
Anders Møller & Michael I. Schwartzbach

Computer Science, Aarhus University

Static Program Analysis
Part 5 – widening and narrowing

http://cs.au.dk/~amoeller/spa/

http://cs.au.dk/~amoeller/spa/

Interval analysis

• Compute upper and lower bounds for integers

• Possible applications:

– array bounds checking

– integer representation

– …

• Lattice of intervals:

Interval = lift({ [l,h] | l,hN l h })

where

N = {-, ..., -2, -1, 0, 1, 2, ..., }

and intervals are ordered by inclusion:

[l1,h1]⊑[l2,h2] iff l2 l1 h1 h2
2

x230
Stamp

The interval lattice

[-,]

[0,0] [1,1] [2,2][-1,-1][-2,-2]

[0,1] [1,2][-1,0][-2,-1]

[2,]

[1,]

[0,]

[-,-2]

[-,-1]

[-,0]

[-2,0] [-1,1] [0,2]

[-2,1] [-1,2]

[-2,2]

3

⊥
bottom element here interpreted as “not an integer”

Interval analysis lattice

• The total lattice for a program point is

L = Vars Interval

that provides bounds for each (integer) variable

• If using the worklist solver that initializes the worklist
with only the entry node, use the lattice lift(L)
– bottom value of lift(L) represents “unreachable program point”

– bottom value of L represents “maybe reachable, but all variables are non-integers”

• This lattice has infinite height, since the chain

[0,0] ⊑ [0,1] ⊑ [0,2] ⊑ [0,3] ⊑ [0,4] ...

occurs in Interval
4

Interval constraints

• For assignments:

⟦ x = E ⟧ = JOIN(v)[xeval(JOIN(v),E)]

• For all other nodes:

⟦v⟧ = JOIN(v)

where JOIN(v) = ⨆⟦w⟧
wpred(v)

5

Evaluating intervals

• The eval function is an abstract evaluation:

– eval(, x) = (x)

– eval(, intconst) = [intconst,intconst]

– eval(, E1 op E2) = op(eval(,E1),eval(,E2))

• Abstract arithmetic operators:

– op([l1,h1],[l2,h2]) =

[min x op y, max x op y]

• Abstract comparison operators (could be improved):

– op([l1,h1],[l2,h2]) = [0,1]

x[l1,h1], y[l2,h2] x[l1,h1], y[l2,h2]

6

not trivial to implement!

x230
Stamp

x230
Rectangle

Fixed-point problems

• The lattice has infinite height, so the fixed-point
algorithm does not work

• In Ln, the sequence of approximants

fi(⊥, ⊥, ..., ⊥)

is not guaranteed to converge

• (Exercise: give an example of a program where this happens)

• Restricting to 32 bit integers is not a practical solution

• Widening gives a useful solution…
7

x230
Line

Widening

• Introduce a widening function : Ln Ln so that

(f)i(⊥, ⊥, ..., ⊥)

converges on a fixed-point that is a safe
approximation of each fi(⊥, ⊥, ..., ⊥)

• i.e. the function coarsens the information

8

Turbo charging the iterations

f

9

Widening for intervals

• The function is defined pointwise on Ln

• Parameterized with a fixed finite subset BN
– must contain - and (to retain the ⊤ element)

– typically seeded with all integer constants occurring in
the given program

• Idea: Find the nearest enclosing allowed interval

• On single elements from Interval :

([a,b]) = [max{iB|ia}, min{iB|bi}]

(⊥) = ⊥

10

Divergence in action

[x, y]
[x [8,8], y [0,1]]
[x [8,8], y [0,2]]
[x [8,8], y [0,3]]
...

11

y = 0;

x = 7;

x = x+1;

while (input) {

x = 7;

x = x+1;

y = y+1;

}

Widening in action

[x, y]
[x [7,], y [0,1]]
[x [7,], y [0,7]]
[x [7,], y [0,]]

12

y = 0;

x = 7;

x = x+1;

while (input) {

x = 7;

x = x+1;

y = y+1;

}

B = {-, 0, 1, 7, }

Correctness of widening
• Widening works when:

– is an extensive and monotone function, and

– (L) is a finite-height lattice

• Safety: i: fi(⊥, ⊥, ..., ⊥) ⊑ (f)i(⊥, ⊥, ..., ⊥)

since f is monotone and is extensive

• f is a monotone function (L)(L)

so the fixed-point exists

• Almost “correct by definition”!

• When used in the worklist algorithm, it suffices
to apply widening on back-edges in the CFG

13

x230
Stamp

x230
Line

x230
Rectangle

Narrowing

• Widening generally shoots over the target

• Narrowing may improve the result by applying f

• Define:

fix = ⨆ fi(⊥, ⊥, ..., ⊥) fix = ⨆ (f)i(⊥, ⊥, ..., ⊥)

then fix ⊑ fix

• But we also have that

fix ⊑ f(fix) ⊑ fix

so applying f again may improve the result and
remain sound!

• This can be iterated arbitrarily many times

– may diverge, but safe to stop anytime
14

Backing up

f

15

Correctness of (repeated) narrowing

• f(fix) ⊑ (f(fix)) = (f)(fix) = fix
since is extensive

– by induction we also have, for all i:

fi+1(fix) ⊑ fi(fix) ⊑ fix

– i.e. fi+1(fix) is at least as precise as fi(fix)

• fix ⊑ fix hence f(fix) = fix ⊑ f(fix)
by monotonicity of f

– by induction we also have, for all i:

fix ⊑ fi(fix)

– i.e. fi(fix) is a sound approximation of fix

16

Narrowing in action

[x, y]
[x [7,], y [0,1]]
[x [7,], y [0,7]]
[x [7,], y [0,]]
...
[x [8,8], y [0,]]

B = {-, 0, 1, 7, }

17

y = 0;

x = 7;

x = x+1;

while (input) {

x = 7;

x = x+1;

y = y+1;

}

More powerful widening

• Defining the widening function based on constants
occurring in the given program may not work

• Note: requires interprocedural analysis…
19

f(x) { // ”McCarthy’s 91 function”

var r;

if (x > 100) {

r = x – 10;

} else {

r = f(f(x + 11));

}

return r;

}

https://en.wikipedia.org/wiki/McCarthy_91_function

More powerful widening

• A widening is a function ∇: Ln Ln →Ln that is extensive
in both arguments and satisfies the following property:

for all increasing chains x0 ⊑ x1 ⊑ …,
the sequence y0 = x0, …, yi+1 = yi ∇ xi+1 ,… converges
(i.e. stabilizes after a finite number of steps)

• Now replace the basic fixed point solver by computing
y0 = , …, yi+1 = yi ∇ F(yi), … until convergence

• (This is the notion of widening found in the literature,
except that an arbitrary lattice is typically used instead of Ln)

20

x230
Text Box
二元widening算子支持从不动点计算的前一次和当前迭代来组合出抽象信息

More powerful narrowing

• Similarly, we can generalize narrowing

• A narrowing is a function ∆: Ln Ln →Ln such that
∀x,y∊Ln: (y ⊑ x) ⇒ (y ⊑ (x ∆ y) ⊑ x)

and
for all decreasing chains x0 ⊒ x1 ⊒ …,
the sequence y0 = x0, …, yi+1 = yi ∆ xi+1 ,… converges

• After computing the fixed point yk with widening,
continue with yi+1 = yi ∆ F(yi)
(until convergence or bounded number of iterations)

21

More powerful narrowing
for interval analysis

• Widening (extrapolates unstable bounds to infinity):

⊥ ∇ x = x
x ∇ ⊥ = x
[a1,b1] ∇ [a2,b2] = [if a2 < a1 then - else a1,

if b2 > b1 then + else b1]

• Narrowing (improves infinite bounds):
⊥ ∆ x = ⊥
x ∆ ⊥ = ⊥
[a1,b1] ∆ [a2,b2] = [if a1 = - then a2 else a1,

if b1 = + then b2 else b1]
22

