ The function **exps(E)** is defined as:

- exps(intconst) = Ø
- $exps(x) = \emptyset$
- exps(input) = Ø
- $exps(E_1 op E_2) = \{E_1 op E_2\} \cup exps(E_1) \cup exps(E_2)$ but don't include expressions containing input

Availablity Constraints

For the entry node

 $[\![entry]\!] = \emptyset$

For conditions and output

 $\llbracket \text{if } (E) \rrbracket = \llbracket \text{while } E \rrbracket = \llbracket \text{output } E \rrbracket = JOIN(v) \cup exps(E)$

□ For assignments

 $[\![x = E]\!] = (JOIN(v) \cup exps(E)) \downarrow x$

□ For all other nodes

 $[\![v]\!] = JOIN(v)$

structure -			
	[[entry	·]] = Ø	
[<i>entry</i>] = ∅	$\llbracket \text{if}(E) \rrbracket$	= [while E] = [output E]	
[var x,y,z,a,b] = [entry]	= JOIN	$V(v) \cup exps(E)$	
$[z=a+b] = exps(a+b) \downarrow z$	[[x] = E	$]] = (JOIN(v) \cup exps(E))$	$\downarrow x$
$\llbracket v = a * b \rrbracket = (\llbracket z = a + b \rrbracket \cup exps(a * b)) \downarrow v$	$\llbracket v \rrbracket = j$	= JOIN(v)	
$\llbracket y > a + b \rrbracket = (\llbracket y = a * b \rrbracket \cap \llbracket x = a + b \rrbracket) \cup exps(y > a + b)$	+b)		
$[a=a+1] = ([y>a+b] \cup exps(a+1))\downarrow a$	•	var x,y,z,a,b;	
$[x=a+b] = ([a=a+1] \cup exps(a+b))\downarrow x$:	z = a+b;	
[[exit]] = [[y>a+b]]	1	y = a [^] b; while (y > a+b) {	
	_	a = a+1;	
		x = a+b;	
		}	

Least Solution

$$\begin{bmatrix} entry \end{bmatrix} = \emptyset$$

$$\begin{bmatrix} var x, y, z, a, b \end{bmatrix} = \begin{bmatrix} entry \end{bmatrix}$$

$$\begin{bmatrix} z=a+b \end{bmatrix} = exps(a+b) \downarrow z$$

$$\begin{bmatrix} y=a*b \end{bmatrix} = (\begin{bmatrix} z=a+b \end{bmatrix} \cup exps(a*b)) \downarrow y$$

$$\begin{bmatrix} y>a+b \end{bmatrix} = (\begin{bmatrix} y=a*b \end{bmatrix} \cap \begin{bmatrix} x=a+b \end{bmatrix}) \cup exps(y>a+b)$$

$$\begin{bmatrix} a=a+1 \end{bmatrix} = (\begin{bmatrix} y>a+b \end{bmatrix} \cup exps(a+1)) \downarrow a$$

$$\begin{bmatrix} x=a+b \end{bmatrix} = (\begin{bmatrix} a=a+1 \end{bmatrix} \cup exps(a+b)) \downarrow x$$

$$\begin{bmatrix} exit \end{bmatrix} = \begin{bmatrix} y>a+b \end{bmatrix}$$

Many non-trivial answers!

Optimizations

We notice that a+b is available before the loop The program can be optimized (slightly):

- Constant propagation analysis
- Live variables analysis
- Available expressions analysis
- Very busy expressions analysis
- Reaching definitions analysis
- Initialized variables analysis

A (nontrivial) expression is very busy if it will definitely be evaluated before its value changes 一个表达式在程序点非常忙当它无论沿 哪条路径从那个点到终止点都会被计算

□ The approximation generally includes *too few* expressions

- the answer "*verybusy*" must be the true one
- Very busy expressions may be pre-computed (e.g. loop hoisting)

□ Same lattice as for available expressions

An Example Program

The analysis shows that a*b is very busy

For every CFG node v we have a variable **[v]**

the subset of expressions that are very busy at the program point before v

□ Since the analysis is conservative, the computed set may be too

Small 必须其后的每条路径上都very busy才能称为very busy

□ Auxiliary definition

 $IOIN(v) = \bigcap_{w \in succ(v)} \llbracket w \rrbracket$

Very Busy Constraints

For the exit node

 $[\![exit]\!] = \emptyset$

□ For conditions and output

 $\llbracket \text{if } (E) \rrbracket = \llbracket \text{while } E \rrbracket = \llbracket \text{output } E \rrbracket = JOIN(v) \cup exps(E)$

□ For assignments

 $\llbracket x = E \rrbracket = JOIN(v) \downarrow x \cup exps(E)$

□ For all other nodes

 $[\![v]\!] = JOIN(v)$

- Constant propagation analysis
- Live variables analysis
- Available expressions analysis
- Very busy expressions analysis
- Reaching definitions analysis
- Initialized variables analysis

Reaching Definitions Analysis

□ The *reaching definitions* for a program point are those assignments that may define the current values of variables

The conservative approximation may include too many possible assignments

A Lattice for Reaching Definitions

The powerset lattice of assignments

```
L = (2^{x=input, y=x/2, x=x-y, z=x-4, x=x/2, z=z-1}, C)
             var x,y,z;
             x = input;
             while (x > 1) {
               y = x/2;
               if (y>3) x = x-y;
                z = x - 4;
               if (z>0) x = x/2;
                z = z - 1;
              }
              output x;
```


Reaching Definitions Constraints

 \Box The function $X \downarrow x$ removes assignments to x from X

- □ For assignments $[x = E] = JOIN(v) \downarrow x \cup \{x = E\}$ □ For all other nodes [v] = JOIN(v)
- Auxiliary definition
 - $IOIN(v) = \bigcup_{w \in pred(v)} \llbracket w \rrbracket$

Reaching definitions define the def-use graph:

- like a CFG but with edges from *def* to *use* nodes
- basis for dead code elimination and code motion

□ A *forward* analysis:

- computes information about the past behavior
- examples: available expressions, reaching definitions

□ A *backward* analysis:

- computes information about the *future* behavior
- examples: liveness, very busy expressions

□ A *may* analysis:

- describes information that is *possibly* true
- an over-approximation
- examples: liveness, reaching definitions

□ A *must* analysis:

- describes information that is *definitely* true
- an under-approximation
- examples: available expressions, very busy expressions

Classifying Analyses

	forward	backward
may	example: reaching definitions	example: liveness
	<pre>[[v]] describes state after v</pre>	<pre>[v] describes state before v</pre>
	$JOIN(v) = \bigsqcup_{w \in pred(v)} [w] = \bigcup_{w \in pred(v)} [w]$	$JOIN(v) = \bigsqcup_{w \in succ(v)} \llbracket w \rrbracket = \bigcup_{w \in succ(v)} \llbracket w \rrbracket$
must	example: available expressions	example: very busy expressions
	<pre>[[v]] describes state after v</pre>	<pre>[v] describes state before v</pre>
	$JOIN(v) = \bigsqcup_{w \in pred(v)} \llbracket w \rrbracket = \bigcap_{w \in pred(v)} \llbracket w \rrbracket$	$JOIN(v) = \bigsqcup_{w \in succ(v)} [w] = \bigcap_{w \in succ(v)} [w]$

- Constant propagation analysis
- Live variables analysis
- Available expressions analysis
- Very busy expressions analysis
- Reaching definitions analysis
- Initialized variables analysis

Initialized Variables Analysis

Compute for each program point those variables that have definitely been initialized in the past

□ (Called *definite assignment* analysis in Java and C#)

□ → forward must analysis

Reverse powerset lattice of all variables

$$JOIN(v) = \bigcap_{w \in pred(v)} \llbracket w \rrbracket$$

- For assignments: $[x = E] = JOIN(v) \cup \{x\}$
- For all others: $\llbracket v \rrbracket = JOIN(v)$

Thanks