Static Program Analysis
Part 5 — widening and narrowing

http://cs.au.dk/~amoeller/spa/

Anders Mgller & Michael |. Schwartzbach
Computer Science, Aarhus University

http://cs.au.dk/~amoeller/spa/

Interval analysis

Compute upper and lower bounds for integers
Possible applications:

— array bounds checking
— integer representation

Lattice of intervals:

Interval = lift({ [1,h] | LheNAl<h})
where

N={-x,..-2,-1,0,1, 2, ..., ©}
and intervals are ordered by inclusion:

[l,,h, JE[L,h,] iffl, <, Ah;<h,

x230
Stamp

The interval lattice

[_OO’OO]
PRI

/’// _2I’ 2 \\‘\
[-o0,0] ////E/«\i\\\ [0,c0]
/ [-2,1] [-1,2] \
[-00,-1] /V\ [1,x]

[_Z!O] [_1!1] [0!2]

\\ 7
N ’
2 \\ ’ 2
—(‘ — 4
[J S ’ y o0
N ’

. Y /

\ Y !
| '
| ’

\ ’
’

[-2,-1] [-1,0] 0,11 [1,21 "

\

\ ,,
v l
| /\/\/\/\ |

\ l
\ ’
\]

\ ’
\ 1

[_21_2] [_15_1] [OsO] [111] [2!2]
1

bottom element here interpreted as “not an integer”

Interval analysis lattice

* The total lattice for a program point is
L = Vars — Interval
that provides bounds for each (integer) variable

e |f using the worklist solver that initializes the worklist
with only the entry node, use the lattice /ift(L)
— bottom value of lift(L) represents “unreachable program point”
— bottom value of L represents “maybe reachable, but all variables are non-integers”

* This lattice has infinite height, since the chain

[0,0] = [0,1] = [0,2] = [0,3] = [0,4]..

occurs in Interval

Interval constraints

* For assignments:
[x=E] =JOIN(v)[x—>eval(JOIN(v),E)]

 For all other nodes:
[v] = JOIN(v)

where JOIN(v) = L[w]

wepred(v)

Evaluating intervals

 The eval function is an abstract evaluation:
— eval(o, x) = o(x)
— eval(o, intconst) = [intconst , intconst]
— eval(c, E, 0p E,) = op(eval(o,E,),eval(c,E,))

* Abstract arithmetic operators:

_ O_p([ll,hl],[lz,hz])=

min X O max XO
xe[ll,hl],ye[lz,hz]py, xe[ll,hl],ye[lz,hlgl v

+([1,10],[=5,7]) = [1 — 5,10 + 7] = [—4,17]
e Abstract comparison operators (could be improved]:

_ﬁ([llshl];[lzyhz])z [011]

not trivial to implement!
— P

x230
Stamp

x230
Rectangle

Fixed-point problems

The lattice has_infinite height, so the fixed-point
algorithm does not work ®

In L", the sequence of approximants
fi(L, 1,.., 1)
is not guaranteed to converge

(Exercise: give an example of a program where this happens)

Restricting to 32 bit integers is not a practical solution
Widening gives a useful solution...

x230
Line

Widening

* Introduce a widening function ®: L" — L" so that
(oof)(L, L, ..., 1)

converges on a fixed-point that is a safe
approximation of each fi(L, L, ..., 1)

e j.e.the function ® coarsens the information

Turbo charging the iterations

Widening for intervals

The function m is defined pointwise on L"
Parameterized with a fixed finite subset BNV

— must contain —oo and «© (to retain the T element)

— typically seeded with all integer constants occurring in
the given program

ldea: Find the nearest enclosing allowed interval
On single elements from Interval :
o([a,b]) = [max{ieB|i<a}, min{ieB|b<i}]
o(l)=L1

10

Divergence in action

y = 0;
X = 7;
X = X+1;
while (input) {
X = 7;
X = X+1;
y = y+l;

“

[X—> 1, y— 1]

x—> [8,8],y—[0,1]]
[x—> [8,8],y— [0,2]]
[x—> [8,8],y— [0,3]]

11

Widening in action

y = 0;
X = 7;
X = X+1;
while (input) {
X = 7;
X = X+1;
y = y+1;
¥

“

X—> 1, y—1]

[X = [7,0],y— [0,1]]
X > [7,0],y—[0,7]]
[Xx = [7,0],y = [0,0]]

B = {_OOI O) 11 71 OO}

12

Correctness of widening

Widening works when:
— m is an extensive and monotone function, and
— (L) is a finite-height lattice

Exercise 4.14: A function f : . — L where L is a lattice is exfensive when
Yre L:xC f(x).

Safety: Vi: fi(L, 1, ..., L) E (o-f)(L, L, ..., 1)
since f is monotone and is extensive

m-f is a monotone function w(L)—>m(L)

so the fixed-point exists

Almost “correct by definition”!

When used in the worklist algorithm, it suffices
to apply widening on back-edges in the CFG

13

x230
Stamp

x230
Line

x230
Rectangle

Narrowing

Widening generally shoots over the target
Narrowing may improve the result by applying f
Define:

fix=U"f(L,1L,.. 1) fixo="U(wf)(L,L,.., 1)
then fix E fixw
But we also have that

fix E f(fixw) E fixw

so applying f again may improve the result and
remain sound!
This can be iterated arbitrarily many times

— may diverge, but safe to stop anytime

14

Correctness of (repeated) narrowing

e f(fixw) E o(f(fixn)) = (of)(fixw) = fixm
since m is extensive
— by induction we also have, for all i:
f*(fixw) E f(fixo) E fixwn
— i.e. f*i(fixw) is at least as precise as f!(fixm)
* fix E fixo hence f(fix) = fix E f(fixo)
by monotonicity of f
— by induction we also have, for all i:
fix E fi(fixw)
— i.e. fi(fixw) is a sound approximation of fix

16

Narrowing in action

y = 0;
X = 7;
X = X+1;

while (input) {
X = 7;
X = X+1;
y = y+1;

¥

“

[X—> 1, y—1]

[X >
[X >
[X >

X -

[7,0],y—> [0,1]]
[7,0],y—>[0,7]]
[7,0],y—> [0,0]]

[8,8],y—> [0,00]]

B = {_wl OI 1) 7’ w}

17

More powerful widening

* Defining the widening function based on constants
occurring in the given program may not work

f(x) { // "MccCarthy’s 91 function”
var r;

if (x > 100) {
r=x - 10;
} else {
r = f(f(x + 11));
}

return r;

}

https://en.wikipedia.org/wiki/McCarthy 91 function

* Note: requires interprocedural analysis...

19

More powerful widening

O0wideningD OO ODOOOOOOO
oobobbodooooooon

A widening is a function V: L" x L" =L" that is extensive
in both arguments and satisfies the following property:
for all increasing chains x, E x; E ...,
the sequence y, =X, ..., Yiry = V; V Xi;q , ... CONVErges
(i.e. stabilizes after a finite number of steps)

 Now replace the basic fixed point solver by computing
Yo=L1, -, Yiuy = V; V F(y,), ... until convergence

e (This is the notion of widening found in the literature,
except that an arbitrary lattice is typically used instead of L")

x230
Text Box
二元widening算子支持从不动点计算的前一次和当前迭代来组合出抽象信息

More powerful narrowing

e Similarly, we can generalize narrowing

* A narrowing is a function A: L" x L" =L" such that
Vx,yel (YEXx)=> (YE (xAy) E x)
and
for all decreasing chains x, 2 x; =2 ...,
the sequence y, = X, ---, Yiy; = Vi A X, 4 , ... CONVErges

* After computing the fixed point y, with widening,
continue withy,,, =y. A F(y,)
(until convergence or bounded number of iterations)

21

More powerful narrowing
for interval analysis

* Widening (extrapolates unstable bounds to infinity):

1 Vx=x

XV L=x

[a,,b,] V[a,,b,] =[ifa,<a, then - else a,,
if b, > b, then +o0 else b,]

* Narrowing (improves infinite bounds):
1Ax=1
XAL=1
[a,,b;] A[a,,b,] =[if a,= —oo then a, else a,,
if b, = +00 then b, else b,]

22

