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Interval analysis

• Compute upper and lower bounds for integers

• Possible applications: 

– array bounds checking

– integer representation

– …

• Lattice of intervals:

Interval = lift({ [l,h] | l,hN  l  h })

where

N = {-, ..., -2, -1, 0, 1, 2, ..., }

and intervals are ordered by inclusion:

[l1,h1]⊑[l2,h2] iff l2  l1  h1  h2
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The interval lattice

[-,]

[0,0] [1,1] [2,2][-1,-1][-2,-2]

[0,1] [1,2][-1,0][-2,-1]

[2,]

[1,]

[0,]

[-,-2]

[-,-1]

[-,0]

[-2,0] [-1,1] [0,2]

[-2,1] [-1,2]

[-2,2]
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⊥
bottom element here interpreted as “not an integer”



Interval analysis lattice

• The total lattice for a program point is

L = Vars Interval

that provides bounds for each (integer) variable

• If using the worklist solver that initializes the worklist 
with only the entry node, use the lattice lift(L)
– bottom value of lift(L) represents “unreachable program point”

– bottom value of L represents “maybe reachable, but all variables are non-integers”

• This lattice has infinite height, since the chain

[0,0] ⊑ [0,1] ⊑ [0,2] ⊑ [0,3] ⊑ [0,4] ...

occurs in Interval
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Interval constraints

• For assignments:

⟦ x = E ⟧ = JOIN(v)[xeval(JOIN(v),E)]

• For all other nodes:

⟦v⟧ = JOIN(v)

where JOIN(v) =  ⨆⟦w⟧
wpred(v)
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Evaluating intervals

• The eval function is an abstract evaluation:

– eval(, x) = (x)

– eval(, intconst) = [intconst,intconst]

– eval(, E1 op E2) = op(eval(,E1),eval(,E2))

• Abstract arithmetic operators:

– op([l1,h1],[l2,h2]) =

[ min x op y, max x op y]

• Abstract comparison operators (could be improved):

– op([l1,h1],[l2,h2]) = [0,1]

x[l1,h1], y[l2,h2] x[l1,h1], y[l2,h2]
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not trivial to implement!
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Fixed-point problems

• The lattice has infinite height, so the fixed-point 
algorithm does not work 

• In Ln, the sequence of approximants

fi(⊥, ⊥, ..., ⊥)

is not guaranteed to converge

• (Exercise: give an example of a program where this happens)

• Restricting to 32 bit integers is not a practical solution

• Widening gives a useful solution…
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Widening

• Introduce a widening function : Ln  Ln so that

(f)i(⊥, ⊥, ..., ⊥)

converges on a fixed-point that is a safe 
approximation of each fi(⊥, ⊥, ..., ⊥)

• i.e. the function  coarsens the information
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Turbo charging the iterations

f
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Widening for intervals

• The function  is defined pointwise on Ln

• Parameterized with a fixed finite subset BN
– must contain - and  (to retain the ⊤ element)

– typically seeded with all integer constants occurring in 
the given program

• Idea: Find the nearest enclosing allowed interval

• On single elements from Interval :

([a,b]) = [ max{iB|ia}, min{iB|bi} ]

(⊥) = ⊥
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Divergence in action

[x, y]
[x [8,8], y [0,1]]
[x [8,8], y [0,2]]
[x [8,8], y [0,3]]
...
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y = 0;

x = 7;

x = x+1;

while (input) {  

x = 7;

x = x+1;

y = y+1;

}



Widening in action

[x, y]
[x [7,], y [0,1]]
[x [7,], y [0,7]]
[x [7,], y [0,]]
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y = 0;

x = 7;

x = x+1;

while (input) {  

x = 7;

x = x+1;

y = y+1;

}

B = {-, 0, 1, 7, }



Correctness of widening
• Widening works when:

–  is an extensive and monotone function, and

– (L) is a finite-height lattice

• Safety:  i: fi(⊥, ⊥, ..., ⊥) ⊑ (f)i(⊥, ⊥, ..., ⊥)

since f is monotone and  is extensive

• f is a monotone function (L)(L)

so the fixed-point exists

• Almost “correct by definition”!

• When used in the worklist algorithm, it suffices 
to apply widening on back-edges in the CFG
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Narrowing

• Widening generally shoots over the target

• Narrowing may improve the result by applying f

• Define:

fix = ⨆ fi(⊥, ⊥, ..., ⊥)     fix = ⨆ (f)i(⊥, ⊥, ..., ⊥)

then fix ⊑ fix

• But we also have that

fix ⊑ f(fix) ⊑ fix

so applying f again may improve the result and 
remain sound!

• This can be iterated arbitrarily many times

– may diverge, but safe to stop anytime
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Backing up

f 
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Correctness of (repeated) narrowing

• f(fix) ⊑ (f(fix)) = (f)(fix) = fix
since  is extensive

– by induction we also have, for all i:

fi+1(fix) ⊑ fi(fix) ⊑ fix

– i.e. fi+1(fix) is at least as precise as fi(fix)

• fix ⊑ fix hence f(fix) = fix ⊑ f(fix) 
by monotonicity of f

– by induction we also have, for all i:

fix ⊑ fi(fix) 

– i.e. fi(fix) is a sound approximation of fix
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Narrowing in action

[x, y]
[x [7,], y [0,1]]
[x [7,], y [0,7]]
[x [7,], y [0,]]
...
[x [8,8], y [0,]]

B = {-, 0, 1, 7, }
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y = 0;

x = 7;

x = x+1;

while (input) {  

x = 7;

x = x+1;

y = y+1;

}



More powerful widening

• Defining the widening function based on constants
occurring in the given program may not work

• Note: requires interprocedural analysis…
19

f(x) { // ”McCarthy’s 91 function”

var r;

if (x > 100) {

r = x – 10;

} else {

r = f(f(x + 11));

}

return r;

}

https://en.wikipedia.org/wiki/McCarthy_91_function



More powerful widening

• A widening is a function ∇: Ln  Ln →Ln that is extensive 
in both arguments and satisfies the following property:

for all increasing chains x0 ⊑ x1 ⊑ …,
the sequence y0 = x0, …, yi+1 = yi ∇ xi+1 ,… converges
(i.e. stabilizes after a finite number of steps)

• Now replace the basic fixed point solver by computing 
y0 = , …, yi+1 = yi ∇ F(yi), … until convergence

• (This is the notion of widening found in the literature,
except that an arbitrary lattice is typically used instead of Ln)
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More powerful narrowing

• Similarly, we can generalize narrowing

• A narrowing is a function ∆: Ln  Ln →Ln such that
∀x,y∊Ln: (y ⊑ x) ⇒ (y ⊑ (x ∆ y) ⊑ x)

and
for all decreasing chains x0 ⊒ x1 ⊒ …,
the sequence y0 = x0, …, yi+1 = yi ∆ xi+1 ,… converges

• After computing the fixed point yk with widening, 
continue with yi+1 = yi ∆ F(yi) 
(until convergence or bounded number of iterations)
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More powerful narrowing
for interval analysis

• Widening (extrapolates unstable bounds to infinity):

⊥ ∇ x = x
x ∇ ⊥ = x
[a1,b1] ∇ [a2,b2] = [if a2 < a1 then - else a1,

if b2 > b1 then + else b1]

• Narrowing (improves infinite bounds):
⊥ ∆ x = ⊥
x ∆ ⊥ = ⊥
[a1,b1] ∆ [a2,b2] = [if a1 = - then a2 else a1,

if b1 = + then b2 else b1]
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