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var X,y,Z;

X 27;

y = input,

rd 2EX+Y;

it (x<0) { y=z-3; } else { y=12 }

output vy,

var x,vy,Z;

X = 27; var y;

y = input; — 1 .
:> Yy = Tnput;

? = 24HY; output 12;

it (0) { y=2z-3; } else { y=12 }

output vy;

https://github.com/cs-au-dk/TIP/blob/master/src/tip/analysis/ConstantPropagationAnalysis.scala
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Determine variables with a constant value

Flat |attice:
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Essentially as for the Sign analysis...

Abstract operator for addition:

1 if n=1Lvm=1L
+(nm)=—= T elseif N=T Vvm=T
n+m otherwise
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A variable is live at a program point its value may be read later in the
remaining execution

Undecidable, but the property can be conservatively approximated

The analysis must only reply dead if the variable is really dead
B No need to store the values of dead variables
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A powerset lattice of program variables

var x,y,Z; L= {2{1'?‘2}; ;}

X = 1nput;
while (x=1) {

the trivial answer
}; — }{Jﬁf;E ; .Aﬁﬁgﬂfﬁ,s*"fﬁfﬂfrﬂ*

1t (y>3) x = x-y; LR
z = }{—4; .-""-J-J-l-__-‘__"x.
if (z20) x = x/2: iyl vzh iz

7 = E—l; Mﬁ}c{:\'l
x  {yb {zi

W

&

}

output x;
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©))) The Control Flow Graph FEAZLL% g

— Y =

Z 0 “«X = X/2
var X,Y,Z;
X = 1nput; Jff;j/
while (x=1) { z =2z-1r¢
y = x/2;

1t (y>3) x = x-vy;

- output X

z = x-4;
it (220) x = x/2; i
z = z-1;

}

output x;
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For every CFG node v we have a variable [v]

B the subset of program variables that are live at the program point before v

Since the analysis Is conservative, the computed set may be too large

M7 H T T B
N o B R AR A
Auxiliary definition
B JOIN(v) = Uwesucc(v)ﬂw]] v
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For the exit node
[exit] = @

For conditions and output
[if (E)] = [while E] = [loutput E]] = JOIN (v) U vars(E)

vars(E) = variables occurring in E

For assignments
[x = E]] = JOIN (v)\{x} U vars(E)

For variable declarations
[var x4, -, X, = JOIN (v)\{xq, "+, X5, }

For all other nodes right-hand sides are monotone
[v] = JOIN (v) since JOIN is monotone, and ...
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[exit] = @
[if (E)] = [[while E] = [output E]] = JOIN (v) U vars(E)

[var X,vy,z]=[z=1nput]\{x,y,z}
[x=1nput] = [x>1] \ {x}

[x>1] = ([y=x/2] v [output X]J)w {x} [x = E] = JOIN(v)\{x} U vars(E)
[y=x/2] = ([y>3]\{y}) v {x} [var xq, -, xp] = JOIN (W)\{xy, -+, %y}
[y>3] = [x=x-y] v [z=x-4] v {y}
[x=x-y] = ([z=x-4] \ {x}) v {X,y}
[z=x-4] = ([z>0] \ {z}) v {x} var X,vy,Z;
[z>0] = [x=x/2] v [z=z-1] uw{z} x = input;
[x=x/2] = ([z=z-1]\ () U fx} ~ WhiTe G

[v] = JOIN(v)

[z=2-1] = ([x>1] \ {z}) v {z} y = x/2; |
Il it (y=3) x = x-y;
t [output X] = [exit] w {X} S — x4
[exit] = & i (0) x = x/2:
z = z-1;
}
output x;
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[var Xx,vy,z]=[z=1nput]\{x,Vy.z} lentry] = &
[x=1nput] = [x>1] \ {x} Ivar x,y,z]=9
[x>1] = ([y=x/2] v [output x])wu {x} [Xx=1nput] =@
[y=x/2] = (Ly>3] \ {y}) v {x} [x>1] = {x}
[y>3] = [x=x-y]  [z=x-4] U {y} Ty=x/2] = {x}
[x=x-y] = ([z=x-4] \ {x}) v {X,y} Iy>3] = {x,y}
[z=x-4] = ([2>0]\ {z)) U X Ixex-y] = (v}
[z>0] = [x=x/2] v [z=z-1] u {z} [z=x-4] = {x}
[x=x/2] = ([z=z-1] \ {X}) v {x}
[z=z-1] = ([x>1] \ {z}) v {2} [z>0] = {x,z}
t [output x] = [exit] w {X} [x=x/2] ={x,z}
[exit] = & [z=z-1] = {X,z}
[output x] ={x}
[exit] = &

[Many non-trivial answers!]
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Variables y and z are never live at the same time

=>they can share the same variable location

The value assigned in z=z-1 is never read

=>the assignment can be skipped

var x,¥Y,Z; var X,v¥Z;

X = Input; X = input;

while (x=1) { while (x=1) {
y = x/2; yz = x/2;
if (v>3) x = x-y: if (yz»3) x = x-yz: | *better register allocation
z = x-4; yz = x-4; ea few clock cycles saved
1t (z=0) x = x/2; 1t (yz=0) x = x/2;
z = z-1; }

1 output x;

output x;
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With n CFG nodes and k variables: LPECFGH ninodeEHERNER A
Y ‘;ég N ) ?44

B the lattice L" has height k-n .

B so there are at most k - n iterations —RKIERFPRESEB EEHf: LN >L"

Subsets of Vars(the variables in the program) can be represented as
bitvectors:

B each element has size k

B each U, \, = operation takes time O(k)

Each iteration uses O(n) bitvector operations:
B so each iteration takes time O(k - n)

Total time complexity: O(k?n?)

Exercise: what is the complexity for the worklist algorithm?
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* Constant propagation analysis

* Live variables analysis
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A (non-trivial) expression is available at a program point if its current
value has already been computed earlier in the execution

The approximation generally includes too few expressions

B The analysis can only report “available” if the expression is definitely available

B No need to re-compute available expressions
(e.g. common subexpression elimination)
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A reverse powerset lattice of nontrivial expressions

var xX,y,z,a,b;

z = atb;

vy = a*b:

while (y > a+b) {
a = a+l;
x = a+b;

| = [2{a+b, a*h, y>a+b, El+l}; ::.}

Flow Sensitive Analysis 18
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la+b, .::ffb} {a+b, y>a+b} {a+b, a+l} {a*b, y>a+b} {a*b,a+l} {y>a+b,a+1}

-

fa+b, a‘f‘:b,_y:}a+b} {a+b, a*b, a+1} {a+b, y>a+b, a+1} {a*b, y>a+b, a+1}

{a+b, a*b, y>a+b, a+1}

Flow Sensitive Analysis 19
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var x,y,z,a,b
var x,v,z,a,b; l

z = a+b; z=a+b
y = ab; 1
while (y > a+b) { y=a*b

a = a+l;
x = a+b;

20
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For every CFG node v we have a variable [v]

B the subset of expressions that are available at the program point after v

Since the analysis Is conservative, the computed set may be too
small

Auxiliary definition
]OIN(U) = nprred(v)[[W]]
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The function XI{x removes all expressions from X that contain a
reference to the variable x

The function exps(E) is defined as.

B exps(intconst) = @

B exps(x) =0
B exps(input) =@

B exps(E,0p E,) = {E; 0p E;} U exps(E,) U exps(E,)
but don't include expressions containing input
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For the entry node

[entry] = @

For conditions and output

[if (E)] = [while E] = [loutput E]] = JOIN (v) U exps(E)

For assignments
[x =E] = (JOIN(v) Uexps(E)) | x

For all other nodes
[v] = JOIN (v)
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[entry]] = @
[entry]] % [if (E)] = [while E] = [output ET]
[var Xx,y,z,a,b] =[entry] =JOIN(v) U exps(E)
IZ At ’JI . 5(a+b)¢z [x =E] = (JOIN(v) Uexps(E)) | x
. b , [v] = JOIN (v)

[y=a*b] = [z=a+ h] U exps(a®b))\Vy
[y>a+b] = ([y=a*b] n [x=a+b]) U exps(y>a+b)
[a=a+1] = ([y>a+b] U exps(a+1))Nva var x,y,z,a,b;

= b
[x=a+b] = ([a=a+1] w exps(a+b))¥x f, It
[exit] = [y>a+b] while (y > a+b) {

a = a+l;

x = at+b;

}

Flow Sensitive Analysis 24
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var x,y,z,a,b] = [entry]
Z= a+3]-exps(a+b)¢z

[ [
[ [
[ [
[y=a*b] = ([z= a+31 U exps(a*b)ly [y=a*b] = {a+b, a*b}
[y>a+b] = ([y=a*b] n [x=a+b]) U exps(y>a+b) I
. I
I [

ly=
a=a+1] = ([y>a+b] U exps(a+1))Va
[a=a+1] U exps(a+b)) x
exit] = [y>a+b]

x=a+b] = {a+b}
[exit] = {a+b}

[ Many non-trivial answers! ]

Flow Sensitive Analysis 25



Optimizations tORsLA RS

op o

S w®
“ace and e

We notice that a+b is available before the loop

The program can be optimized (slightly):

var x,y,z,a,b; var X,y,X,a,b,aplusb;
z = ath: aplusb = a+b;
y = a*b: z = aE;usb;

- y = a*b;
while (y > jﬁﬂi} { while (y > aplusb) {

a = a+l; a = a+l;

X = a+b; aplusb = a+b;
¥ X = aplusb;

¥ SN AR FRIE R,

TAEREAPSI AN RBSURE
Bt IO SORE, BT a1 S
8 5 A E, RKIEZ L2
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Constant propagation analysis
Live variables analysis
Available expressions analysis
Very busy expressions analysis
Reaching definitions analysis
Initialized variables analysis

Flow Sensitive Analysis
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A (nontrivial) expression is very busy if it will definitely be evaluated
before its value changes  —tssstEmsmstLeLen
RSB IR MIBA BRI

The approximation generally includes too few expressions
B the answer “verybusy” must be the true one

B Very busy expressions may be pre-computed
(e.g. loop hoisting)

Same lattice as for available expressions
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var x,a,b;

X = 1nput;

a = x-1;

b = x-2;

while (x > 0) {
output a*b-x;
X = xX-1;

¥

output a*b;

The analysis shows that a*b is very busy
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var x,a,b: var x,a,b,atimesb;
X = input; X = input;

a = x-1; a = x-1;

b = x-2; \ b = x-2;

while (x > 0) { | } atimesbh = a*b;
while (x > 0) {

output a*b-x;
X = x-1; output atimesb-x;
¥ X = x-1;

output a¥*b; }
output atimesb;
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For every CFG node v we have a variable [v]

B the subset of expressions that are very busy at the program point before v

Since the analysis Is conservative, the computed set may be too
small

W J5 R 2k 42 Bfvery
busy 1 8EF Avery busy

Auxiliary definition
B JOIN(v) = nWESU,CC(U)HW]]

Flow Sensitive Analysis 31
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For the exit node
[exit] = @

For conditions and output
[if (E)] = [while E] = [loutput E]] = JOIN (v) U exps(E)

For assignments
[x =E] = JOIN(v) | x Uexps(E)

For all other nodes
[v] = JOIN (v)

Flow Sensitive Analysis 32
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Constant propagation analysis
Live variables analysis
Available expressions analysis
Very busy expressions analysis
Reaching definitions analysis
Initialized variables analysis

Flow Sensitive Analysis
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The reaching definitions for a program point are those assignments
that may define the current values of variables

The conservative approximation may include too many possible
assignments
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The powerset lattice of assignments
| = (2{}(:1 nput, y=X/2, Xx=x-y, z=x-4, Xx=X/2, z=z—1}}(;)

var X,VY,Z;

X = 1nput;

while (x > 1) {
y = x/2;
1T (y>3) x = x-y;
z = X-4;
if (z>0) x
z = z-1;

¥

output x;

X/2;
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The function XIx removes assignments to x from X

For assignments
[x =E] =JOIN(v) | x U {x = E}

For all other nodes
[v] = JOIN (v)

Auxiliary definition

B JOIN(v) = UWEpred(v)HW]]

Flow Sensitive Analysis 36



(=2)) Def-use Graph tORsLA RS

of &

3
S «©
e and Te

Reaching definitions define the def-use graph:

B like a CFG but with edges from def to use nodes

B basis for dead code elimination and code motion
HAEREER) A ] g8 ik,

e FOREBG A
x=1nput — i R) I HH A2 AT A g

z=z-1

¥

x>1

y=X/2

output X
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A forward analysis:

B computes information about the past behavior

B examples: available expressions, reaching definitions

A backward analysis:

B computes information about the future behavior

B examples: liveness, very busy expressions

Flow Sensitive Analysis
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A may analysis:

B describes information that is possibly true

B an over-approximation

B examples: liveness, reaching definitions

A must analysis:

B describes information that is definitely true

B an under-approximation

B examples: available expressions, very busy expressions

Flow Sensitive Analysis
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example: reaching definitions example: liveness

[v] describes state after v [v] describes state before v

joinw) = Hgwg = Uw] joINW) = Lpwl = W
wepred(v) wepred(v) wesucc(v)  wesuce(v)

example: available expressions example: very busy expressions

[v] describes state after v [v] describes state before v

joiINw) = Lwg = Mg

wesucclv)  wesucc(v)

joINW) = L] = M[w]

wepred(v) wepred(v)
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Constant propagation analysis
Live variables analysis
Available expressions analysis
Very busy expressions analysis
Reaching definitions analysis
Initialized variables analysis

Flow Sensitive Analysis
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Compute for each program point those variables that have definitely
been initialized in the past

(Called definite assignment analysis in Java and C#)

=»forward must analysis

Reverse powerset lattice of all variables

oIN@w) = (] [l

wepred(v)
« For assignments: [x = E]] = JOIN(v) U {x}
 For all others: [v] = JOIN (v)
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