
Interprocedural Analysis

张昱
yuzhang@ustc.edu.cn

中国科学技术大学
计算机科学与技术学院

Most content comes from http://cs.au.dk/~amoeller/spa/

http://cs.au.dk/~amoeller/spa/

Analyzing the body of a single function

◼ intraprocedural analysis

Analyzing the whole program with function calls

◼ interprocedural analysis

 For now, we consider TIP without function pointers and indirect calls

(so we only have direct calls)

A naive approach:

◼ analyze each function in isolation

◼ be maximally pessimistic about results of function calls

◼ rarely sufficient precision…

2

Interprocedural Analysis

Interprocedural Analysis

The idea:

Construct a CFG for each function

 Then glue them together to reflect function calls and returns

We need to take care of:

 parameter passing

 return values

 values of local variables across calls (including recursive functions,

so not enough to assume unique variable names)

3

CFG for Whole Programs

Interprocedural Analysis

Assume that all function calls are of the form

X= f(E1, ...,En);

 This can always be obtained by normalization

4

A Simplifying Assumption

Interprocedural Analysis

Split each original call node

into two nodes:

5

Interprocedural CFGs (1/3)

Interprocedural Analysis

Change each return node

into an assignment:

(where result is a fresh variable)

6

Interprocedural CFGs (2/3)

Interprocedural Analysis

Add call edges and return edges:

7

Interprocedural CFGs (3/3)

Interprocedural Analysis

 For call/entry nodes:

◼ be careful to model evaluation of all the actual parameters before binding them to the

formal parameter names (otherwise, it may fail for recursive functions)

 For after-call/exit nodes:

◼ like an assignment: X = result

◼ but also restore local variables from before the call using the call ↷ after-call edge

 The details depend on the specific analysis…

8

Constraints

Interprocedural Analysis

Recall the intraprocedural sign analysis…

 Lattice for abstract values:

 Lattice for abstract states:

Vars→Sign

9

Example: Interprocedural Sign Analysis

Interprocedural Analysis

10

Example: Interprocedural Sign Analysis

V’

V
w

w

V
Interprocedural Analysis

11

Alternative Formulations

v是对每个call节点wi进
行汇集，tv是在主调v后
对callee进行参数传递

tv是将返回的退出点v应用到
每个主调的after-call节点wi

进行返回值的接收处理
Interprocedural Analysis

12

The Worklist Algorithm (original version)

如果CFG结点vi

的语义值发生变化，
则将计算vi 语义
值所依赖的结点vj
加入到worklist

CFG结点vi 的变迁函数

基于过程间的大CFG
处理call节点

Interprocedural Analysis

13

The Worklist Algorithm (alternative version)

处理after-call节点

Interprocedural Analysis

14Interprocedural Analysis

15

Interprocedurally Invalid Paths

Interprocedural Analysis

What is the sign of the return value of g?

Our current analysis says “⊤”

16

Example

0 87 +

T

Interprocedural Analysis

Clone functions such that each function has only one callee

Can avoid interprocedurally invalid paths☺

 For high nesting depths, give exponential blow-up☺

Don’t work on (mutually) recursive functions ☺

Use heuristics to determine when to apply

(trade-off between CFG size and precision)

17

Function Cloning(alternatively, function inlining)

Interprocedural Analysis

What is the sign of the return value of g?

18

Example, with cloning

对f副本的调用

优点：分析精度提升
缺点：代码膨胀

Interprocedural Analysis

 Function cloning provides a kind of context sensitivity

(also called polyvariant analysis)

 Instead of physically copying the function CFGs, do it logically

Replace the lattice for abstract states, States, by

Contexts → lift(States)

where Contexts is a set of call contexts

◼ The contexts are abstractions of the state at function entry

◼ Contexts must be finite to ensure finite height of the lattice

◼ The bottom element of lift(States) represents “unreachable” contexts

Different strategies for choosing the set Contexts…

19

Context Sensitive Analysis

Interprocedural Analysis

Easily adjusted to Contexts → lift(States)

 Example if v is an assignment node x =E in sign analysis:

⟦v⟧=JOIN(v)[x→ eval(JOIN(v), E)]

becomes

𝑣 𝑐 = ቊ
𝑠 𝑥 ↦ 𝑒𝑣𝑎𝑙 𝑠, 𝐸 if 𝑠 = 𝐽𝑂𝐼𝑁(v, c) ∈ States

unreachable if 𝐽𝑂𝐼𝑁 𝑣, 𝑐 = unreachable

and

becomes

20

Constraints for CFG nodes that
do not involve function calls and returns

Interprocedural Analysis

 Let c1,…,cn be the call nodes in the program

Define Contexts={c1,…,cn}{ε}

◼ each call node now defines its own “call context”(using ε to represent the call context

at the main function)

◼ the context is then like the return address of the top-most stack frame in the call

stack

21

One-level Cloning

crt：C RunTime

a set of execution startup

routines linked into a C program

that performs any initialization

work required before calling the

program's main function.

Interprocedural Analysis

 Let c1,…,cn be the call nodes in the program

Define Contexts={c1,…,cn}{ε}

◼ each call node now defines its own “call context”(using ε to represent the call context

at the main function)

◼ the context is then like the return address of the top-most stack frame in the call

stack

 Same effect as one-level cloning, but without actually copying the

function CFGs

Usually straightforward to generalize the constraints for a context

insensitive analysis to this lattice

 (Example: context-sensitive sign analysis –later…)

22

One-level Cloning

Interprocedural Analysis

 Let c1,…,cn be the call nodes in the program

Define Contexts as the set of strings over {c1,…,cn } of length k

◼ such a string represents the top-most k call locations on the call stack

◼ the empty string ε again represents the call context at the main function

 For k=1 this amounts to one-level cloning

23

The Call String Approach

Implementation: CallStringSignAnalysis

Interprocedural Analysis

24

Example:

Interprocedural Analysis

Interprocedural sign analysis with call strings (k=1)

25

Context Sensitivity with Call Strings
function entry nodes, for k=1

Only consider
the call node w
that matches
the context c

Interprocedural Analysis

26

Context Sensitivity with Call Strings
after-call nodes, for k=1

Interprocedural Analysis

 The call string approach considers control flow

◼ but why distinguish between two different call sites if their abstract states are the

same?

 The functional approach instead considers data

 In the most general form, choose

Contexts = States

(requires States to be finite)

 Each element of the lattice States → lift(States) is now a map m that

provides an element m(x) from States (or “unreachable”) for each

possible x where x describes the state at function entry

27

The Functional Approach

Interprocedural Analysis

28

Example:
Interprocedural sign analysis with the functional
approach

Interprocedural Analysis

29

Another Example:
Interprocedural sign analysis with the functional
approach

Interprocedural Analysis

 The lattice element for a function exit node is thus a function

summary that maps abstract function input to abstract function

output

 This can be exploited at call nodes!

When entering a function with abstract state x:

◼ consider the function summary s for that function

◼ if s(x) already has been computed, use that to model the entire function body, then

proceed directly to the after-call node

Avoids the problem with interprocedurally invalid paths!

…but may be expensive if States is large

30

The Functional Approach

Implementation: FunctionalSignAnalysis
Interprocedural Analysis

31

Example: Interprocedural sign analysis with the
functional approach

Interprocedural Analysis

32

Context sensitivity with the functional approach
function entry nodes

Only consider
the call node w
if the abstract
state from that
node matches
the context c

Interprocedural Analysis

33

Context sensitivity with the functional approach:
after-call nodes

Interprocedural Analysis

 The call string approach is expensive for k>1

◼ solution: choose k adaptively for each call site

 The functional approach is expensive if States is large

◼ solution: only consider selected parts of the abstract state as context, for example

abstract information about the function parameter values (called parameter

sensitivity), or, in object-oriented languages, abstract information about the receiver

object ‘this’ (called object sensitivity or type sensitivity)

34

Choose the Right
Context Sensitivity Strategy

Interprocedural Analysis

Thanks

Interprocedural Analysis
35

