
Interprocedural Analysis

张昱
yuzhang@ustc.edu.cn

中国科学技术大学
计算机科学与技术学院

Most content comes from http://cs.au.dk/~amoeller/spa/

http://cs.au.dk/~amoeller/spa/

Analyzing the body of a single function

◼ intraprocedural analysis

Analyzing the whole program with function calls

◼ interprocedural analysis

 For now, we consider TIP without function pointers and indirect calls

(so we only have direct calls)

A naive approach:

◼ analyze each function in isolation

◼ be maximally pessimistic about results of function calls

◼ rarely sufficient precision…

2

Interprocedural Analysis

Interprocedural Analysis

The idea:

Construct a CFG for each function

 Then glue them together to reflect function calls and returns

We need to take care of:

 parameter passing

 return values

 values of local variables across calls (including recursive functions,

so not enough to assume unique variable names)

3

CFG for Whole Programs

Interprocedural Analysis

Assume that all function calls are of the form

X= f(E1, ...,En);

 This can always be obtained by normalization

4

A Simplifying Assumption

Interprocedural Analysis

Split each original call node

into two nodes:

5

Interprocedural CFGs (1/3)

Interprocedural Analysis

Change each return node

into an assignment:

(where result is a fresh variable)

6

Interprocedural CFGs (2/3)

Interprocedural Analysis

Add call edges and return edges:

7

Interprocedural CFGs (3/3)

Interprocedural Analysis

 For call/entry nodes:

◼ be careful to model evaluation of all the actual parameters before binding them to the

formal parameter names (otherwise, it may fail for recursive functions)

 For after-call/exit nodes:

◼ like an assignment: X = result

◼ but also restore local variables from before the call using the call ↷ after-call edge

 The details depend on the specific analysis…

8

Constraints

Interprocedural Analysis

Recall the intraprocedural sign analysis…

 Lattice for abstract values:

 Lattice for abstract states:

Vars→Sign

9

Example: Interprocedural Sign Analysis

Interprocedural Analysis

10

Example: Interprocedural Sign Analysis

V’

V
w

w

V
Interprocedural Analysis

11

Alternative Formulations

v是对每个call节点wi进
行汇集，tv是在主调v后
对callee进行参数传递

tv是将返回的退出点v应用到
每个主调的after-call节点wi

进行返回值的接收处理
Interprocedural Analysis

12

The Worklist Algorithm (original version)

如果CFG结点vi

的语义值发生变化，
则将计算vi 语义
值所依赖的结点vj
加入到worklist

CFG结点vi 的变迁函数

基于过程间的大CFG
处理call节点

Interprocedural Analysis

13

The Worklist Algorithm (alternative version)

处理after-call节点

Interprocedural Analysis

14Interprocedural Analysis

15

Interprocedurally Invalid Paths

Interprocedural Analysis

What is the sign of the return value of g?

Our current analysis says “⊤”

16

Example

0 87 +

T

Interprocedural Analysis

Clone functions such that each function has only one callee

Can avoid interprocedurally invalid paths☺

 For high nesting depths, give exponential blow-up☺

Don’t work on (mutually) recursive functions ☺

Use heuristics to determine when to apply

(trade-off between CFG size and precision)

17

Function Cloning(alternatively, function inlining)

Interprocedural Analysis

What is the sign of the return value of g?

18

Example, with cloning

对f副本的调用

优点：分析精度提升
缺点：代码膨胀

Interprocedural Analysis

 Function cloning provides a kind of context sensitivity

(also called polyvariant analysis)

 Instead of physically copying the function CFGs, do it logically

Replace the lattice for abstract states, States, by

Contexts → lift(States)

where Contexts is a set of call contexts

◼ The contexts are abstractions of the state at function entry

◼ Contexts must be finite to ensure finite height of the lattice

◼ The bottom element of lift(States) represents “unreachable” contexts

Different strategies for choosing the set Contexts…

19

Context Sensitive Analysis

Interprocedural Analysis

Easily adjusted to Contexts → lift(States)

 Example if v is an assignment node x =E in sign analysis:

⟦v⟧=JOIN(v)[x→ eval(JOIN(v), E)]

becomes

𝑣 𝑐 = ቊ
𝑠 𝑥 ↦ 𝑒𝑣𝑎𝑙 𝑠, 𝐸 if 𝑠 = 𝐽𝑂𝐼𝑁(v, c) ∈ States

unreachable if 𝐽𝑂𝐼𝑁 𝑣, 𝑐 = unreachable

and

becomes

20

Constraints for CFG nodes that
do not involve function calls and returns

Interprocedural Analysis

 Let c1,…,cn be the call nodes in the program

Define Contexts={c1,…,cn}{ε}

◼ each call node now defines its own “call context”(using ε to represent the call context

at the main function)

◼ the context is then like the return address of the top-most stack frame in the call

stack

21

One-level Cloning

crt：C RunTime

a set of execution startup

routines linked into a C program

that performs any initialization

work required before calling the

program's main function.

Interprocedural Analysis

 Let c1,…,cn be the call nodes in the program

Define Contexts={c1,…,cn}{ε}

◼ each call node now defines its own “call context”(using ε to represent the call context

at the main function)

◼ the context is then like the return address of the top-most stack frame in the call

stack

 Same effect as one-level cloning, but without actually copying the

function CFGs

Usually straightforward to generalize the constraints for a context

insensitive analysis to this lattice

 (Example: context-sensitive sign analysis –later…)

22

One-level Cloning

Interprocedural Analysis

 Let c1,…,cn be the call nodes in the program

Define Contexts as the set of strings over {c1,…,cn } of length k

◼ such a string represents the top-most k call locations on the call stack

◼ the empty string ε again represents the call context at the main function

 For k=1 this amounts to one-level cloning

23

The Call String Approach

Implementation: CallStringSignAnalysis

Interprocedural Analysis

24

Example:

Interprocedural Analysis

Interprocedural sign analysis with call strings (k=1)

25

Context Sensitivity with Call Strings
function entry nodes, for k=1

Only consider
the call node w
that matches
the context c

Interprocedural Analysis

26

Context Sensitivity with Call Strings
after-call nodes, for k=1

Interprocedural Analysis

 The call string approach considers control flow

◼ but why distinguish between two different call sites if their abstract states are the

same?

 The functional approach instead considers data

 In the most general form, choose

Contexts = States

(requires States to be finite)

 Each element of the lattice States → lift(States) is now a map m that

provides an element m(x) from States (or “unreachable”) for each

possible x where x describes the state at function entry

27

The Functional Approach

Interprocedural Analysis

28

Example:
Interprocedural sign analysis with the functional
approach

Interprocedural Analysis

29

Another Example:
Interprocedural sign analysis with the functional
approach

Interprocedural Analysis

 The lattice element for a function exit node is thus a function

summary that maps abstract function input to abstract function

output

 This can be exploited at call nodes!

When entering a function with abstract state x:

◼ consider the function summary s for that function

◼ if s(x) already has been computed, use that to model the entire function body, then

proceed directly to the after-call node

Avoids the problem with interprocedurally invalid paths!

…but may be expensive if States is large

30

The Functional Approach

Implementation: FunctionalSignAnalysis
Interprocedural Analysis

31

Example: Interprocedural sign analysis with the
functional approach

Interprocedural Analysis

32

Context sensitivity with the functional approach
function entry nodes

Only consider
the call node w
if the abstract
state from that
node matches
the context c

Interprocedural Analysis

33

Context sensitivity with the functional approach:
after-call nodes

Interprocedural Analysis

 The call string approach is expensive for k>1

◼ solution: choose k adaptively for each call site

 The functional approach is expensive if States is large

◼ solution: only consider selected parts of the abstract state as context, for example

abstract information about the function parameter values (called parameter

sensitivity), or, in object-oriented languages, abstract information about the receiver

object ‘this’ (called object sensitivity or type sensitivity)

34

Choose the Right
Context Sensitivity Strategy

Interprocedural Analysis

Thanks

Interprocedural Analysis
35

