e s » (]
=\ é é
1958)) ‘
A z
% O ,..41“"’4\’?

University of Science and Technology of China

Path Sensitivity

Most content comes from http://cs.au.dk/~amoeller/spa/

KE

yuzhang@ustc.edu.cn

T EAFRRKKF
T HEIAF EERFIE

http://cs.au.dk/~amoeller/spa/

) Information in Conditions FEAZLL g

input:
0;

D-
le (x>0) {
= Z+X:

| T (l?byj {y=y+l; }
= xX-1;

The interval analysis (with widening) concludes:
X = [_'T’!'T’]: y= [D!'T’]r L= [_I'!I']

Path Sensitivity 2

{©)))Modeling Conditions *OMZLLxS

op ‘\Qéc'
5 wans®
> and T¢

S;V"l’ur(

Add artificial “assert” statements:

The statement assert(E) models that E is true in the current program
state

It causes aruntime error otherwise

but we only insert it where the condition will always be true

Path Sensitivity 3

(=2)) Encoding Conditions tORsLA RS

o o
KQ‘/‘ \\“0\0
“ce and TeC

X = 1nput;
y = 0;
Z = 0;

while (x=0) {
assert(x>0);
Z = Z+X:
if (17>y) { assert(l7>y); vy = y+1; }
else { assert(!(17>y)); }
X = X-1;
}
assert(! (xc0));

| preserves semantics since asserts are guarded by conditions

(alternatively, we could add dataflow constraints on the CFG edges)

Path Sensitivity 4

Constramts for assert "z @ é" é '&* é

A trivial but sound constraint:
[v]= JOIN(v)
A non-trivial constraint for assert(x>E):
[V]=JOIN(V)[x—=>gt(JOIN(v)(x),eval (JOIN(v), E))]
where

at([l1,h.[l5,ho]) = [1,hy]A [15,00]

Similar constraints are defined for the dual cases

More tricky to define for other conditions...

University of Science and Technology of China

) Exploiting Conditions FEBZLAL %S

o &

X
S w®
e and Te

X = 1nput;
y = 0;
zZ = 0;

while (x=0) {
assert(x>0):
Z = Z+X!
if (17>y) { assert(l7>y); y = y+1; }
else { assert(!(17>y)): }
X = X-1;
}
assert(! (x>0)):

—~

The interval analysis now concludes:
X= [_OO!O]; Y= [0117]; VAS [O!OO]

Path Sensitivity 6

\

Branch Correlations *OMZLLxS

of &

X

S «©
e, edl
“0ce and T

With assert we have a simple form of path sensitivity (sometimes
called control sensitivity)

But 1t Is Insufficient to handle correlation of branches:

if (17 > x) { ... }
... // statements that do not change x
if (17 > x) { ... }

Path Sensitivity 7

(=2)) Open and Closed Files *OMZLLxS

op o

Sor S
e, e
“ce and TeC

Built-in functions open() and close() on a file

Requirements:

B never close a closed file

open()

B never open an open file

close()

We want a static analysis to check this...(for simplicity, let us assume
there is only one file)

Path Sensitivity 8

rsity of Sci and Technology of Chin

A Tricky Example '# B#H5LK% é

if (condition) {
open();

flag = 1;

} else {

flag = 0;

h

if (fFlag) {
close();

h

The Naive Analysis (1/2) FEHAZLLX S

The lattice models the status of the file: {open,closed}

L = (P({open,closed}),c) T
{open} {closed}

~_

For every CFG node, v, we have a constraint variable [[v] denoting the
status after v

JOIN(v) = U [w]

w e pred(v)

Path Sensitivity 10

rsity of Scie and Technology of Chin

The Naive Analysis(2/2) FEBLZLL XS

Constraints for interesting statements:
[entry]= {closed}

[open()]= {open}

1T (condition) {

[close()]= {closed} open();
flag = 1;
} else {
For all other CFG nodes: flag = O;
[v]= JOIN(V) } |
if (flag) {
close();
Before the close() statement the 1

analysis concludes that the file
is {open,closed} ®

Path Sensitivity 11

The Slightly Less Naive Analysis "’ @é" 3 4-“‘ é

We obviously need to keep track of the flag variable

Our second attempt is the lattice:
L = (P({open,closed})x P ({flag=0,flag + 0}),cX <)

if (condition) {

. open() ;
Additionally, we add assert(...) flag = 1:
to model conditionals } else {

flag =
}
Even so, we still only know that if (flag) {
the file is {open,closed} and that } elizeslls

flag is {flag=0,flag#0} ®

'(=2)) Enhanced Program tORsLA RS

op o

S w®
“ace and e

1T (condition) {
assert(condition);
open();
flag = 1;

} else {
assert(!condition);
flag = 0;

}

1f (flag) {
assert(flag);
close();

} else {
assert(!flag);

Path Sensitivity 13

Relational Analysis *OMZLLxS

.
o o

&

3 S
e, ol
“Ice and T

We need an analysis that keeps track of relations between variables

One approach is to maintain multiple abstract states per program
point, one for each path context

* For the file example we need the lattice:
L = Paths— P ({open,closed})
(isomorphic to L=P (Pathsx {open,closed}))

Where Paths = {flag=0,flag+0} is the set of path contexts

Path Sensitivity 14

Relatlonal Constraints(1/2) FEAZLL S

* For the file statements:
[entry] = Lp.{closed}
[open()] =ip.{open}
[closed()] =Ap.{closed} "infeasible”

* For T1ag assighnments: \

[Tlag = 0] =[f1 ag=0a-pl_EJpJGIN(v}[p}, flag=0—]

[T1ag n] = [T ag;:D%nUpJDIN{w}{p}, flag=0—]
ps

where nis a non-0

[[.[:-I Elg — E]] — :’-..q. UP-"ID!N{VHP} for any other E constant number
ps

Relatlonal Constraints(2/2) FEAZLL S

* For assertstatements:

[assert(flag)]-=
[T1ag=0—JOIN(v)(Tf1ag=0), flag=0->]

[assert(!flag)]-=
[Tlag=0—JOIN(v)(TTag=0), Tlag=0—]

* For all other CFG nodes:

[v] =JOIN(v) = Ap. U [w](p)

w e pred(v)

16

FEBZLLK g

and Technology o fCh

Generated Constraints

entry] = ip.{closed}

condition] = [entry]

assert(condition)]=[condition]

open ()] =%p.{open]

flag = 1] =[flag=0—U [open()]ip), Tlag=0—-]
[assert(!condition)]=[condition]

flag = 0] =[flag=0—U [assert(!condition)]ip), Flagz0—-I]
.. .]=%p([fTag = 1](p) U [flag = O](p))

flag]=1[..
assert(flag)]=[flagz0—>[flag](flag=0), flag=0—-]
close()]=irp.fclosed]
assert(!flag)]=[flag=0—[flag](flag=0), flag=0—-3]
exit] = Lp.([cTose()](p) U [assert (! flag)]ip))

i i
Re—

Path Sensitivity

17

\;

ﬂé‘&%@

N\
)
and Te“‘\(\o

0
19
(=} g
) 4 &
% g
?2 <
&

o %, O
%

“ace

FRAZLELE S

University of Science and Technology of China

Minimal Solution

[entry]] {closed} [closed}
[condition]] {closed} {closed}
[assert({condition)] [closed} {closed}

[open()] fopen} {open}

[flag = 1] = {open}
[assert{!condition)] {closed} [closed}

[flag = 0] {closed} 2

[---] {closed} {open}

[flag] {clﬂ-sei:l} {-IJEE-H} |
[assert({flag]] e {open} :'-’
[close(]] losed T Tosedt |
[assert(!flag)] [closed} &

[exit] {closed} [closed}

We now know the file is open before close() ©

Path Sensitivity

18

Challenges *OMzALxS

7

o
'
and Te°

;;71’:;(<(

The static analysis designer must choose Paths
B Often as Boolean combinations of predicates from conditionals

B iterative refinement (e.g. counter-example guided abstraction refinement) can be
used for gradually finding relevant predicates

Exponential blow-up:
B for k predicates, we have 2 different contexts
B Redundancy often cuts this down

Reasoning about assert.
B how to update the lattice elements with sufficient precision?
B Possibly involves heavy-weight theorem proving

Path Sensitivity 19

Improvements *OMZLLxS

op ‘\Qéc'
5 wans®
> and T¢

27""(*

‘e

Run auxiliary analyses first, for example:

B constant propagation
B sign analysis

will help in handling flag assignments

Dead code propagation, change

[open()]= A p.{open}
Into the still sound but more precise
[open()]= Ap.if JOIN(V)(p)=Cthen & else {open}

Path Sensitivity 20

FEBZLAXE

University of Science and Technology of China

ILERLE

Path Sensitivity

21

