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Constant Propagation Optimization

https://github.com/cs-au-dk/TIP/blob/master/src/tip/analysis/ConstantPropagationAnalysis.scala
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Determine variables with a constant value

 Flat lattice:
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Constant Propagation Analysis
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 Essentially as for the Sign analysis…

Abstract operator for addition:
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Constraints for Constant Propagation
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A variable is live at a program point its value may be read later in the 

remaining execution

Undecidable, but the property can be conservatively approximated

 The analysis must only reply dead if the variable is really dead

◼ No need to store the values of dead variables
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Live Variables Analysis
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A powerset lattice of program variables
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A Lattice for Liveness
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The Control Flow Graph
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 For every CFG node v we have a variable v

◼ the subset of program variables that are live at the program point before v

 Since the analysis is conservative, the computed set may be too large

Auxiliary definition

◼ JOIN 𝑣 = 𝑤∈𝑠𝑢𝑐𝑐(𝑣)ڂ 𝑤
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Setting Up

分析出的是可能
的活跃变量集合
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 For the exit node

𝑒𝑥𝑖𝑡 = ∅

 For conditions and output

if (𝐸) = while 𝐸 = output 𝐸 = 𝐽𝑂𝐼𝑁(𝑣) ∪ 𝑣𝑎𝑟𝑠(𝐸)

 For assignments

𝑥 = 𝐸 = 𝐽𝑂𝐼𝑁(𝑣)\{𝑥} ∪ 𝑣𝑎𝑟𝑠(𝐸)

 For variable declarations

var 𝑥1, ⋯ , 𝑥𝑛 = 𝐽𝑂𝐼𝑁(𝑣)\{𝑥1, ⋯ , 𝑥𝑛}

 For all other nodes

𝑣 = 𝐽𝑂𝐼𝑁(𝑣)
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Liveness Constraints
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𝑒𝑥𝑖𝑡 = ∅

if (𝐸) = while 𝐸 = output 𝐸 = 𝐽𝑂𝐼𝑁(𝑣) ∪ 𝑣𝑎𝑟𝑠(𝐸)

𝑥 = 𝐸 = 𝐽𝑂𝐼𝑁(𝑣)\{𝑥} ∪ 𝑣𝑎𝑟𝑠(𝐸)

var 𝑥1, ⋯ , 𝑥𝑛 = 𝐽𝑂𝐼𝑁(𝑣)\{𝑥1, ⋯ , 𝑥𝑛}

𝑣 = 𝐽𝑂𝐼𝑁(𝑣)
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Generated Constraints
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Least Solution

Many non-trivial answers!
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 Variables y and z are never live at the same time

➔they can share the same variable location

 The value assigned in z=z-1 is never read

➔the assignment can be skipped
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Optimizations

•better register allocation 
•a few clock cycles saved
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 With n CFG nodes and k variables:

◼ the lattice Ln has height k∙n

◼ so there are at most k ∙ n iterations

 Subsets of Vars(the variables in the program) can be represented as 

bitvectors:

◼ each element has size k

◼ each ∪, \, = operation takes time O(k)

 Each iteration uses O(n) bitvector operations:

◼ so each iteration takes time O(k ∙ n)

 Total time complexity: O(k2n2)

 Exercise: what is the complexity for the worklist algorithm?
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Time Complexity(for the naive algorithm)

Ln是CFG中n个node要计算的程序点
状态的取值的范围

一次迭代的状态转移函数f: Ln →Ln
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A (non-trivial) expression is available at a program point if its current 

value has already been computed earlier in the execution

 The approximation generally includes too few expressions

◼ The analysis can only report “available” if the expression is definitely available

◼ No need to re-compute available expressions 

(e.g. common subexpression elimination)
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Available Expressions Analysis
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A reverse powerset lattice of nontrivial expressions
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A Lattice for Available Expressions
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Reverse Powerset Lattice
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Flow Graph
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 For every CFG node v we have a variable v

◼ the subset of expressions that are available at the program point after v

 Since the analysis is conservative, the computed set may be too 

small

Auxiliary definition

JOIN 𝑣 = 𝑤∈𝑝𝑟𝑒𝑑(𝑣)ځ 𝑤
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Setting Up
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 The function X↓x removes all expressions from X that contain a 

reference to the variable x

 The function exps(E) is defined as:

◼ exps(intconst) = ∅

◼ exps(x) = ∅

◼ exps(input) = ∅

◼ exps(E1op E2) = {E1 op E2} ∪ exps(E1) ∪ exps(E2) 

but don’t include expressions containing input
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Auxiliary Functions
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 For the entry node

𝑒𝑛𝑡𝑟𝑦 = ∅

 For conditions and output

if (𝐸) = while 𝐸 = output 𝐸 = 𝐽𝑂𝐼𝑁(𝑣) ∪ 𝑒𝑥𝑝𝑠(𝐸)

 For assignments

𝑥 = 𝐸 = ( 𝐽𝑂𝐼𝑁 𝑣 ∪ 𝑒𝑥𝑝𝑠 𝐸 ) ↓ 𝑥

 For all other nodes

𝑣 = 𝐽𝑂𝐼𝑁(𝑣)
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Availablity Constraints
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Generated Constraints

𝑒𝑛𝑡𝑟𝑦 = ∅

if (𝐸) = while 𝐸 = output 𝐸

= 𝐽𝑂𝐼𝑁(𝑣) ∪ 𝑒𝑥𝑝𝑠(𝐸)

𝑥 = 𝐸 = ( 𝐽𝑂𝐼𝑁 𝑣 ∪ 𝑒𝑥𝑝𝑠 𝐸 ) ↓ 𝑥

𝑣 = 𝐽𝑂𝐼𝑁(𝑣)
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Least Solution

Many non-trivial answers!
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We notice that a+b is available before the loop

 The program can be optimized (slightly):
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Optimizations

引入临时变量记录表达式的值，便
于在表达式所引用的变量修改后重
新计算并记录新值，也便于后面实
施复写传播，发现更多优化机会
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A (nontrivial) expression is very busy if it will definitely be evaluated 

before its value changes

 The approximation generally includes too few expressions

◼ the answer “verybusy” must be the true one

◼ Very busy expressions may be pre-computed

(e.g. loop hoisting)

 Same lattice as for available expressions
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Very Busy Expressions Analysis

一个表达式在程序点非常忙当它无论沿

哪条路径从那个点到终止点都会被计算
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An Example Program

The analysis shows that  a*b is very busy
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Code Hoisting
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 For every CFG node v we have a variable v

◼ the subset of expressions that are very busy at the program point before v

 Since the analysis is conservative, the computed set may be too 

small

Auxiliary definition

◼ JOIN 𝑣 = 𝑤∈𝑠𝑢𝑐𝑐(𝑣)ځ 𝑤
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Setting Up

必须其后的每条路径上都very 
busy才能称为very busy
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 For the exit node

𝑒𝑥𝑖𝑡 = ∅

 For conditions and output

if (𝐸) = while 𝐸 = output 𝐸 = 𝐽𝑂𝐼𝑁(𝑣) ∪ 𝑒𝑥𝑝𝑠(𝐸)

 For assignments

𝑥 = 𝐸 = 𝐽𝑂𝐼𝑁 𝑣 ↓ 𝑥 ∪ 𝑒𝑥𝑝𝑠 𝐸

 For all other nodes

𝑣 = 𝐽𝑂𝐼𝑁(𝑣)
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Very Busy Constraints
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 The reaching definitions for a program point are those assignments 

that may define the current values of variables

 The conservative approximation may include too many possible 

assignments
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Reaching Definitions Analysis
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The powerset lattice of assignments
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A Lattice for Reaching Definitions
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 The function X↓x removes assignments to x from X

 For assignments

𝑥 = 𝐸 = 𝐽𝑂𝐼𝑁 𝑣 ↓ 𝑥 ∪ {𝑥 = 𝐸}

 For all other nodes

𝑣 = 𝐽𝑂𝐼𝑁(𝑣)

Auxiliary definition

◼ JOIN 𝑣 = 𝑤∈𝑝𝑟𝑒𝑑(𝑣)ڂ 𝑤
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Reaching Definitions Constraints
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Reaching definitions define the def-use graph:

◼ like a CFG but with edges from def to use nodes

◼ basis for dead code elimination and code motion

37

Def-use Graph

只有赋值语句才可能有出边，
表示该定值被引用；若定值
语句无出边则可删除
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A forward analysis:

◼ computes information about the past behavior

◼ examples:  available expressions, reaching definitions

A backward analysis:

◼ computes information about the future behavior

◼ examples:  liveness, very busy expressions
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Forward vs. Backward
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A may analysis:

◼ describes information that is possibly true

◼ an over-approximation

◼ examples: liveness, reaching definitions

A must analysis:

◼ describes information that is definitely true

◼ an under-approximation

◼ examples: available expressions, very busy expressions
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May vs. Must
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Classifying Analyses
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Compute for each program point those variables that have definitely 

been initialized in the past

 (Called definite assignment analysis in Java and C#)

➔forward must analysis

Reverse powerset lattice of all variables 

JOIN 𝑣 = ሩ

𝑤∈𝑝𝑟𝑒𝑑(𝑣)

𝑤

• For assignments: 𝑥 = 𝐸 = 𝐽𝑂𝐼𝑁 𝑣 ∪ {𝑥}

• For all others: 𝑣 = 𝐽𝑂𝐼𝑁(𝑣)
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Initialized Variables Analysis
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Thanks
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