Static Program Analysis
Part 3 — lattices and fixpoints

http://cs.au.dk/~amoeller/spa/

Anders Mgller & Michael |. Schwartzbach
Computer Science, Aarhus University

http://cs.au.dk/~amoeller/spa/

Flow-sensitivity

* Type checking is (usually) flow-insensitive:
— statements may be permuted without affecting typability
— constraints are naturally generated from AST nodes

e Other analyses must be flow-sensitive:
— the order of statements affects the results

— constraints are naturally generated from
control flow graph nodes

Sign analysis

* Determine the sign (+,-,0) of all expressions
* The Sign lattice:

T inology
__— The termino
any number /’\ will be defined
+ - 0 |later — this is just

\[/ an appetizer...
1

“not of type number”
(or, “unreachable code”)

e States are modeled by the map lattice Vars — Sign

where Vars is the set of variables in the program

Implementation: TIP/src/tip/analysis/SignAnalysis.scala

A W N -

Generating constraints

var a,b;

a = 42;

b = a + 1nput;

a =a - b;

1|var a,b

2a=I42

b = a + 1nput

4la=a-b
o

-

X, =[aPT,b>T]

Xy =Xq
X3 =X,
X, = Xg

a > +]
b x,(a)+T]

:a = x3(a)—x3(b)]

Sign analysis constraints

The variable [[v] denotes a map that gives the sign value
for all variables at the program point after node v

For variable declarations:

[varx,, ..., x,] =JOIN(v)[x; =T, ..., x, = T]
For assignments:

[x=E] =JOIN(v)[x - eval(JOIN(v),E)]
For all other nodes:

[v] = JOIN(v)

where JOIN(v) = LI [w] P comlk)lpesdlllwf?rmatlon from predecessors
wepred(v) (explained later...)

Evaluating signs

The eval function is an abstract evaluation:
— eval(o,x) = o(x)
— eval(o,intconst) = sign(intconst)
— eval(o, E; Op E,) = op(eval(o,E,),eval(c,E,))

o: Vars — Sign is an abstract state
The sign function gives the sign of an integer

The op function is an abstract evaluation of the
given operator

Abstract operators

CTENDENEE TADEEREE ThAEDEEE

J_J_J_J_J_
n)
-

J_J_J_J_J_
o
B

J_J_J_J_J_

4 4 4 A

SHENDEERE SRDEEE

Lol T

-J_J_J_J_J_

J_J_J_J_J_

J_J_J_J_J_

o

Increasing precision

* Some loss of information:
— (2>0)==1isanalyzedas T
— +/+is analyzed as T, since e.g. % is rounded down

* Use aricher lattice for better precision:

* Abstract operators are now 8x8 tables

Partial orders

* Given asetS, a partial order E is a binary relation on S
that satisfies:

— reflexivity: VxeS: x E X
— transitivity: VX,V,2eS: XEyAyEz=>xEz
— anti-symmetry: VX,YES:XEYAYEX=>Xx=Yy

* Can be illustrated by a Hasse diagram (if finite) .

M\O
W
1

9

Upper and lower bounds

Let X © S be a subset

We say that yeS is an upper bound (X E y) when
VXxeX:xEy

We say that yeS is a lower bound (y E X) when
V xeX:yEx

A least upper bound LIX is defined by
XEUXAVYeS:XEy=|IXEy

A greatest lower bound [1X is defined by
[IXEXAVYyeS:yEX=yETIX

10

Lattices

* A (complete) lattice is a partial order where
LIX and [1X exist for all X = S

* A l|attice must have
— aunique largest element, T=LIS ;5
— a unique smallest element, L =[1S

 |[fSisafinite set, then it defines a lattice iff
— T and L existin S
— xLly and xIMy exist for all x,y €S (xUy is notation for LI{x,y})

Implementation: TIP/src/tip/lattices/

11

These partial orders are lattices

AN AN
l ‘
g
N
VO

These partial orders are not lattices

— /
B £

./

The powerset lattice

* Every finite set A defines a lattice (2#,c) where

- 1=¢
—T=A
—XxUy=xuUy
{0,1,2} {0,1,3} {0,2,3} {1,2,3}
{0,1} {0,2} {0,3} {1,2} {1,3} {2,3}

{0} {1} 12} 3}

—_—
{

14

Lattice height

* The height of a lattice is the length of the longest
path from Lto T

* The lattice (2A,c) has height |A|

{0,1,2,3}
T
{0,1,2} {0,1,3} {0,2,3} {1,2,3}
1
{0,1} {0,2} {0,3} {1,2} {1,3} {2,3}
—
{0} {1} {2} {3}

—_—

{

15

Map lattice

e [f AisasetandLis a lattice, then we obtain
the map lattice:

A — L={[a;~Xy, a,PX,, ...] | A={a,, a,, .} AXy, Xy, € L}

Example: A — L where
ordered pointwise « Ais the set of program variables

L is the Sign lattice

* Ll and N can be computed pointwise
* height(A — L) = |A|-height(L)

16

Product lattice

* IfL, L, ..., L, are lattices, then so is the product:
L xLyx ... xL, = { (X,X,,..,X,) | X, € L }

where E is defined pointwise

 Note that U and M can be computed pointwise
* height(L,xL,x ... xL.) = height(L,)+ ... + height(L)

Example:
each L, is the map lattice A — L from the previous slide,
and n is the number of CFG nodes

17

Flat lattice

* If Ais a set, then flat(A) is a lattice:

N
\/

* height(flat(A)) = 2

Lift lattice

e If Lis a lattice, then so is lift(L), which is:

1

* height(lift(L)) = height(L)+1

19

N wWw N PR

Generating constraints, again

var a,b;

a = 42; \
b =a + 1nput; i o
a=a-b;

X, =[aPT,bHT]

Xy =X
X3 =X,

X, = X3

a - +]
b > x,(a)+T]

Ele X3(a)_X3(b)]

20

Sign analysis constraints, revisited

The variable [[v] denotes a map that gives the sign value
for all variables at the program point after node v

[v] eStates where States = Vars — Sign

For variable declarations:
[varxy, ..., x,]| =JOIN(v)[x; =T, ..., x, = T]
For assignments:
[x=E] =JOIN(v)[x - eval(JOIN(v),E)]
For all other nodes:
[v] = JOIN(v)
.— combines information from predecessors

where JOIN(v) = L [w]

wepred(v) N

Constraints

* From the program being analyzed, we have constraint
variables x,, ..., x,€L and a collection of constraints:

For variable declarations:

X, = f. (X, ..., X
1 1(17 ***2 n [var Xy, ..., Xy] =JOIN(v) [x;T, ..., x,>T]

Xy = fz(Xl, ooy Xp * For assignments:
[x = E] =JOIN(v)[x—eval(JOIN(v),E)]

X, =f (X, ..., X,
* These can be collected into a single function f: L"—>L":
f(xq,...,X,) = (Fy(XgeeesX), woey T(Xq,ee0X,))
* How do we find the least (i.e. most precise) value of
X,,..%x such that x,,...x. = f(x,...x.) (if that exists)???

22

Monotone functions

A function f: L = L is monotone when:
Vxy € L:x Ey = f(x) E f(y)

A function with several arguments is monotone if
it is monotone in each argument

Monotone functions are closed under composition (why?)
As functions, LI and M are both monotone

A function is extensive when:

Vx € L: x E f(x)
Monotone is different from extensive
— e.g. all constant functions are monotone

23

Monotonicity for the sign analysis

For variable declarations:
[var Xy, ..., X,] =JOIN(v) [x;>T, ..., x,>T]

For assignments:
[X = E] =JOIN(v)[x—eval(JOIN(v),E)]

The L operator and map
updates are monotone (see Exercise 4.22)

Compositions preserve
monotonicity

Are the abstract operators
monotone?

Can be verified by a tedious inspection:
— Vxyx'el: xEx"=>x0pyEx’'0py
— Vx,y,y'el.yEy’=>x0pyExopy’

24

Kleene’s fixed-point theorem

X € Lis a fixed-point of f: L — L iff f(x)=x

In a lattice with finite height, every monotone
function f has a unique least fixed-point:

fix(f) = L fi(L)

i =0

25

Proof of existence

Clearly, LE f(L)
Since f is monotone, we also have f(1) = (1)
By induction, fi(1) E f*1(1)
This means that
LEf(L)Ef(L)E... fi(l)...
iS an increasing chain
L has finite height, so for some k: f%(L) = f**1(L)
fxEythenx Uy=Yy (Exercise 4.2)
So fix(f) = fk(L)

26

Proof of unique least

Assume that x is another fixed-point: x = f(x)
Clearly, L E x

By induction, fi(1) E f/(x) = x

In particular, fix(f) = f<(1) E x, i.e. fix(f) is least

Uniqueness then follows from anti-symmetry

27

Computing fixed-points

The time complexity of fix(f) depends on:
— the height of the lattice
— the cost of computing f
— the cost of testing equality

X = 1;
do {
t = X;
x = T(X);
} while (xzt);

Implementation: TIP/src/tip/solvers/FixpointSolvers.scala

28

Intuition of monotonicity

e Recall that a function f: L > L is monotone when
Vxy € L:x Ey = f(x) E f(y)

e X Evycan beinterpreted as “x is at least as precise as y”

* When f is monotone:
“more precise input cannot lead to less precise output”

29

Summary: lattice equations

* Let L be a lattice with finite height

* A equation system is of the form:
X, = f1(xq, -0) X))

X, = f,(Xq, ..y X))

X, =f (X, ..., X,)

where x; are variables and each f;: L"—>L is monotone

 Note that L" is a product lattice

30

Solving equations

e Every equation system has a unique least solution,
which is the least fixed-point of the function f: L"—L"

defined by

f(xq,...,X,) = (Fi(Xg,eeesX), woey T(Xq,ee0X,))

* A solution is always a fixed-point
(for any kind of equation)

 The least one is the most precise

31

Solving inequations

* Ainequation system is of the form

X; E fi(xq, .., X)) X, =2 fi(xq, ...
X, E fy(Xq, ..., X)) or X, =2 fy(Xq, ...
X, Ef (X, ..., X)) X, =2 (Xq, ...

* Can be solved by exploiting the facts that
XEy & x=xTI1y
and
Xdy & x=xuy

32

Monotone frameworks

John B. Kam, Jeffrey D. Ullman: Monotone Data Flow Analysis Frameworks. Acta Inf. 7: 305-317 (1977)

A CFG to be analyzed, nodes Nodes = {v,,v,, ..., V. }
A finite-height lattice L of possible answers

— fixed or parametrized by the given program

A constraint variable [[v] €L for every CFG node v

A dataflow constraint for each syntactic construct
— relates the value of [v] to the variables for other nodes
— typically a node is related to its neighbors

— the constraints must be monotone functions:

[vi]l = fi([val, [vo1, - [val)

33

Monotone frameworks

e Extract all constraints for the CFG

* Solve constraints using the fixed-point algorithm:

— we work in the lattice L" where L is a lattice describing
abstract states

— computing the least fixed-point of the combined function:

f(xq,....x,) = (Fi(Xg,ee X)), ooey (Xq,000X0)

* This solution gives an answer from L for each CFG node

34

Generating and solving constraints
?

A 4

fixed-point i 7

solver
[p] = &int
[a] = &int
[alloc 0] = &int
! 5 o -5
00] =
e [&n] = &int
/ [main] = ()->int
CFG .
solution

constraints

Conceptually, we separate constraint generation from constraint solving,
but in implementations, the two stages are typically interleaved

35

Lattice points as answers

/

the trivial, useless answer

our answer (the least fixed-point)
safe answers

unsafe answers the true answer

Conservative approximation...

36

The naive algorithm

x = (L, L, DY
do {

t = X;

X = f(x);

} while (x=t);

* Correctness ensured by the fixed point theorem

* Does not exploit any special structure of L" or f
(i.e. xel™and f(xy,...,x.) = (F,(Xp,ee0 X)), oy T (Xq,0e0X.)))

Example: sign analysis

ZT [n—>I,f— 1]
1) var f| [n>T,f>T]
var f;
f = 1; :

while (n>0) { 1] h—>If>4

f = f*n; 4?

n = n-1; e~ N>0 [n—>TI,f->F]
} 5 ¢ true
return f; —f*
} f=t*n| |(n>1fo1]
0
h=n-1 [n—> I, f— I]
=
i
return T [n—> I, fo I] Note: some of ¢ S
.are mutually recursjy i

[n> I, f—> I] =

The naive algorithm

—

f k(J_ 1.
@ £4L, L, .. J_)
FUL, L, .., 1) FKL, L, ..., L)

Computing each new entry is done using the previous row

* Without using the entries in the current row that have
already been computed!

 And many entries are likely unchanged from row to row!

39

Chaotic iteration

Recall that f(x,,...,x,) = (F(Xy,.,X,), oey T (Xq,.0X,)

X; = L; ... X, = 1;
while ((Xq,...,%X,) # T(Xy,..., X)) {
pick 1 nondeterministically such
that x; # f5(X{, ..., X,)
X; = f:(Xy, ..., X,)3

We now exploit the special structure of L"
— may require a higher number of iterations,
but less work in each iteration y

Correctness of chaotic iteration

Let x! be the value of x=(x4, ..., x,) in the j'th iteration
of the naive algorithm

Let x! be the value of x=(x4, ..., x,) in the j'th iteration
of the chaotic iteration algorithm

By induction in j, show Vj: x) E X
Chaotic iteration eventually terminates at a fixed point

It must be identical to the result of the naive algorithm
since that is the least fixed point

41

Towards a practical algorithm

« Computing 31 :... in chaotic iteration is not practical

 |dea: predict 1 from the analysis and the structure
of the program!

e Example:
In sign analysis, when we have processed
a CFG node v, process succ(v) next

42

The worklist algorithm (1/2)

* Essentially a specialization of chaotic iteration that
exploits the special structure of f

* Most right-hand sides of f. are quite sparse:

— constraints on CFG nodes do not involve all others

* Use a map:

dep: Nodes —» 2Nodes

that for ve Nodes gives the variables w where v occurs
on the right-hand side of the constraint for w

43

The worklist algorithm (2/2)

X; = L1y ... X, = 1;
W= {vy, ..., V.};
while (W=2) {

v; = W.removeNext();

y = fi(X¢, ..., X,);

if (y=x;) {
for (v; e dep(v;)) w.add(v,);
Xi =Y;

¥

}

44

Further improvements

* Represent the worklist as a priority queue
— find clever heuristics for priorities

e Look at the graph of dependency edges:
— build strongly-connected components
— solve constraints bottom-up in the resulting DAG

45

Transfer functions

* The constraint functions in dataflow analysis usually
have this structure:
[v]=t,JOIN(v)) gl osn U
where t . States — States is called \,
the transfer function for v Vv

e Example:
[x=E] =JOIN(v)[x — eval(JOIN(v),E)]
=t,(JOIN(v))
where
t (s) = s[x — evalls,E)]

46

