
Path Sensitivity

张昱
yuzhang@ustc.edu.cn

中国科学技术大学
计算机科学与技术学院

Most content comes from http://cs.au.dk/~amoeller/spa/

http://cs.au.dk/~amoeller/spa/

2

Information in Conditions

Path Sensitivity

Add artificial “assert” statements:

The statement assert(E) models that E is true in the current program

state

 it causes a runtime error otherwise

 but we only insert it where the condition will always be true

3

Modeling Conditions

Path Sensitivity

4

Encoding Conditions

(alternatively, we could add dataflow constraints on the CFG edges)

Path Sensitivity

A trivial but sound constraint:

⟦v⟧= JOIN(v)

A non-trivial constraint for assert(x>E):

⟦v⟧=JOIN(v)[x→gt(JOIN(v)(x),eval(JOIN(v), E))]

where

gt([l1,h1],[l2,h2]) = [l1,h1]⊓ [l2,]

 Similar constraints are defined for the dual cases

More tricky to define for other conditions...

5

Constraints for assert

Path Sensitivity

6

Exploiting Conditions

The interval analysis now concludes:
x= [-,0], y= [0,17], z= [0,]

Path Sensitivity

With assert we have a simple form of path sensitivity (sometimes

called control sensitivity)

But it is insufficient to handle correlation of branches:

7

Branch Correlations

Path Sensitivity

Built-in functions open() and close() on a file

Requirements:

◼ never close a closed file

◼ never open an open file

We want a static analysis to check this...(for simplicity, let us assume

there is only one file)

8

Open and Closed Files

Path Sensitivity

9

A Tricky Example

Path Sensitivity

 The lattice models the status of the file:

L = (𝒫({open,closed}),)

 For every CFG node, v, we have a constraint variable ⟦v⟧ denoting the

status after v

10

The Naive Analysis (1/2)

Path Sensitivity

Constraints for interesting statements:

⟦entry⟧= {closed}

⟦open()⟧= {open}

⟦close()⟧= {closed}

 For all other CFG nodes:

⟦v⟧= JOIN(v)

Before the close() statement the

analysis concludes that the file

is {open,closed}

11

The Naive Analysis(2/2)

Path Sensitivity

We obviously need to keep track of the flag variable

Our second attempt is the lattice:

L = (𝒫({open,closed})× 𝒫({flag=0,flag ≠ 0}),×)

Additionally, we add assert(...)

to model conditionals

 Even so, we still only know that

the file is {open,closed} and that

flag is {flag=0,flag≠0}

12

The Slightly Less Naive Analysis

Path Sensitivity

13

Enhanced Program

Path Sensitivity

We need an analysis that keeps track of relations between variables

One approach is to maintain multiple abstract states per program

point, one for each path context

• For the file example we need the lattice:

L = Paths→ 𝒫({open,closed})

(isomorphic to L=𝒫(Paths× {open,closed}))

Where Paths = {flag=0,flag0} is the set of path contexts

14

Relational Analysis

Path Sensitivity

15

Relational Constraints(1/2)

Path Sensitivity

16

Relational Constraints(2/2)

Path Sensitivity

17

Generated Constraints

Path Sensitivity

18

Minimal Solution

We now know the file is open before close() ☺
Path Sensitivity

 The static analysis designer must choose Paths

◼ Often as Boolean combinations of predicates from conditionals

◼ iterative refinement (e.g. counter-example guided abstraction refinement) can be

used for gradually finding relevant predicates

 Exponential blow-up:

◼ for k predicates, we have 2k different contexts

◼ Redundancy often cuts this down

Reasoning about assert:

◼ how to update the lattice elements with sufficient precision?

◼ Possibly involves heavy-weight theorem proving

19

Challenges

Path Sensitivity

Run auxiliary analyses first, for example:

◼ constant propagation

◼ sign analysis

will help in handling flag assignments

Dead code propagation, change

⟦open()⟧= p.{open}

into the still sound but more precise

⟦open()⟧= p.if JOIN(v)(p)=then else {open}

20

Improvements

Path Sensitivity

Thanks

Path Sensitivity
21

