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Analyzing the body of a single function

◼ intraprocedural analysis

Analyzing the whole program with function calls

◼ interprocedural analysis

 For now, we consider TIP without function pointers and indirect calls 

(so we only have direct calls)

A naive approach:

◼ analyze each function in isolation

◼ be maximally pessimistic about results of function calls

◼ rarely sufficient precision…
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Interprocedural Analysis
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The idea:

Construct a CFG for each function

 Then glue them together to reflect function calls and returns

We need to take care of:

 parameter passing

 return values

 values of local variables across calls (including recursive functions, 

so not enough to assume unique variable names)
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CFG for Whole Programs
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Assume that all function calls are of the form

X= f(E1, ...,En);

 This can always be obtained by normalization

4

A Simplifying Assumption
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Split each original call node

into two nodes:
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Interprocedural CFGs (1/3)
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Change each return node

into an assignment:

(where result is a fresh variable)
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Interprocedural CFGs (2/3)
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Add call edges and return edges:
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Interprocedural CFGs (3/3)
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 For call/entry nodes:

◼ be careful to model evaluation of all the actual parameters before binding them to the 

formal parameter names (otherwise, it may fail for recursive functions)

 For after-call/exit nodes:

◼ like an assignment:  X = result

◼ but also restore local variables from before the call using the call ↷ after-call edge

 The details depend on the specific analysis…
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Constraints
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Recall the intraprocedural sign analysis…

 Lattice for abstract values:

 Lattice for abstract states:

Vars→Sign
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Example: Interprocedural Sign Analysis
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Example: Interprocedural Sign Analysis
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Alternative Formulations

v是对每个call节点wi进
行汇集，tv是在主调v后
对callee进行参数传递

tv是将返回的退出点v应用到
每个主调的after-call节点wi

进行返回值的接收处理
Interprocedural Analysis
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The Worklist Algorithm (original version)

如果CFG结点vi 

的语义值发生变化，
则将计算vi 语义
值所依赖的结点vj
加入到worklist

CFG结点vi 的变迁函数

基于过程间的大CFG
处理call节点

Interprocedural Analysis
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The Worklist Algorithm (alternative version)

处理after-call节点

Interprocedural Analysis
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Interprocedurally Invalid Paths

Interprocedural Analysis



What is the sign of the return value of g?

Our current analysis says “⊤”
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Example

0 87 +

T
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Clone functions such that each function has only one callee

Can avoid interprocedurally invalid paths☺

 For high nesting depths, give exponential blow-up☺

Don’t work on (mutually) recursive functions ☺

Use heuristics to determine when to apply

(trade-off between CFG size and precision)
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Function Cloning(alternatively, function inlining)

Interprocedural Analysis



What is the sign of the return value of g?
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Example, with cloning

对f副本的调用

优点：分析精度提升
缺点：代码膨胀

Interprocedural Analysis



 Function cloning provides a kind of context sensitivity 

(also called polyvariant analysis)

 Instead of physically copying the function CFGs, do it logically

Replace the lattice for abstract states, States, by 

Contexts → lift(States)

where Contexts is a set of call contexts

◼ The contexts are abstractions of the state at function entry

◼ Contexts must be finite to ensure finite height of the lattice

◼ The bottom element of lift(States) represents “unreachable” contexts

Different strategies for choosing the set Contexts…
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Context Sensitive Analysis

Interprocedural Analysis



Easily adjusted to Contexts → lift(States)

 Example if v is an assignment node x =E in sign analysis:

⟦v⟧=JOIN(v)[x→ eval(JOIN(v), E)]

becomes

𝑣 𝑐 = ቊ
𝑠 𝑥 ↦ 𝑒𝑣𝑎𝑙 𝑠, 𝐸 if 𝑠 = 𝐽𝑂𝐼𝑁(v, c) ∈ States

unreachable if 𝐽𝑂𝐼𝑁 𝑣, 𝑐 = unreachable

and

becomes  
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Constraints for CFG nodes that 
do not involve function calls and returns
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 Let c1,…,cn be the call nodes in the program

Define Contexts={c1,…,cn}{ε}

◼ each call node now defines its own “call context”(using ε to represent the call context 

at the main function) 

◼ the context is then like the return address of the top-most stack frame in the call 

stack
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One-level Cloning

crt：C RunTime

a set of execution startup 

routines linked into a C program 

that performs any initialization 

work required before calling the 

program's main function. 

Interprocedural Analysis



 Let c1,…,cn be the call nodes in the program

Define Contexts={c1,…,cn}{ε}

◼ each call node now defines its own “call context”(using ε to represent the call context 

at the main function) 

◼ the context is then like the return address of the top-most stack frame in the call 

stack

 Same effect as one-level cloning, but without actually copying the 

function CFGs

Usually straightforward to generalize the constraints for a context 

insensitive analysis to this lattice

 (Example: context-sensitive sign analysis –later…)
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One-level Cloning
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 Let c1,…,cn be the call nodes in the program

Define Contexts as the set of strings over {c1,…,cn } of length k

◼ such a string represents the top-most k call locations on the call stack

◼ the empty string ε again represents the call context at the main function

 For k=1 this amounts to one-level cloning
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The Call String Approach

Implementation: CallStringSignAnalysis

Interprocedural Analysis
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Example: 

Interprocedural Analysis

Interprocedural sign analysis with call strings (k=1)
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Context Sensitivity with Call Strings
function entry nodes, for k=1

Only consider 
the call node w
that matches 
the context c

Interprocedural Analysis
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Context Sensitivity with Call Strings
after-call nodes, for k=1
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 The call string approach considers control flow

◼ but why distinguish between two different call sites if their abstract states are the 

same?

 The functional approach instead considers data

 In the most general form, choose

Contexts = States

(requires States to be finite)

 Each element of the lattice  States → lift(States) is now a map m that 

provides an element m(x) from States (or “unreachable”) for each 

possible x where x describes the state at function entry
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The Functional Approach
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Example: 
Interprocedural sign analysis with the functional 
approach
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Another Example: 
Interprocedural sign analysis with the functional 
approach
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 The lattice element for a function exit node is thus a function 

summary that maps abstract function input to abstract function 

output

 This can be exploited at call nodes!

When entering a function with abstract state x:

◼ consider the function summary s for that function

◼ if s(x) already has been computed, use that to model the entire function body, then 

proceed directly to the after-call node

Avoids the problem with interprocedurally invalid paths!

…but may be expensive if States is large
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The Functional Approach

Implementation: FunctionalSignAnalysis
Interprocedural Analysis
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Example: Interprocedural sign analysis with the 
functional approach

Interprocedural Analysis



32

Context sensitivity with the functional approach
function entry nodes 

Only consider 
the call node w
if the abstract 
state from that 
node matches 
the context c
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Context sensitivity with the functional approach: 
after-call nodes 
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 The call string approach is expensive for k>1

◼ solution: choose k adaptively for each call site

 The functional approach is expensive if States is large

◼ solution: only consider selected parts of the abstract state as context, for example 

abstract information about the function parameter values (called parameter 

sensitivity), or, in object-oriented languages, abstract information about the receiver 

object ‘this’ (called object sensitivity or type sensitivity)
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Choose the Right 
Context Sensitivity Strategy
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Thanks

Interprocedural Analysis
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