

Interprocedural Analysis

Most content comes from<http://cs.au.dk/~amoeller/spa/>

张昱

yuzhang@ustc.edu.cn 中国科学技术大学 计算机科学与技术学院

Interprocedural Analysis

Analyzing the body of a single function

■ *intra*procedural analysis

Analyzing the whole program with function calls

■ *interprocedural analysis*

For now, we consider TIP without function pointers and indirect calls (so we only have direct calls)

A naive approach:

- \blacksquare analyze each function in isolation
- be maximally pessimistic about results of function calls
- rarely sufficient precision...

The idea:

- **Construct a CFG for each function**
- **Then glue them together to reflect function calls and returns**

- **We need to take care of:**
- **parameter passing**
- **return values**
- **values of local variables across calls (including recursive functions, so not enough to assume unique variable names)**

A Simplifying Assumption

Assume that all function calls are of the form

 $X = f(E_1, ..., E_n);$

This can always be obtained by normalization

Interprocedural CFGs (1/3)

Split each original call node

$$
X = f(E_1, ..., E_n)
$$

into two nodes:

Interprocedural CFGs (2/3)

into an assignment:

(where result is a fresh variable)

Add call edges and return edges:

For call/entry nodes:

■ be careful to model evaluation of all the actual parameters before binding them to the formal parameter names (otherwise, it may fail for recursive functions)

For after-call/exit nodes:

- \blacksquare like an assignment: $X = \text{result}$
- **■** but also restore local variables from before the call using the call \sim after-call edge

The details depend on the specific analysis…

Example: Interprocedural Sign Analysis

Recall the intraprocedural sign analysis…

Lattice for abstract values:

 Lattice for abstract states: *Vars*→*Sign*

Example: Interprocedural Sign Analysis

- Constraint for entry node v of function $f(b_1, ..., b_n)$: $\llbracket v \rrbracket = \bigsqcup \biguplus [b_1 \rightarrow eval(\llbracket w \rrbracket, E_1^w), ..., b_n \rightarrow eval(\llbracket w \rrbracket, E_n^w)]$ $w \in \text{Nred}(v)$ where $E_i^{\mathbf{w}}$ is i'th argument at w
- Constraint for after-call node v labeled $X = \square$, with call node y': $\Vert v \Vert = \Vert v' \Vert [X \rightarrow \Vert w \Vert (result) \Vert$ function f(b., .., b.) where $w \in pred(v)$ V w $\Box = f(t_1, ..., t)$ (Recall: no global variables, no heap, w $result = E$ and no higher-order functions) V' V 10

Alternative Formulations

2) $\forall w \in succ(v): t_v([v]) \sqsubseteq [w]$

- recall "solving inequations"
- may require fewer join operations
	- if there are many CFG edges
- more suitable for *interprocedural* flow

t、是将返回的退出点v应用到 每个主调的after-call节点wi 进行返回值的接收处理

The Worklist Algorithm (original version)

The Worklist Algorithm (alternative version)

• Interprocedural analysis

• Context-sensitive interprocedural analysis

Interprocedurally Invalid Paths

What is the sign of the return value of g?

Our current analysis says "⊤**"**

Clone functions such that each function has only one callee

 Can avoid interprocedurally invalid paths☺ **For high nesting depths, give exponential blow-up**☺ **Don't work on (mutually) recursive functions** ☺

 Use heuristics to determine when to apply (trade-off between CFG size and precision)

Example, with cloning

What is the sign of the return value of g?

```
f1(z1) {
  return z1*42;
ł
f2(z2) {
  return z2*42;
ł
g() \{var x,y;
 x = f1(0);y = f2(87);return x + y;
```


 Function cloning provides a kind of context sensitivity (also called polyvariant analysis)

Instead of physically copying the function CFGs, do it *logically*

Replace the lattice for abstract states, States, by

Contexts → lift(States)

where Contexts is a set of *call contexts*

- The contexts are abstractions of the state at function entry
- Contexts must be finite to ensure finite height of the lattice
- The bottom element of lift(States) represents "unreachable" contexts

Different strategies for choosing the set Contexts…

Easily adjusted to Contexts → lift(States)

 Example if v is an assignment node *x* **=***E* **in sign analysis:** ⟦**v**⟧**=***JOIN***(v)[***x*→ *eval***(***JOIN***(v),** *E***)] becomes**

$$
[\![v]\!](c) = \begin{cases} s[x \mapsto eval(s, E)] & \text{if } s = J\text{OIN}(v, c) \in \text{States} \\ \text{unreachable} & \text{if } J\text{OIN}(v, c) = \text{unreachable} \end{cases}
$$
\n**becomes**

\n
$$
J\text{OIN}(v, c) = \bigsqcup_{w \in pred(v)} [\![w]\!](c)
$$
\n
$$
J\text{OIN}(v, c) = \bigsqcup_{w \in pred(v)} [\![w]\!](c)
$$

One-level Cloning

Let c¹ ,…,cⁿ be the call nodes in the program

Define Contexts={c¹ ,…,cⁿ }{ε}

- \blacksquare each call node now defines its own "call context"(using ε to represent the call context at the main function)
- the context is then like the return address of the top-most stack frame in the call

stack

crt: C RunTime

a set of execution startup routines linked into a C program that performs any initialization work required before calling the program's main function.

One-level Cloning

Let c¹ ,…,cⁿ be the call nodes in the program

Define Contexts={c¹ ,…,cⁿ }{ε}

- \blacksquare each call node now defines its own "call context"(using ε to represent the call context at the main function)
- the context is then like the return address of the top-most stack frame in the call stack
- **Same effect as one-level cloning, but without actually copying the function CFGs**
- **Usually straightforward to generalize the constraints for a context insensitive analysis to this lattice**
- **(Example: context-sensitive sign analysis –later…)**

The Call String Approach

Let c¹ ,…,cⁿ be the call nodes in the program

Define Contexts as the set of strings over {c¹ ,…,cⁿ } of length k

- \blacksquare such a string represents the top-most k call locations on the call stack
- \blacksquare the empty string ε again represents the call context at the main function

For k=1 this amounts to one-level cloning

Interprocedural sign analysis with call strings (k=1)

Lattice for abstract states: Contexts \rightarrow lift(Vars \rightarrow Sign) where Contexts= $\{\epsilon, c_1, c_2\}$

Context Sensitivity with Call Strings function entry nodes, for k=1

Context Sensitivity with Call Strings after-call nodes, for k=1

Constraint for after-call node v labeled $X = \dots$ with call node v' and exit node $w \in pred(v)$:

 $\llbracket \mathbf{v} \rrbracket(c) = \begin{cases} \text{unreachable} & \text{if } \llbracket \mathbf{v}' \rrbracket(c) = \text{unreachable} \vee \llbracket \mathbf{w} \rrbracket(\mathbf{v}') = \text{unreachable} \ \text{otherwise} \end{cases}$

The Functional Approach

The call string approach considers *control flow*

- \blacksquare but why distinguish between two different call sites if their abstract states are the same?
- **The functional approach instead considers** *data*
- **In the most general form, choose**

Contexts = States

(requires States to be finite)

 Each element of the lattice States → lift(States) is now a map m that provides an element m(x) from States (or "unreachable") for each possible x where x describes the state at function entry

Interprocedural sign analysis with the functional approach

Lattice for abstract states: Contexts \rightarrow lift(Vars \rightarrow Sign) where Contexts = Vars \rightarrow Sign

Interprocedural sign analysis with the functional approach

- **The lattice element for a function exit node is thus a** *function summary* **that maps abstract function input to abstract function output**
- **This can be exploited at call nodes!**
- **When entering a function with abstract state x:**
	- \blacksquare consider the function summary s for that function
	- \blacksquare if $s(x)$ already has been computed, use that to model the entire function body, then proceed directly to the after-call node
- **Avoids the problem with interprocedurally invalid paths!**
- **…but may be expensive if States is large**

Implementation: FunctionalSignAnalysis

Example: Interprocedural sign analysis with the functional approach

Lattice for abstract states: Contexts \rightarrow lift(Vars \rightarrow Sign) where Contexts = Vars \rightarrow Sign

Context sensitivity with the functional approach function entry nodes

Context sensitivity with the functional approach: after-call nodes

Constraint for after-call node v labeled $X = \square$, with call node y' and exit node $w \in pred(v)$:

 $\text{[[v]](c) = \begin{cases} unreachable & \text{if [[v']](c) = unreachable} \\ \text{[[v']](c)[X \rightarrow [[w]](s_v^c)](result) = 0} \\ \text{[v'][(c)](X \rightarrow [[w]](s_v^c)](result) = 0 \end{cases}}$

Choose the Right Context Sensitivity Strategy

The call string approach is expensive for k>1

 \blacksquare solution: choose k adaptively for each call site

The functional approach is expensive if States is large

■ solution: only consider selected parts of the abstract state as context, for example abstract information about the function parameter values (called *parameter sensitivity*), or, in object-oriented languages, abstract information about the receiver object 'this' (called *object sensitivity* or *type sensitivity*)

Thanks