
Flow Sensitive Analysis

张昱
yuzhang@ustc.edu.cn

中国科学技术大学
计算机科学与技术学院

Most content comes from http://cs.au.dk/~amoeller/spa/

http://cs.au.dk/~amoeller/spa/

Flow Sensitive Analysis 2

Agenda

3

Constant Propagation Optimization

https://github.com/cs-au-dk/TIP/blob/master/src/tip/analysis/ConstantPropagationAnalysis.scala

Flow Sensitive Analysis

https://github.com/cs-au-dk/TIP/blob/master/src/tip/analysis/ConstantPropagationAnalysis.scala

Determine variables with a constant value

 Flat lattice:

4

Constant Propagation Analysis

Flow Sensitive Analysis

 Essentially as for the Sign analysis…

Abstract operator for addition:

5

Constraints for Constant Propagation

Flow Sensitive Analysis

6

Agenda

Flow Sensitive Analysis

A variable is live at a program point its value may be read later in the

remaining execution

Undecidable, but the property can be conservatively approximated

 The analysis must only reply dead if the variable is really dead

◼ No need to store the values of dead variables

7

Live Variables Analysis

Flow Sensitive Analysis

A powerset lattice of program variables

8

A Lattice for Liveness

Flow Sensitive Analysis

9

The Control Flow Graph

Flow Sensitive Analysis

 For every CFG node v we have a variable v

◼ the subset of program variables that are live at the program point before v

 Since the analysis is conservative, the computed set may be too large

Auxiliary definition

◼ JOIN 𝑣 = 𝑤∈𝑠𝑢𝑐𝑐(𝑣)ڂ 𝑤

10

Setting Up

分析出的是可能
的活跃变量集合

Flow Sensitive Analysis

 For the exit node

𝑒𝑥𝑖𝑡 = ∅

 For conditions and output

if (𝐸) = while 𝐸 = output 𝐸 = 𝐽𝑂𝐼𝑁(𝑣) ∪ 𝑣𝑎𝑟𝑠(𝐸)

 For assignments

𝑥 = 𝐸 = 𝐽𝑂𝐼𝑁(𝑣)\{𝑥} ∪ 𝑣𝑎𝑟𝑠(𝐸)

 For variable declarations

var 𝑥1, ⋯ , 𝑥𝑛 = 𝐽𝑂𝐼𝑁(𝑣)\{𝑥1, ⋯ , 𝑥𝑛}

 For all other nodes

𝑣 = 𝐽𝑂𝐼𝑁(𝑣)

11

Liveness Constraints

Flow Sensitive Analysis

𝑒𝑥𝑖𝑡 = ∅

if (𝐸) = while 𝐸 = output 𝐸 = 𝐽𝑂𝐼𝑁(𝑣) ∪ 𝑣𝑎𝑟𝑠(𝐸)

𝑥 = 𝐸 = 𝐽𝑂𝐼𝑁(𝑣)\{𝑥} ∪ 𝑣𝑎𝑟𝑠(𝐸)

var 𝑥1, ⋯ , 𝑥𝑛 = 𝐽𝑂𝐼𝑁(𝑣)\{𝑥1, ⋯ , 𝑥𝑛}

𝑣 = 𝐽𝑂𝐼𝑁(𝑣)

12

Generated Constraints

Flow Sensitive Analysis

13

Least Solution

Many non-trivial answers!
Flow Sensitive Analysis

 Variables y and z are never live at the same time

➔they can share the same variable location

 The value assigned in z=z-1 is never read

➔the assignment can be skipped

14

Optimizations

•better register allocation
•a few clock cycles saved

Flow Sensitive Analysis

 With n CFG nodes and k variables:

◼ the lattice Ln has height k∙n

◼ so there are at most k ∙ n iterations

 Subsets of Vars(the variables in the program) can be represented as

bitvectors:

◼ each element has size k

◼ each ∪, \, = operation takes time O(k)

 Each iteration uses O(n) bitvector operations:

◼ so each iteration takes time O(k ∙ n)

 Total time complexity: O(k2n2)

 Exercise: what is the complexity for the worklist algorithm?

15

Time Complexity(for the naive algorithm)

Ln是CFG中n个node要计算的程序点
状态的取值的范围

一次迭代的状态转移函数f: Ln →Ln

Flow Sensitive Analysis

16

Agenda

Flow Sensitive Analysis

A (non-trivial) expression is available at a program point if its current

value has already been computed earlier in the execution

 The approximation generally includes too few expressions

◼ The analysis can only report “available” if the expression is definitely available

◼ No need to re-compute available expressions

(e.g. common subexpression elimination)

17

Available Expressions Analysis

Flow Sensitive Analysis

A reverse powerset lattice of nontrivial expressions

18

A Lattice for Available Expressions

Flow Sensitive Analysis

19

Reverse Powerset Lattice

Flow Sensitive Analysis

20

Flow Graph

Flow Sensitive Analysis

 For every CFG node v we have a variable v

◼ the subset of expressions that are available at the program point after v

 Since the analysis is conservative, the computed set may be too

small

Auxiliary definition

JOIN 𝑣 = 𝑤∈𝑝𝑟𝑒𝑑(𝑣)ځ 𝑤

21

Setting Up

Flow Sensitive Analysis

 The function X↓x removes all expressions from X that contain a

reference to the variable x

 The function exps(E) is defined as:

◼ exps(intconst) = ∅

◼ exps(x) = ∅

◼ exps(input) = ∅

◼ exps(E1op E2) = {E1 op E2} ∪ exps(E1) ∪ exps(E2)

but don’t include expressions containing input

22

Auxiliary Functions

Flow Sensitive Analysis

 For the entry node

𝑒𝑛𝑡𝑟𝑦 = ∅

 For conditions and output

if (𝐸) = while 𝐸 = output 𝐸 = 𝐽𝑂𝐼𝑁(𝑣) ∪ 𝑒𝑥𝑝𝑠(𝐸)

 For assignments

𝑥 = 𝐸 = (𝐽𝑂𝐼𝑁 𝑣 ∪ 𝑒𝑥𝑝𝑠 𝐸) ↓ 𝑥

 For all other nodes

𝑣 = 𝐽𝑂𝐼𝑁(𝑣)

23

Availablity Constraints

Flow Sensitive Analysis

24

Generated Constraints

𝑒𝑛𝑡𝑟𝑦 = ∅

if (𝐸) = while 𝐸 = output 𝐸

= 𝐽𝑂𝐼𝑁(𝑣) ∪ 𝑒𝑥𝑝𝑠(𝐸)

𝑥 = 𝐸 = (𝐽𝑂𝐼𝑁 𝑣 ∪ 𝑒𝑥𝑝𝑠 𝐸) ↓ 𝑥

𝑣 = 𝐽𝑂𝐼𝑁(𝑣)

Flow Sensitive Analysis

25

Least Solution

Many non-trivial answers!

Flow Sensitive Analysis

We notice that a+b is available before the loop

 The program can be optimized (slightly):

26

Optimizations

引入临时变量记录表达式的值，便
于在表达式所引用的变量修改后重
新计算并记录新值，也便于后面实
施复写传播，发现更多优化机会

Flow Sensitive Analysis

27

Agenda

Flow Sensitive Analysis

A (nontrivial) expression is very busy if it will definitely be evaluated

before its value changes

 The approximation generally includes too few expressions

◼ the answer “verybusy” must be the true one

◼ Very busy expressions may be pre-computed

(e.g. loop hoisting)

 Same lattice as for available expressions

28

Very Busy Expressions Analysis

一个表达式在程序点非常忙当它无论沿

哪条路径从那个点到终止点都会被计算

Flow Sensitive Analysis

29

An Example Program

The analysis shows that a*b is very busy

Flow Sensitive Analysis

30

Code Hoisting

Flow Sensitive Analysis

 For every CFG node v we have a variable v

◼ the subset of expressions that are very busy at the program point before v

 Since the analysis is conservative, the computed set may be too

small

Auxiliary definition

◼ JOIN 𝑣 = 𝑤∈𝑠𝑢𝑐𝑐(𝑣)ځ 𝑤

31

Setting Up

必须其后的每条路径上都very
busy才能称为very busy

Flow Sensitive Analysis

 For the exit node

𝑒𝑥𝑖𝑡 = ∅

 For conditions and output

if (𝐸) = while 𝐸 = output 𝐸 = 𝐽𝑂𝐼𝑁(𝑣) ∪ 𝑒𝑥𝑝𝑠(𝐸)

 For assignments

𝑥 = 𝐸 = 𝐽𝑂𝐼𝑁 𝑣 ↓ 𝑥 ∪ 𝑒𝑥𝑝𝑠 𝐸

 For all other nodes

𝑣 = 𝐽𝑂𝐼𝑁(𝑣)

32

Very Busy Constraints

Flow Sensitive Analysis

33

Agenda

Flow Sensitive Analysis

 The reaching definitions for a program point are those assignments

that may define the current values of variables

 The conservative approximation may include too many possible

assignments

34

Reaching Definitions Analysis

Flow Sensitive Analysis

The powerset lattice of assignments

35

A Lattice for Reaching Definitions

Flow Sensitive Analysis

 The function X↓x removes assignments to x from X

 For assignments

𝑥 = 𝐸 = 𝐽𝑂𝐼𝑁 𝑣 ↓ 𝑥 ∪ {𝑥 = 𝐸}

 For all other nodes

𝑣 = 𝐽𝑂𝐼𝑁(𝑣)

Auxiliary definition

◼ JOIN 𝑣 = 𝑤∈𝑝𝑟𝑒𝑑(𝑣)ڂ 𝑤

36

Reaching Definitions Constraints

Flow Sensitive Analysis

Reaching definitions define the def-use graph:

◼ like a CFG but with edges from def to use nodes

◼ basis for dead code elimination and code motion

37

Def-use Graph

只有赋值语句才可能有出边，
表示该定值被引用；若定值
语句无出边则可删除

Flow Sensitive Analysis

A forward analysis:

◼ computes information about the past behavior

◼ examples: available expressions, reaching definitions

A backward analysis:

◼ computes information about the future behavior

◼ examples: liveness, very busy expressions

38

Forward vs. Backward

Flow Sensitive Analysis

A may analysis:

◼ describes information that is possibly true

◼ an over-approximation

◼ examples: liveness, reaching definitions

A must analysis:

◼ describes information that is definitely true

◼ an under-approximation

◼ examples: available expressions, very busy expressions

39

May vs. Must

Flow Sensitive Analysis

40

Classifying Analyses

Flow Sensitive Analysis

41

Agenda

Flow Sensitive Analysis

Compute for each program point those variables that have definitely

been initialized in the past

 (Called definite assignment analysis in Java and C#)

➔forward must analysis

Reverse powerset lattice of all variables

JOIN 𝑣 = ሩ

𝑤∈𝑝𝑟𝑒𝑑(𝑣)

𝑤

• For assignments: 𝑥 = 𝐸 = 𝐽𝑂𝐼𝑁 𝑣 ∪ {𝑥}

• For all others: 𝑣 = 𝐽𝑂𝐼𝑁(𝑣)

42

Initialized Variables Analysis

Flow Sensitive Analysis

Thanks

Flow Sensitive Analysis
43

