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Information in Conditions
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Add artificial “assert” statements:

The statement assert(E) models that E is true in the current program 

state

 it causes a runtime error otherwise

 but we only insert it where the condition will always be true
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Modeling Conditions
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Encoding Conditions

(alternatively, we could add dataflow constraints on the CFG edges)

Path Sensitivity



A trivial but sound constraint:

⟦v⟧= JOIN(v)

A non-trivial constraint for assert(x>E):

⟦v⟧=JOIN(v)[x→gt(JOIN(v)(x),eval(JOIN(v), E))]

where

gt([l1,h1],[l2,h2]) = [l1,h1]⊓ [l2,]

 Similar constraints are defined for the dual cases

More tricky to define for other conditions...
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Constraints for assert

Path Sensitivity



6

Exploiting Conditions

The interval analysis now concludes:
x= [-,0],  y= [0,17],   z= [0,]
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With assert we have a simple form of path sensitivity (sometimes 

called control sensitivity)

But it is insufficient to handle correlation of branches:
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Branch Correlations
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Built-in functions open() and close() on a file

Requirements:

◼ never close a closed file

◼ never open an open file

We want a static analysis to check this...(for simplicity, let us assume 

there is only one file)
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Open and Closed Files
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A Tricky Example
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 The lattice models the status of the file:

L = (𝒫({open,closed}),)

 For every CFG node, v, we have a constraint variable ⟦v⟧ denoting the 

status after v
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The Naive Analysis (1/2)
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Constraints for interesting statements:

⟦entry⟧= {closed}

⟦open()⟧= {open}

⟦close()⟧= {closed}

 For all other CFG nodes:

⟦v⟧= JOIN(v)

Before the close() statement the 

analysis concludes that the file 

is {open,closed} 
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The Naive Analysis(2/2)
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We obviously need to keep track of the flag variable

Our second attempt is the lattice:

L = (𝒫({open,closed})× 𝒫({flag=0,flag ≠ 0}),× )

Additionally, we add assert(...) 

to model conditionals

 Even so, we still only know that

the file is {open,closed} and that 

flag is {flag=0,flag≠0}  
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The Slightly Less Naive Analysis
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Enhanced Program
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We need an analysis that keeps track of relations between variables

One approach is to maintain multiple abstract states per program 

point, one for each path context

• For the file example we need the lattice:

L = Paths→ 𝒫({open,closed})

(isomorphic to L=𝒫(Paths× {open,closed}))

Where Paths = {flag=0,flag0} is the set of path contexts
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Relational Analysis
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Relational Constraints(1/2)
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Relational Constraints(2/2)
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Generated Constraints
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Minimal Solution

We now know the file is open before close() ☺
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 The static analysis designer must choose Paths

◼ Often as Boolean combinations of predicates from conditionals

◼ iterative refinement (e.g. counter-example guided abstraction refinement) can be 

used for gradually finding relevant predicates

 Exponential blow-up:

◼ for k predicates, we have 2k  different contexts

◼ Redundancy often cuts this down

Reasoning about assert:

◼ how to update the lattice elements with sufficient precision?

◼ Possibly involves heavy-weight theorem proving
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Challenges
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Run auxiliary analyses first, for example:

◼ constant propagation

◼ sign analysis

will help in handling flag assignments

Dead code propagation, change

⟦open()⟧=  p.{open}

into the still sound but more precise

⟦open()⟧= p.if JOIN(v)(p)=then  else {open}
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Improvements
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Thanks
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