
Anders Møller & Michael I. Schwartzbach

Computer Science, Aarhus University

Static Program Analysis
Part 4 – flow sensitive analyses

http://cs.au.dk/~amoeller/spa/

http://cs.au.dk/~amoeller/spa/

Agenda

2

• Live variables analysis

• Available expressions analysis

• Very busy expressions analysis

• Reaching definitions analysis

• Constant propagation analysis

Liveness analysis

• A variable is live at a program point if its current value
may be read in the remaining execution

• This is clearly undecidable, but the property can be
conservatively approximated

• The analysis must only answer “dead”
if the variable is really dead

– no need to store the values of dead variables

3

A lattice for liveness

A subset lattice of program variables

L = (2{x,y,z},)

{x,y,z}

{x,y}

{x}

{x,z}{y,z}

{y} {z}

the trivial answer

4

var x,y,z;

x = input;

while (x>1) {

y = x/2;

if (y>3) x = x-y;

z = x-4;

if (z>0) x = x/2;

z = z-1;

}

output x;

The control flow graph

z = x-4

x = input x > 1 y = x/2 y > 3 x = x-y

var x,y,z

z > 0 x = x/2

z = z-1

output x

5

Setting up

• For every CFG node, v, we have a variable ⟦v⟧:

– the subset of program variables that are live at the
program point before v

• Since the analysis is conservative, the computed sets
may be too large

• Auxiliary definition:

JOIN(v) = ⟦w⟧
wsucc(v)

v

w1 w2

wk

6

• For the exit node:

⟦exit⟧ =

• For conditions and output:

⟦ if (E) ⟧ = ⟦ output E ⟧ = JOIN(v) vars(E)

• For assignments:

⟦ x = E ⟧ = JOIN(v) \ {x} vars(E)

• For variable declarations:

⟦ var x1, ..., xn ⟧ = JOIN(v) \ {x1, ..., xn}

• For all other nodes:

⟦v⟧ = JOIN(v)

vars(E) = variables occurring in E

right-hand sides are monotone
since JOIN is monotone, and …

7

Liveness constraints

Generated constraints

8

⟦var x,y,z⟧ = ⟦z=input⟧ \ {x,y,z}

⟦x=input⟧ = ⟦x>1⟧ \ {x}

⟦x>1⟧ = (⟦y=x/2⟧ ⟦output x⟧) {x}

⟦y=x/2⟧ = (⟦y>3⟧ \ {y}) {x}

⟦y>3⟧ = ⟦x=x-y⟧ ⟦z=x-4⟧ {y}

⟦x=x-y⟧ = (⟦z=x-4⟧ \ {x}) {x}

⟦z>0⟧ = ⟦x=x/2⟧ ⟦z=z-1⟧ {z}

⟦x=x/2⟧ = (⟦z=z-1⟧ \ {x}) {z}

⟦output x⟧ = ⟦exit⟧ {x}

⟦exit⟧ =

Least solution

Many non-trivial answers!

9

⟦entry⟧ =

⟦var x,y,z⟧ =

⟦x=input⟧ =

⟦x>1⟧ = {x}

⟦y=x/2⟧ = {x}

⟦y>3⟧ = {x,y}

⟦x=x-y⟧ = {x,y}

⟦z=x-4⟧ = {x}

⟦z>0⟧ = {x,z}

⟦x=x/2⟧ = {x,z}

⟦z=z-1⟧ = {x,z}

⟦output x⟧ = {x}

⟦exit⟧ =

Optimizations

• Variables y and z are never simultaneously live

 they can share the same variable location

• The value assigned in z=z-1 is never read

 the assignment can be skipped

• better register allocation
• a few clock cycles saved

10

var x,yz;

x = input;

while (x>1) {

yz = x/2;

if (yz>3) x = x-yz;

yz = x-4;

if (yz>0) x = x/2;

}

output x;

Time complexity
(for the naive algorithm)

• With n CFG nodes and k variables:

– the lattice Ln has height kn

– so there are at most kn iterations

• Subsets of Vars (the variables in the program)
can be represented as bitvectors:
– each element has size k

– each, \, = operation takes time O(k)

• Each iteration uses O(n) bitvector operations:

– so each iteration takes time O(kn)

• Total time complexity: O(k2n2)

• Exercise: what is the complexity for the worklist algorithm?
11

Agenda

12

• Live variables analysis

• Available expressions analysis

• Very busy expressions analysis

• Reaching definitions analysis

• Constant propagation analysis

Available expressions analysis

• A (nontrivial) expression is available at a program
point if its current value has already been computed
earlier in the execution

• The approximation generally includes too few
expressions

– the analysis can only report “available” if the expression
is definitely available

– no need to re-compute available expressions
(e.g. common subexpression elimination)

13

A lattice for available expressions

A reverse subset-lattice of nontrivial expressions

L = (2{a+b, a*b, y>a+b, a+1},)

14

var x,y,z,a,b;

z = a+b;

y = a*b;

while (y > a+b) {

a = a+1;

x = a+b;

}

Reverse subset lattice

{a+b, y>a+b}

{a+b, a*b, y>a+b} {a+b, a*b, a+1} {a+b, y>a+b, a+1} {a*b, y>a+b, a+1}

{a+b, a*b}

{a+b, a*b, y>a+b, a+1}

{a+b, a+1} {a*b, y>a+b} {a*b, a+1} {y>a+b, a+1}

{a+b} {a*b} {y>a+b} {a+1}

the trivial answer

15

The flow graph

var x,y,z,a,b

z=a+b

y=a*b

y>a+b

a=a+1

x=a+b

16

Setting up

• For every CFG node, v, we have a variable ⟦v⟧:

– the subset of program variables that are available at the
program point after v

• Since the analysis is conservative, the computed sets
may be too small

• Auxiliary definition:

JOIN(v) = ⟦w⟧
wpred(v)

v

w1

w2

wk

17

Auxiliary functions

• The function Xx removes all expressions from X
that contain a reference to the variable x

• The function exps(E) is defined as:

– exps(intconst) =

– exps(x) =

– exps(input) =

– exps(E1 op E2) = {E1 op E2} exps(E1) exps(E2)

but don’t include expressions containing input

18

Availability constraints

• For the entry node:

⟦entry⟧ =

• For conditions and output:

⟦ if (E) ⟧ = ⟦ output E ⟧ = JOIN(v) exps(E)

• For assignments:

⟦ x = E ⟧ = (JOIN(v) exps(E))x

• For any other node v:

⟦v⟧ = JOIN(v)

19

Generated constraints

20

⟦entry⟧ =

⟦var x,y,z,a,b⟧ = ⟦entry⟧

⟦z=a+b⟧ = exps(a+b)z

⟦y=a*b⟧ = (⟦z=a+b⟧ exps(a*b))y

⟦y>a+b⟧ = (⟦y=a*b⟧ ⟦x=a+b⟧) exps(y>a+b)

⟦a=a+1⟧ = (⟦y>a+b⟧ exps(a+1))a

⟦x=a+b⟧ = (⟦a=a+1⟧ exps(a+b))x

⟦exit⟧ = ⟦y>a+b⟧

Least solution

Again, many nontrivial answers!

21

⟦entry⟧ =

⟦var x,y,z,a,b⟧ =

⟦z=a+b⟧ = {a+b}

⟦y=a*b⟧ = {a+b, a*b}

⟦y>a+b⟧ = {a+b, y>a+b}

⟦a=a+1⟧ =

⟦x=a+b⟧ = {a+b}

⟦exit⟧ = {a+b}

Optimizations

• We notice that a+b is available before the loop

• The program can be optimized (slightly):

22

var x,y,x,a,b,aplusb;

aplusb = a+b;

z = aplusb;

y = a*b;

while (y > aplusb) {

a = a+1;

aplusb = a+b;

x = aplusb;

}

Agenda

23

• Live variables analysis

• Available expressions analysis

• Very busy expressions analysis

• Reaching definitions analysis

• Constant propagation analysis

Very busy expressions analysis

• A (nontrivial) expression is very busy if it will definitely
be evaluated before its value changes

• The approximation generally includes too few
expressions

– the answer “very busy” must be the true one

– very busy expressions may be pre-computed
(e.g. loop hoisting)

• Same lattice as for available expressions

24

Setting up

• For every CFG node, v, we have a variable ⟦v⟧:

– the subset of program variables that are very busy at the
program point before v

• Since the analysis is conservative, the computed sets
may be too small

• Auxiliary definition:

JOIN(v) = ⟦w⟧
wsucc(v)

v

w1 w2

wk

25

Very busy constraints

• For the exit node:

⟦exit⟧ =

• For conditions and output:

⟦ if (E) ⟧ = ⟦ output E ⟧ = JOIN(v) exps(E)

• For assignments:

⟦ x = E ⟧ = JOIN(v)x exps(E)

• For all other nodes:

⟦v⟧ = JOIN(v)

26

An example program

The analysis shows that a*b is very busy

27

var x,a,b;

x = input;

a = x-1;

b = x-2;

while (x > 0) {

output a*b-x;

x = x-1;

}

output a*b;

Code hoisting

28

var x,a,b;

x = input;

a = x-1;

b = x-2;

while (x > 0) {

output a*b-x;

x = x-1;

}

output a*b;

var x,a,b,atimesb;

x = input;

a = x-1;

b = x-2;

atimesb = a*b;

while (x > 0) {

output atimesb-x;

x = x-1;

}

output atimesb;

Agenda

29

• Live variables analysis

• Available expressions analysis

• Very busy expressions analysis

• Reaching definitions analysis

• Constant propagation analysis

Reaching definitions analysis

• The reaching definitions for a program point are
those assignments that may define the current
values of variables

• The conservative approximation may include too
many possible assignments

30

A lattice for reaching definitions

The subset lattice of assignments

L = (2{x=input, y=x/2, x=x-y, z=x-4, x=x/2, z=z-1},)

31

var x,y,z;

x = input;

while (x > 1) {

y = x/2;

if (y>3) x = x-y;

z = x-4;

if (z>0) x = x/2;

z = z-1;

}

output x;

Reaching definitions constraints

• For assignments:

⟦ x = E ⟧ = JOIN(v)x { x = E }

• For all other nodes:

⟦v⟧ = JOIN(v)

• Auxiliary definition:

JOIN(v) = ⟦w⟧

• The function Xx removes assignments to x from X

wpred(v)

v

w1

w2

wk

32

Def-use graph

Reaching definitions define the def-use graph:

– like a CFG but with edges from def to use nodes

– basis for dead code elimination and code motion

x>1

x=input

y=x/2

y>3

x=x-y

z=x-4

z>0 x=x/2

z=z-1

output x

33

Forward vs. backward

• A forward analysis:

– computes information about the past behavior

– examples: available expressions, reaching definitions

• A backward analysis:

– computes information about the future behavior

– examples: liveness, very busy expressions

34

May vs. must

• A may analysis:

– describes information that is possibly true

– an over-approximation

– examples: liveness, reaching definitions

• A must analysis:

– describes information that is definitely true

– an under-approximation

– examples: available expressions, very busy expressions

35

Classifying analyses

forward backward

may

example: reaching definitions

⟦v⟧ describes state after v

JOIN(v) = ⨆⟦w⟧ = ⟦w⟧

example: liveness

⟦v⟧ describes state before v

JOIN(v) = ⨆⟦w⟧ = ⟦w⟧

must

example: available expressions

⟦v⟧ describes state after v

JOIN(v) = ⨆⟦w⟧ = ⟦w⟧

example: very busy expressions

⟦v⟧ describes state before v

JOIN(v) = ⨆⟦w⟧ = ⟦w⟧

wsucc(v)

wpred(v)

wpred(v)

wsucc(v)

wsucc(v)wpred(v)

wpred(v)
wsucc(v)

36

Initialized variables analysis

• Compute for each program point those variables
that have definitely been initialized in the past

• (Called definite assignment analysis in Java and C#)

• forward must analysis

• Reverse subset lattice of all variables

JOIN(v) = ⟦w⟧

• For assignments: ⟦ x = E ⟧ = JOIN(v) {x}

• For all others: ⟦v⟧ = JOIN(v)

wpred(v)

37

Agenda

38

• Live variables analysis

• Available expressions analysis

• Very busy expressions analysis

• Reaching definitions analysis

• Constant propagation analysis

Constant propagation optimization

39

var x,y,z;

x = 27;

y = input;

z = 54+y;

if (0) { y=z-3; } else { y=12 }

output y;

var x,y,z;
x = 27;
y = input,
z = 2*x+y;
if (x<0) { y=z-3; } else { y=12 }
output y;

var y;

y = input;

output 12;

Constant propagation analysis

• Determine variables with a constant value

• Flat lattice:

⊤

-1 0 1 2 3-2-3

40

⊥

Constraints for constant propagation

• Essentially as for the Sign analysis…

• Abstract operator for addition:

⊥ if n=⊥ ∨ m=⊥
+(n,m) = ⊤ else if n=⊤ ∨ m=⊤

n+m otherwise

41

