Static Program Analysis
Part 4 — flow sensitive analyses

http://cs.au.dk/~amoeller/spa/

Anders Mgller & Michael |. Schwartzbach
Computer Science, Aarhus University

http://cs.au.dk/~amoeller/spa/

Agenda

* Live variables analysis

* Available expressions analysis
* Very busy expressions analysis
e Reaching definitions analysis
~* Constant propagation analysis

Liveness analysis

* Avariable is live at a program point if its current value
may be read in the remaining execution

* This is clearly undecidable, but the property can be
conservatively approximated

* The analysis must only answer “dead”
if the variable is really dead

— no need to store the values of dead variables

A lattice for liveness

A subset lattice of program variables

L= (2%v3, ¢

var x,Y,z;
X = 1nput;
while (x>1) { the trivial answer
y = X/2; /
if (y>3) x = x-y; {xy,z}
oy {}/{l>}
if (z>0) x = x/2; Xg yg éf
z = z-1;
o {yt {7
} ~.

output Xx; %

The control flow graph

X = 1nput —x > 1—y = x/2—y > 3 » X = X-Y

var Xx,y,z Zan= x—4<//////

l

z >0 "X = X/2

Z = z—l«/////

output X

l

Setting up

* For every CFG node, v, we have a variable [v]:

— the subset of program variables that are live at the
program point before v

* Since the analysis is conservative, the computed sets
may be too large

* Auxiliary definition:

JOIN(v) = \U[w] W, ' Wi

wesucc(v)

Liveness constraints

For the exit node: vars(E) = variables occurring in E

[exit] = &
For conditions and output:

[1f (E) J=[outputE] =JOIN(v) U vars(E)
For assignments:

[x=E] =JOIN(v) \ {x} U vars(E)
For variable declarations:

[varx;, ..., x,] =JOIN(v) \ {x,, ..., x,}

For all other nodes: _ _
right-hand sides are monotone

[[V]] = -/O/N(V) since JOIN is monotone, and ...

Generated constraints

[y=x/2] =
[y>3] =
[X=X-Y]
[z>0] =

[var X,Yy,z] =[z=1nput]\{x,y,z}
[X=1nput] = [x>1] \ {x}
[x>1] = ([y=x/2] v [output X])wu {x}

= ([y>3] \{y}) v {x}

[X=x-y] v
- ([z=x-4]
[X=x/2] v

[x=x/2]

[output X] = [exit]
[exit] = &

= ([z=2-1]

[z=x-4] U {y}
\ {x}) U {x}
[z=z-1] v {z}
\ {x}) v {z}

U {X}

Least solution

[entry] = O

[var Xx,y,z]=9¢ 120] = {x,2}
e ey =)
[y=x/2] ={x} IZZ:Z_l]] -z
[y>3] = {X,y} LouTpuT x| =1{x]
[X=X-Yy] = {X,y} it =2
[z=x-4] = {x}

Many non-trivial answers!

Optimizations

* Variables y and z are never simultaneously live
—> they can share the same variable location

* The value assigned in z=z-1 is never read
= the assignment can be skipped

var X,yz;
X = 1nput;
while (x>1) {

yz = X/2: e better register allocation

if (yz>3) X = x-yz: e 3 few clock cycles saved

yz = X-4;
if (yz>0) x
}

output X;

X/2;

10

Time complexity
(for the naive algorithm)

With n CFG nodes and k variables:
— the lattice L" has height k-n
— so there are at most k-n iterations

Subsets of Vars (the variables in the program)
can be represented as bitvectors:

— each element has size k

— each y, \, = operation takes time O(k)

Each iteration uses O(n) bitvector operations:

— so each iteration takes time O(k-n)

Total time complexity: O(k?n?)

Exercise: what is the complexity for the worklist algorithm?

11

Agenda

* Live variables analysis

* Available expressions analysis
* Very busy expressions analysis
e Reaching definitions analysis
~* Constant propagation analysis

12

Available expressions analysis

* A (nontrivial) expression is available at a program

point if its current value has already been computed
earlier in the execution

 The approximation generally includes too few
expressions

— the analysis can only report “available” if the expression
is definitely available

— no need to re-compute available expressions
(e.g. common subexpression elimination)

13

A lattice for available expressions

A reverse subset-lattice of nontrivial expressions

var x,y,z,a,b;

Z = a+b;

y = a*b;

while (y > a+b) {
a = a+1l;
X = a+b;

}

| = (2{a+b, a*b, y>a+b, a+1} o)

14

Reverse subset lattice

/ the trivial answer
%)

T

{a+b} {a*b} {y>a+b} {a+1}

S eI

{a+b, a*b} {a+b, y>a+b} {a+b,a+1} {a*b,y>a+b} {a*b,a+l} {y>a+b, a+1}

N/

{a+b, a*b, y>a+b} {a+b, a*b, a+1} {a+b, y>a+b, a+1} {a*b, y>a+b, a+1}

L Rl el Eor

{a+b, a*b, y>a+b, a+1}

15

The flow graph
!

var X,y,z,a,b

v
Zz=a+b

16

Setting up

* For every CFG node, v, we have a variable [v]:

— the subset of program variables that are available at the
program point after v

* Since the analysis is conservative, the computed sets
may be too small

W,

* Auxiliary definition:

JOIN(v) = ((\[w]

wepred(v)

Auxiliary functions

e The function X4-x removes all expressions from X
that contain a reference to the variable x

* The function exps(E) is defined as:
— exps(intconst) = &
— exps(x) =D
— exps(1nput) =
— exps(E; 0p E,) = {E; op E,} U exps(Ey) U exps(E,)
but don’t include expressions containing 1nput

18

Availability constraints

For the entry node:
[entry] = <
For conditions and output:
[1f (E) J=[output E] =JOIN(v) U exps(E)
For assignments:
[x=E] = (JOIN(v) U exps(E))¥x
For any other node v:
[v] = JOIN(v)

19

Generated constraints

[entry] = &

[var X,y,z,a,b]=[entry]

[z=a+b] = exps(a+b)dz

[y=a*b] = ([z=a+b] U exps(a*b))vy

[y>a+b] = ([y=a*b] n [x=a+b]) U exps(y>a+b)
[a=a+1] = ([y>a+b] U exps(a+1))da

[x=a+b] = ([a=a+1] U exps(a+b))dx

[exit] = [y>a+b]

20

Least solution

[entry] = O

[var X,y,z,a,b]=C
[z=a+Db] = {a+b}
[y=a*b] = {a+b, a*b}
[y>a+b] = {a+b, y>a+b}
[a=a+1] =

[Xx=a+b] = {a+b}

[exit] = {a+b}

Again, many nontrivial answers!

21

Optimizations

* We notice that a+b is available before the loop
 The program can be optimized (slightly):

var X,y,X,a,b,aplusb;
aplusb = a+b;
z = aplusb;
y = a*b;
while (y > aplusb) {
a = a+1l;
aplusb = a+b;
X = aplusb;

}

22

Agenda

* Live variables analysis

* Available expressions analysis

* Very busy expressions analysis
e Reaching definitions analysis

~* Constant propagation analysis

23

Very busy expressions analysis

* A (nontrivial) expression is very busy if it will definitely
be evaluated before its value changes

 The approximation generally includes too few
expressions

— the answer “very busy” must be the true one

— very busy expressions may be pre-computed
(e.g. loop hoisting)

e Same lattice as for available expressions

24

Setting up

* For every CFG node, v, we have a variable [v]:

— the subset of program variables that are very busy at the
program point before v

* Since the analysis is conservative, the computed sets
may be too small

* Auxiliary definition:

JOIN(v) = m[[w]] Wi V\‘/2

wesucc(v)

25

Very busy constraints

For the exit node:
[exit] = D
For conditions and output:
[1f (E) J=[output E] =JOIN(v) U exps(E)
For assignments:
[x=E] = JOIN(v)Ix U exps(E)
For all other nodes:
[v] = JOIN(v)

26

An example program

var x,a,b;
X = 1nput;
a = xX-1;
b = x-2;

while (x > 0) {
output a*b-x;
X = X-1;

}

output a*b;

The analysis shows that a*b is very busy

27

var X,a,b;
X = 1nput;
a = x-1;
b = x-2;

while (x > 0) {
output a*b-x;
X = X-1;

}

output a*b;

Code hoisting

—

var x,a,b,atimesb;

X = 1nput;
a = x-1;
b = x-2;

atimesb = a*b;

while (x > 0) {
output atimesb-x;
X = X-1;

}

output atimesb;

28

Agenda

* Live variables analysis

* Available expressions analysis

* Very busy expressions analysis
* Reaching definitions analysis

~* Constant propagation analysis

29

Reaching definitions analysis

* The reaching definitions for a program point are
those assignments that may define the current
values of variables

 The conservative approximation may include too
many possible assignments

30

A lattice for reaching definitions

The subset lattice of assighments
| = (2{x=1' nput, y=Xx/2, x=x-y, z=x-4, x=x/2,z=z-1} C)

var X,Y,Z;

X = 1nput;

while (x > 1) {
y = X/2;
1f (y>3) x = x-y;
Z = X-4;
if (z>0) x = x/2;
z = z-1;

}

output X;

31

Reaching definitions constraints

For assignments:
[x=E]=JOINVNxU{x=E}
For all other nodes:

[v] = JOIN(v) W,
W, Wi
Auxiliary definition: V
JOIN(v) = U[w]
wepred(v)

The function Xdx removes assignments to x from X

32

Def-use graph

Reaching definitions define the def-use graph:
— like a CFG but with edges from def to use nodes

— basis for dead code elimination and code motion

33

Forward vs. backward

* A forward analysis:
— computes information about the past behavior

— examples: available expressions, reaching definitions

* A backward analysis:
— computes information about the future behavior

— examples: liveness, very busy expressions

34

May vs. must

* A may analysis:
— describes information that is possibly true
— an over-approximation

— examples: liveness, reaching definitions

* A must analysis:
— describes information that is definitely true
— an under-approximation

— examples: available expressions, very busy expressions

35

Classifying analyses

I

example: reaching definitions example: liveness

[v] describes state after v [v] describes state before v

joINw) = Lwp = Uwg joINw) = Lw] = Uy
wepred(v) wepred(v) wesucc(v) wesucc(v)

example: available expressions example: very busy expressions

[v] describes state after v [v] describes state before v

J0IN(W) = Ldw] = Mw]

wesucc(v) wesucc(v)

J0INW) = Dw] = Mw]

wepred(v) wepred(v)

36

Initialized variables analysis

Compute for each program point those variables
that have definitely been initialized in the past

(Called definite assignment analysis in Java and C#)
= forward must analysis
Reverse subset lattice of all variables
JOIN(v) = ((\[w]
wepred(v)
For assignments: [x=E | = JOIN(v) U {x}
For all others: [[v] = JOIN(v)

37

Agenda

* Live variables analysis

* Available expressions analysis
* Very busy expressions analysis
e Reaching definitions analysis
~* Constant propagation analysis

38

Constant propagation optimization

var X,Y,Z;
X = 27;
y = 1nput,
Z = 2%X+Y;
if (x<0) { y=z-3; } else { y=12 }
output vy;
1
var Xx,Y,z; var y;
X = ?7; |) Yy = input;
y = 1nput; output 12;
Z = 54+y;

if (0) { y=z-3; } else { y=12 }
output y;

39

Constant propagation analysis

e Determine variables with a constant value
 Flat lattice:

40

Constraints for constant propagation

e Essentially as for the Sign analysis...

e Abstract operator for addition:

1 ifn=LVvm=1
+(n,m)=—4 T elseif N=T vm=T
n+m otherwise

—

41

