e s » [
YA\ G

‘I'gsﬁl/_}.ll . ‘
"‘;”r \M\re

Wiep and T

University of Science and Technology of China

Interprocedural Analysis

Most content comes from http://cs.au.dk/~amoeller/spa/

KE

yuzhang@ustc.edu.cn

P EASFRK LS
T HEIAF EERFIE

http://cs.au.dk/~amoeller/spa/

University of Science and Technology of China

‘(=)) Interprocedural Analysis FEAZLAL %G

8
&

Or
3
©)
P
and Te¢

%'l’ur(

Analyzing the body of a single function

B intraprocedural analysis

Analyzing the whole program with function calls

B interprocedural analysis

For now, we consider TIP without function pointers and indirect calls
(so we only have direct calls)

A naive approach:

B analyze each function in isolation

B be maximally pessimistic about results of function calls

B rarely sufficient precision...

Interprocedural Analysis 2

) CFG for Whole Programs "z@ﬂé'&*?é

The idea:

Construct a CFG for each function

Then glue them together to reflect function calls and returns

We need to take care of:

parameter passing

return values

values of local variables across calls (including recursive functions,
S0 not enough to assume unigue variable names)

Interprocedural Analysis

(=2)) A Simplifying Assumption ¥EAZLAE S

of &

X

S «©
e, edl
“0ce and T

Assume that all function calls are of the form

X=f(Ey,E.);

This can always be obtained by normalization

Interprocedural Analysis 4

\

Il

‘2))) Interprocedural CFGs (1/3) ruALAxS

8
op o

S

S &
Tepe, ot
“Ice and T

Split each original call node

l

X = fCE,, .., E)

Into two nodes:

.
the “call node”

!
|
- b Pr L
~= X = i — the “after-call node
A
a special edge that l

connects the call node
with its after-call node

Interprocedural Analysis 5

Interprocedural CFGs (2/3) "’ @*" 3 'ﬁ* é

Change each return node

l

return E

INto an assignment:

J

result = E

(where result is a fresh variable)

Interprocedural Analysis 6

Interprocedural CFGs (3/3) "’ @?" Z 'ﬁ* é

Add call edges and return edges:

| function f(b,, ..., b)
function g(a;, .., a,)

_____ :
R = f(g, .., E)
IIL=--,_ |'I
=X = i '
1 result = E
'* |

Interprocedural Analysis 7

Constraints *OMzALxS

9F

o
'
and 7o

S;V'l’ur(

For call/entry nodes:

B be careful to model evaluation of all the actual parameters before binding them to the
formal parameter names (otherwise, it may fail for recursive functions)

For after-call/exit nodes:

B like an assignment: X =result

B but also restore local variables from before the call using the call ~ after-call edge

The detalls depend on the specific analysis...

Interprocedural Analysis 8

Example: Interprocedural Sign Analysis rEALA xS

op % o
Tene,

<O
o and T

Recall the intraprocedural sign analysis...

Lattice for abstract values:

Lattice for abstract states:
Vars—Sign

Interprocedural Analysis 9

®%éj£#.°.<®,\ . . 1 » k]
Example: Interprocedural Sign Analysis *Q@é‘&”}‘é

* Constraint for entry node v of function f(b,,..., b,):
Iv] = U|@[b1—}euuf{[[w]],5;}, ..., b,—eval([w],E,)]

we red(v o
) where Eiw|5 I'th argument at w

with call node v’:
[v] = [V]IX—=[wl(result)]

where wepred(v)

fancricn TBy, -, bl

V

] O = (e E) _

(Recall: no global variables, no heap, ~ - W v

and no higher-order functions) V'’ l ‘\"‘“‘i”
\V/ 10

Interprocedural Analysis 10

"

-)),) Alternative Formulations

FRAZLE*X S

University of Science and Technology of China

8
o ¥

® g
(=} g
’-‘; e e, 5}
. X
"},L S
s N

S, o8

Wi | -

)

1) vl =(U [w]}

wepred(v)

2) Vwesucc(v): t,([v]) = [w]

—recall "solving inequations”

N
Ve XN call ™ mw it
ITILEE, L EAERVE
Xfcalleeit 17 = Hift 1% ,

— may require fewer join operations /&\

if there are many CFG edges

— more suitable for interprocedural flow

Wy ... W

(

b, A2 A [m] PR IR H v B 2
[T after-call ¥y Aw,
BEAT IR [BIE R b B

n

/N

J

Interprocedural Analysis

11

N : : . : ‘ "X
Cc The WorkIISt Algorlthm (Or|g|na| VerS|On) ﬁvegyoﬁnfmﬁhnigyof%%

.
&

9F

&

» o
o al
“nce and 1

1 > n
Xy = 15 .. Xy =1 V‘{ ST AR KCFG
W= Ve, oory V) (2 i Fcall i 4
while (Wz@) {
V. = W. remaweﬁext(){ CFGH4S rivi HA2IT bR L]
y = Fi(Xgy vy X))
1T (y=x;) {
for (v; e dep(v;)) {
w.ada’(vj) YﬁD%CFG\%)ﬁVi N
1 [P SE R AR,
WP vHRE Vi 5 X
X; =¥ (BT M 1) 445 RV]
} \JHAE|worklist

¥

Interprocedural Analysis 12

\

Il

o o o . . ‘ ; J: :
The Worklist Algorithm (alternative version) f@y?éﬁfgmhé

X, = 17 ... X, =1 @. [i after-call™i 5]
W= {vy, euy Vpl

S

e '
e, el
(11(.0 and Tec

while (W2@) { VAN
vV, = W. removeNext() Wy ... W,
y = t;(x;)
T propagate(y,v;) {
for (v, e dep(v;)) { = X Uy]
propagate(y,v:) . !
) L it (z=x;) {
Eﬁ = Z
} W. add(v.)

1

Implementation: Work 11stFixpointPropagationSolver
™3 i

Interprocedural Analysis 13

FRBAEZRL%S

University of Science and Technology of China

Interprocedural Analysis 14

FEBZLLK g

rsity of Science and Technology o fCh

Interprocedural Analysis 15

FRAZLE*X S

University of Science and Technology of China

What is the sign of the return value of g?
t(z) {

0 87 +
return z*4.2; W W
G A
} V4
D))
00 1 ¥
var x,y;
x = T(0); -
y = T(87); T
return x + y; Sign= + - 0
} ~J]
1

Our current analysis says “T”

Interprocedural Analysis 16

.

““‘“ Function C|Oning(alternatively, function inlining) FEHZLL XS

University of Science and Technology of China

op o
Ko e
Nice and Tec

Clone functions such that each function has only one callee

Can avoid interprocedurally invalid paths®©

For high nesting depths, give exponential blow-up®©

Don’t work on (mutually) recursive functions ©

Use heuristics to determine when to apply
(trade-off between CFG size and precision)

Interprocedural Analysis 17

\

’ﬁké‘&'q{“

'(=))) Example, with cloning

FRAZLE*X S

University of Science and Technology of China

of &

X
e '
e, oeia e

What is the sign of the return value of g?

f1(z1) {
return z1%42;

}

f2(z2) {
return zZ2%42;

}

g() 1

var X,V

x = f1(0);

y = T2(87);
return x + y:

Interprocedural Analysis

| xR |

g
flis
TR

_

N
. DNTRERA
. A AK

J

18

.

'(=))) Context Sensitive Analysis FEBRZLA %S

University of Science and Technology of China

o % %
Tence

N
'
> and Te°

Function cloning provides a kind of context sensitivity
(also called polyvariant analysis)

Instead of physically copying the function CFGs, do it logically

Replace the lattice for abstract states, States, by
Contexts — lift(States)

where Contexts is a set of call contexts

B The contexts are abstractions of the state at function entry
B Contexts must be finite to ensure finite height of the lattice

B The bottom element of lift(States) represents “unreachable” contexts

Different strategies for choosing the set Contexts...

Interprocedural Analysis 19

. Constraints for CFG nodes that
do not involve function calls and returns * @y?? 2 ;{ihfgy fChé

EaS|Iy adjusted to Contexts — lift(States)

Example if v is an assignment node x =E in sign analysis:
[V]=JOIN(v)[x— eval(JOIN(v), E)]

becomes
[vl(c) = s|lx = eval(s,E)] if s = JOIN(v,c) € States
- (unreachable if JOIN(v,c) = unreachable
and JOIN(v) = U [w]
becomes wepred(v) \1/
JOIN(v,c) = U [w](c) - \
wepred(v) _ /

I

Interprocedural Analysis 20

X

One-level Cloning FEB2LLE g

University of Science and Technology of China

o

%,

Let c,,...,C, be the call nodes in the program

Define Contexts={c,...,c }U{&}

B each call node now defines its own “call context”(using € to represent the call context
at the main function)

B the context is then like the return address of the top-most stack frame in the call
stack

crt: C RunTime

a set of execution startup
routines linked into a C program
that performs any initialization
work required before calling the
program's main function.

Interprocedural Analysis 21

\

& 24

One-level Cloning *Q”é'ﬁ*?é

X
3;‘.
A
O

and Te°

o
Seie,
Nce

Let cy,...,Cc, be the call nodes in the program

Define Contexts={c,...,c, }U{&}

B each call node now defines its own “call context”(using € to represent the call context
at the main function)

B the context is then like the return address of the top-most stack frame in the call
stack

Same effect as one-level cloning, but without actually copying the
function CFGs

Usually straightforward to generalize the constraints for a context
Insensitive analysis to this lattice

(Example: context-sensitive sign analysis —later...)

Interprocedural Analysis 22

\

& 24

‘(=2)) The Call String Approach FEAZLL% S

8
op o

%

3 S
e, o
“ice and Te¢

Let c4,...,C, be the call nodes in the program

Define Contexts as the set of strings over {c,,...,C,, } of length <k

B such a string represents the top-most k call locations on the call stack

B the empty string € again represents the call context at the main function

For k=1 this amounts to one-level cloning

Implementation: CallStringSignAnalysis

Interprocedural Analysis 23

: FRAZLE*X S

i University of Science and Technology of China

Interprocedural sign analysis with call strings (k=1)

Lattice for abstract states: Contexts — lift(Vars — Sign)
where Contexts={g,C,,C5}

f(z) {
var tl,t?;
tl = z¥6;
£2 - t1%7- [> unreachable,
— e
return t2: Clw 1[z—0, t1-0 t2-0],
} c2 » L[zt tla+ t254]]

é.; f(o): J/ cl
y = T(87);: // c2

What is an example program
that requires k=2
to avoid loss of precision? 5

Interprocedural Analysis 24

N\ Context Sensitivity with Call Strings . >) !
P funCtion entry nOdeS' for k=1 ﬁve@yoﬁnfmﬁhnﬁgy;Chﬁ

Constraint for entry node v of function f(b,,..., b,):
(if not ‘main’)

TumcTion by, .-, b}

Ivl{c)= L 515 v
Only consider wepred(v) A w
the call node w c=w A ,j O-fe, . 8
that matches c'€ Contexts ~ »[x-0 ‘
the context c m

5

- [unreachable if [w]{c’) = unreachable
w1 L[by—eval([w](c’),E7), ..., b,—>eval([w](c’),E.)] otherwise

Interprocedural Analysis 25

N\ Context Sensitivity with Call Strings . >) !
\C after-Ca" nOdES, fOl' k=1 ﬁve@yoﬁnfmﬁhnﬁgy;Chﬁ

lllll

with call node v’ and exit node wepred(v):

(c) = “unreachable if [v'](c) = unreachable V [w](V’) = unreachable
[v](e) = [V'](c)[X—=>[w](v')(result)] otherwise
function f(b,, .., b))
vy
s .

eyl X = I
L ‘N=E
v
25

Interprocedural Analysis 26

The Functional Approach +FRB2LLXS

University of Science and Technology of China

o o
Ko e
“ice and Te¢

The call string approach considers control flow

B but why distinguish between two different call sites if their abstract states are the
same?

The functional approach instead considers data

In the most general form, choose
Contexts = States
(requires States to be finite)

Each element of the lattice States — lift(States) is now a map m that
provides an element m(x) from States (or “unreachable”) for each
possible x where x describes the state at function entry

Interprocedural Analysis 27

\ Interprocedural sign analysis with the functional FEAZLLERS
\C a p proac h University of Science and Technology of China

Lattice for abstract states: Contexts — lift(VVars — Sign)
where Contexts = Vars — Sign

f(z) {

var tl,tZ;

tl = z76;

t2 = t1*7; [L[z+0] = 1[z—0, 110, t2-0],

return t2; «— L[ze=4] = 1[z+, T+, T204],
] all other contexts — unreachable]
x = £(0);

F(87);

el S

Interprocedural Analysis 28

>\ Interprocedural sign analysis with the functional : >) !
;) approach FRBZLLX S

University of Science and Technology of China

Lattice for abstract states: Contexts — lift(Vars — Sign)
where Contexts = Vars — Sign
f(z) {
var tl,t2,
tl = z%6,;
T2 o

return T2 - <\ [1[z~0] = 1[z~0, T1-0, T2+-0],

¥ L[z-+] - L[z, tlo+, T204],
g(a) { all other contexts — unreachable]

return f(a);

g(0);
y = g(87);

>
|

28

Interprocedural Analysis 29

.

(©))) The Functional Approach +RAZLAX g

University of Science and Technology of China

o o

;;71’:;(<(

<O
o and T

The lattice element for a function exit node iIs thus a function

summary that maps abstract function input to abstract function
output

This can be exploited at call nodes!

When entering a function with abstract state Xx:

B consider the function summary s for that function

B if s(x) already has been computed, use that to model the entire function body, then
proceed directly to the after-call node

Avoids the problem with interprocedurally invalid paths!

...but may be expensive if States iIs large
Implementation: FunctionalSignAnalysis

Interprocedural Analysis 30

° [] [] [] R ~ ‘
5 Example. Interprocedural sign analysis with the FRBELELE %S
\C fU nCtlonaI a pprOaCh University of Science and Technology of China

Lattice for abstract states: Contexts — lift(Vars — Sign)
where Contexts = Vars — Sign

t(z) {
var tl,t2: The abstract state at the exit of T
tl = z%6; can be used as a function summary
t2 = tl*7;

_ [L[z~0] — 1[z—0, t1-0, t2-0, result~0],
return t2 ’ 4.'—’/ J_[Z|_}+] —> J_[E|—}+, tl'—}+, t2l—}+, resu | tl—}+],

¥
all other contexts — unreachable]
x = f(0);
y = T(87);
7 = 'F(42) f f—— At this call, we can reuse the already computed

exit abstract state of f for the context 1[z+—+]

30

Interprocedural Analysis 31

\ Context sensitivity with the functional approach FEAILELE S
\C funCtion entry nOdES University of Science and Technology of China

Constraint for entry node v of function f(b,,..., b):
(if not ‘main’)
[vl({c)= U B PP aN
wepred(v) A
C A LU

C=35y
Only consider ’
the call node w '€ Contexts ~ =3 x = O

} 4

regElc = E
if the abstract ' v‘\I‘
state from that

node matches
the context c

- _/ where 5., is defined as before

Interprocedural Analysis 32

2\ Context sensitivity with the functional approach: FEBAEZREALEXS

2 after-call nodes University of Science and Technology of China

Constraint for after-call node v labeled X =i,
with call node v’ and exit node wepred(v):

unreachable if [v'](c) = unreachable V Jw](s;.) = unreachable

Iv]{c) = *_ Iv'I(c)X—=Iwl(s)(result)] otherwise
v 4
F: 0 = PLE, . EJ .

= 3w X = LI
1 rasullc = E
, \
| 25

Interprocedural Analysis 33

» Choose the Right ¥EBZ2HLL% G

: Co ntEXt SenSitiVity St rategy University of Science and Technology of China

The call string approach is expensive for k>1

B solution: choose k adaptively for each call site

The functional approach is expensive if States iIs large

B solution: only consider selected parts of the abstract state as context, for example
abstract information about the function parameter values (called parameter

sensitivity), or, in object-oriented languages, abstract information about the receiver
object ‘this’ (called object sensitivity or type sensitivity)

Interprocedural Analysis 34

FEBZLAXE

University of Science and Technology of China

ILERLE

Interprocedural Analysis

35

