
1

Yu Zhang, USTC

Coq Introduction

张昱

Department of Computer Science and Technology 
University of Science and Technology of China

September, 2008

Coq Introduction 2Yu Zhang, USTCYu Zhang, USTC

Coq Introduction

A proof assistant for a logical framework known as 
the Calculus of Inductive Constructions.
Allows:

to define functions or predicates, 
to state mathematical theorems and software specifications,
to develop interactively formal proofs of these theorems, 
to check these proofs by a relatively small certification 
"kernel". 

Version
The current stable version of Coq is the 8.1. It is 
available for Unix and Windows 95/98/NT/XP systems.

Coq Introduction 3Yu Zhang, USTCYu Zhang, USTC

Useful Links

Coq Home page
http://coq.inria.fr/
− The Coq Proof Assistant – A Tutorial v8.1
− The Coq Proof Assistant – Reference Manual v8.1

Coq Art Home page
http://www.labri.fr/perso/casteran/CoqArt/in
dex.html
Coq Tutorial in POPL08 
http://www.cis.upenn.edu/~plclub/popl08-
tutorial/

Coq Introduction 4Yu Zhang, USTCYu Zhang, USTC

Coq Tools-1

Coq IDE
http://coq.inria.fr/distrib-eng.html

Proof  General (PG)
http://proofgeneral.inf.ed.ac.uk/

a generic front-end for proof assistants (also 
known as interactive theorem provers), based on 
the customizable text editor Emacs

Coq Introduction 5Yu Zhang, USTCYu Zhang, USTC

Coq Tools-2

To get started ...(e.g. using PG and for Windows)
Install Coq
Notice: don’t select installing coqide and GDK
Install Emacs & PG
Modify the environment variables
− Add

COQBIN = “(coq install dir)\coq\bin”
COQLIB = “(coq install dir)\coq\lib”
HOME =“(where PG is installed )”

− Append the bin dir of coq and emacs to the value of Path

Type coqtop.opt in command line to check …
Run Emacs/bin/runemacs.exe

Coq Introduction 6Yu Zhang, USTCYu Zhang, USTC

Coq Tools-3



2

Coq Introduction 7Yu Zhang, USTCYu Zhang, USTC

What does Coq system provide?

A specification language named Gallina
− consists in a sequence of declarations and definitions.
− Its terms can represent programs as well as properties of 

these programs and proofs of these properties.
− Using Curry-Howard isomorphism, programs, properties and

proofs are formalized in the same language called CiC, that 
is a λ-calculus with a rich type system.

− All logical judgments in COQ are typing judgments.
Type-checker
− checks the correctness of proofs, in other words that 

checks that a program complies to its specification.
The proof engine
− provides an interactive proof assistant to build proofs

using specific programs called tactics.
Coq Introduction 8Yu Zhang, USTCYu Zhang, USTC

Gallina - Declarations

Declarations
A declaration associates a name with a specification. 
− Declared objects play the role of axioms or parameters in 

mathematics.

Specifications
− logical propositions: Prop
− mathematical collections: Set
− abstract types: Type

Every valid expression e in Gallina is associated with a 
specification, itself a valid expression, called its type 
τ(E). e : τ(E)

Axiom ident : term

Parameter ident1 · · · identn : term

Coq Introduction 9Yu Zhang, USTCYu Zhang, USTC

Gallina - Inductive Definitions

Inductive Definitions
Simple inductive types
Inductive ident : sort :=
| ident1 : type1
| · · ·
| identn : typen.

ident:  the name of the inductively defined type
sort :  the universes where it lives
ident1, …, identn : the names of its constructors
type1, …, typen :  the types of its constructors

Coq Introduction 10Yu Zhang, USTCYu Zhang, USTC

Gallina - Inductive Definitions

Simple inductive types

defines the following four objects at once:

A new Set is declared, with name yesno.

Coq Introduction 11Yu Zhang, USTCYu Zhang, USTC

Gallina - Inductive Definitions

Simple inductive types

defines the following four objects at once:

Destructor (Elimination principle on Type): expresses structural 
induction/recursion principle over objects of yesno.

Coq Introduction 12Yu Zhang, USTCYu Zhang, USTC

Gallina - Inductive Definitions

Simple inductive types

defines the following four objects at once:

Destructor (Elimination principle on Prop): expresses structural 
induction/recursion principle over objects of yesno.



3

Coq Introduction 13Yu Zhang, USTCYu Zhang, USTC

Gallina - Inductive Definitions

Simple inductive types

defines the following four objects at once:

Destructor (Elimination principle on Set): expresses structural 
induction/recursion principle over objects of yesno.

Coq Introduction 14Yu Zhang, USTCYu Zhang, USTC

Gallina - Inductive Definitions

Simple inductive types

defines the following four objects at once:

Destructor (Elimination principle on Prop): expresses structural 
induction/recursion principle over objects of nat.

Coq Introduction 15Yu Zhang, USTCYu Zhang, USTC

Gallina - Inductive Definitions

Simple annotated inductive types

defines the following two objects at once:

Coq Introduction 16Yu Zhang, USTCYu Zhang, USTC

Gallina - Inductive Definitions

Simple annotated inductive types

defines the following four objects at once:

Coq Introduction 17Yu Zhang, USTCYu Zhang, USTC

Gallina - Inductive Definitions

Mutually defined inductive types

defines the following four objects at once:

Coq Introduction 18Yu Zhang, USTCYu Zhang, USTC

Gallina - Inductive Definitions

Mutually defined inductive types

defines the following four objects at once:



4

Coq Introduction 19Yu Zhang, USTCYu Zhang, USTC

Gallina - Definitions

Definitions
A definition gives a name to a term (definition).

Definition ident[(ident1 : term1) · · · (identn : termn)] : term0 := term

Coq Introduction 20Yu Zhang, USTCYu Zhang, USTC

Gallina - Definitions

Definitions

Coq Introduction 21Yu Zhang, USTCYu Zhang, USTC

Gallina - Definition of recursive functions

Definition of recursive functions
Fixpoint ident params{struct ident0} : type0 := term0

Coq Introduction 22Yu Zhang, USTCYu Zhang, USTC

Gallina - Definition of recursive functions

Definition of recursive functions

See bnat_1.v and make exercises.

Fixpoint ident params{struct ident0} : type0 := term0

Coq Introduction 23Yu Zhang, USTCYu Zhang, USTC

Gallina – Statement and proofs

Statement
A statement claims a goal of which the proof is then 
interactively done using tactics.

After a statement, Coq needs a proof.

A proof starts by the keyword Proof. Then Coq enters the 
proof editing mode until the proof is completed.

Turns the current conjecture into an axiom and exits 
editing of current proof.

Theorem ident : type. Lemma ident : type.

Proposition ident : type. Fact ident : type.

Definition ident : type.

Proof . · · ·Qed.

Proof . · · ·Admitted.

Coq Introduction 24Yu Zhang, USTCYu Zhang, USTC

Proof engine – Common Commands

Displaying [Coq RM 6]
e.g. Print even.

Requests to the environment [Coq RM 6]
displays the type of term.

Compiled files [Coq RM 6]
, 

……



5

Coq Introduction 25Yu Zhang, USTCYu Zhang, USTC

Proof engine – Atomic Tactics - 1

See Chapter 8 in Coq Reference Manual for detail.

Explicit proof as a term [Coq RM 8.2]
gives directly the exact proof term of the goal.

Basics [Coq RM 8.3]
introduce the premise of the goal.

introduce all premises of the goal.
tries to match the current goal against the

conclusion of the type of term.
− E.g.  goal: Q --(apply P->Q. )--->  goal: P

− E.g.  goal: Q x: P --(apply P->Q in x. )---> goal: Q x: Q

assumption. It looks in the local context for an 
hypothesis which type is equal to the goal. Coq Introduction 26Yu Zhang, USTCYu Zhang, USTC

Proof engine – Atomic Tactics - 2

Basics [Coq RM 8.3]
splits conjunction A/\ B into A and B.

applies upon the left/right of disjunction  A \/ B , 
and then they are respectively equivalent to A and B. 

See prop.v for detail and make excises.
Conversion tactics [Coq RM 8.5]

applies  βη -reduction rule.simpl.

Coq Introduction 27Yu Zhang, USTCYu Zhang, USTC

Proof engine – Atomic Tactics - 3

Conversion tactics [Coq RM 8.5]
qualid must denote a defined 

transparent constant or local definition. 展开目标中

出现的qualid，在替换时执行βη归约

applies to a goal which has the form
forall (x:T1)...(xk:Tk), c t1 ... tn

where c is a constant. If c is transparent then it 
replaces c with its definition (say t) and then 
reduces (t t1 ... tn) according to βη -reduction rules.

term is reduced using the red tactic.

Coq Introduction 28Yu Zhang, USTCYu Zhang, USTC

Proof engine – Atomic Tactics - 4

Introductions [Coq RM 8.6]
applies to a goal such that the 

head of its conclusion is an inductive constant (say 
I). The argument num must be less or equal to the 
numbers of constructor(s) of I.

Let ci be the i-th constructor of I, then 
constructor i

is equivalent to 
intros; apply ci.

Coq Introduction 29Yu Zhang, USTCYu Zhang, USTC

Proof engine – Atomic Tactics - 5

Equality [Coq RM 8.8]
applies to a goal which has the form 

t=u. It checks that t and u are convertible and then 
solve the goal.

applies to a goal which has the form t=u
and changes it into u=t.

is equivalent to                       
the type of term must have the form term1 = term2.
the tactic replaces every term1 by term2 in the goal.

uses term1=term2 from right to 
left.

symmetry.

Coq Introduction 30Yu Zhang, USTCYu Zhang, USTC

Proof engine – Atomic Tactics - 6

Elimination [Coq RM 8.7]
the type of term must be an 

inductive constant. Then, the tactic generates 
subgoals, one for each possible form of term .

its behavior is similar to induction 
except that no induction hypothesis is generated.
不产生归纳项

recursively decompose a complex proposition in 
order to obtain atomic ones. 
e.g.  decompose [ and or ] H. 

induction term.

destruct term.

decompose [qualid1 ... qualidn] term.



6

Coq Introduction 31Yu Zhang, USTCYu Zhang, USTC

Proof engine – Atomic Tactics - 7

Elimination [Coq RM 8.7]
more basic induction tactic. 根据目标的类

型选择合适的destructor并应用之；它不影响目标的假

设，也不会引入归纳假设.

Coq Introduction 32Yu Zhang, USTCYu Zhang, USTC

Proof engine – Atomic Tactics - 8

Inversion [Coq RM 8.10]
let the type ident in the local 

context be (I t), where I is a inductive predicate. 
The tactic derives for each possible constructor ci
of (I t), all the necessary conditions that should 
hold for the instance (I t) to be proved by ci.

Contradictory
introduce contradictory assumptions

introduce true = false
intros contra.

Coq Introduction 33Yu Zhang, USTCYu Zhang, USTC

Proof engine –Tactic macros

Ltac
Ltac Solve := simpl; intros; auto.
(util.v)

Ltac move_to_top x' :=
match reverse goal with
| H : _ |- _ => try move x' after H
end.

Ltac Case s' := let c' := fresh "case" in set (c' := s'); 
move_to_top c'.

Coq Introduction 34Yu Zhang, USTCYu Zhang, USTC

User extensions – Syntax extensions

Notations[Coq RM 11.1]
Notation "A /\ B" := (and A B).
Notation "A /\ B" := (and A B) (at level 80, right 
associativity).
Notation "( x , y )" := (@pair _ _ x y) (at level 0).
Notation "A /\ B" := (and A B) : type_scope.

Coq Introduction 35Yu Zhang, USTCYu Zhang, USTC

Tools – Coq commands

Coq commands [Coq RM 12]
Interactive use: coqtop.opt
coqtop.opt –help     show the help of usage

If we have an util.v to be compiled, we can execute
coqtop.opt –compile util

then util.vo is generated.
Batch compilation: coqc.opt

coqc.opt util.v

Coq Introduction 36Yu Zhang, USTCYu Zhang, USTC

Thanks！


