
Anders Møller & Michael I. Schwartzbach

Computer Science, Aarhus University

Static Program Analysis
Part 6 – path sensitivity

http://cs.au.dk/~amoeller/spa/

http://cs.au.dk/~amoeller/spa/

Information in conditions

The interval analysis (with widening) concludes:

x = [-,], y = [0,], z = [-,]

2

x = input;
y = 0;
z = 0;
while (x>0) {
z = z+x;
if (17>y) { y = y+1; }
x = x-1;

}

Modeling conditions

Add artifical “assert” statements:

The statement assert(E) models that
E is true in the current program state

• it causes a runtime error otherwise

• but we only insert it where the condition will
always be true

3

Encoding conditions

4

x = input;
y = 0;
z = 0;
while (x>0) {
assert(x>0);
z = z+x;
if (17>y) { assert(17>y); y = y+1; }
else { assert(!(17>y)); }
x = x-1;

}
assert(!(x>0));

preserves semantics since asserts are guarded by conditions

(alternatively, we could add dataflow constraints on the CFG edges)

Constraints for assert

• A trivial but sound constraint:

⟦v⟧ = JOIN(v)

• A non-trivial constraint for assert(x>E):

⟦v⟧ = JOIN(v)[xgt(JOIN(v)(x),eval(JOIN(v),E))]

where

gt([l1,h1],[l2,h2]) = [l1,h1] ⊓ [l2,]

• Similar constraints are defined for the dual cases

• More tricky to define for other conditions...

5

Exploiting conditions

The interval analysis now concludes:

x = [-,0], y = [0,17], z = [0,]

6

x = input;
y = 0;
z = 0;
while (x>0) {
assert(x>0);
z = z+x;
if (17>y) { assert(17>y); y = y+1; }
else { assert(!(17>y)); }
x = x-1;

}
assert(!(x>0));

Branch correlations

• With assert we have a simple form of path sensitivity
(sometimes called control sensitivity)

• But it is insufficient to handle correlation of branches:

7

if (17 > x) { ... }
... // statements that do not change x
if (17 > x) { ... }
...

Open and closed files

• Built-in functions open() and close() on a file

• Requirements:

– never close a closed file

– never open an open file

• We want a static analysis to check this...
(for simplicity, let us assume there is only one file)

openclosed

open()

close()

8

A tricky example

9

if (condition) {
open();
flag = 1;

} else {
flag = 0;

}
...
if (flag) {

close();
}

The naive analysis (1/2)

• The lattice models the status of the file:

L = (2{open,closed},)

• For every CFG node, v, we have a constraint variable
⟦v⟧ denoting the status after v

• JOIN(v) = ⋃ ⟦w⟧

{open,closed}

{open} {closed}

wpred(v)

10

The naive analysis (2/2)

• Constraints for interesting statements:

⟦entry⟧ = {closed}

⟦open()⟧ = {open}

⟦close()⟧ = {closed}

• For all other CFG nodes:

⟦v⟧ = JOIN(v)

• Before the close() statement
the analysis concludes that the
file is {open,closed}

11

if (condition) {
open();
flag = 1;

} else {
flag = 0;

}
...
if (flag) {
close();

}

The slightly less naive analysis

• We obviously need to keep track of the flag variable

• Our second attempt is the lattice:

L = (2{open,closed}2{flag=0,flag0},)

• Additionally, we add assert(...)
to model conditionals

• Even so, we still only know that the
file is {open,closed} and that
flag is {flag=0,flag0}

12

if (condition) {
open();
flag = 1;

} else {
flag = 0;

}
...
if (flag) {
close();

}

Enhanced program

13

if (condition) {
assert(condition);
open();
flag = 1;

} else {
assert(!condition);
flag = 0;

}
...
if (flag) {
assert(flag);
close();

} else {
assert(!flag);

}

Relational analysis

• We need an analysis that keeps track of relations
between variables

• One approach is to maintain multiple abstract states
per program point, one for each path context

• For the file example we need the lattice:

L = Paths 2{open,closed}

where Paths = {flag=0,flag0} is the set of
path contexts

14

(note: isomorphic to 2Paths{open,closed})

Relational constraints (1/2)

• For the file statements:

⟦entry⟧ = p.{closed}

⟦open()⟧ = p.{open}

⟦closed()⟧ = p.{closed}

• For flag assignments:

⟦flag = 0⟧ = [flag=0⋃ JOIN(v)(p), flag0]

⟦flag = n⟧ = [flag0⋃ JOIN(v)(p), flag=0]

⟦flag = E⟧ = q. ⋃ JOIN(v)(p)

pP

pP

”infeasible”

pP

15

where n is a non-0
constant number

for any other E

Relational constraints (2/2)

• For assert statements:

⟦assert(flag)⟧ =

[flag0JOIN(v)(flag0), flag=0]

⟦assert(!flag)⟧ =

[flag=0JOIN(v)(flag=0), flag0]

• For all other CFG nodes:

⟦v⟧ = JOIN(v) = p. ⋃ ⟦w⟧(p)
wpred(v)

16

Generated constraints

cC

cC

17

⟦entry⟧ = p.{closed}
⟦condition⟧ = ⟦entry⟧
⟦assert(condition)⟧ = ⟦condition⟧
⟦open()⟧ = p.{open}
⟦flag = 1⟧ = [flag0⋃ ⟦open()⟧(p), flag=0]
⟦assert(!condition)⟧ = ⟦condition⟧
⟦flag = 0⟧ = [flag=0⋃ ⟦assert(!condition)⟧(p), flag0]
⟦...⟧ = p.(⟦flag = 1⟧(p) ⋃ ⟦flag = 0⟧(p))
⟦flag⟧ = ⟦...⟧
⟦assert(flag)⟧ = ⟦flag0⟦flag⟧(flag0), flag=0]
⟦close()⟧ = p.{closed}
⟦assert(!flag)⟧ = [flag=0⟦flag⟧(flag=0), flag0]
⟦exit⟧ = p.(⟦close()⟧(p) ⋃ ⟦assert(!flag)⟧(p))

Minimal solution

We now know the file is open before close()

flag = 0 flag 0

⟦entry⟧ {closed} {closed}

⟦condition⟧ {closed} {closed}

⟦assert(condition)⟧ {closed} {closed}

⟦open()⟧ {open} {open}

⟦flag = 1⟧ {open}

⟦assert(!condition)⟧ {closed} {closed}

⟦flag = 0⟧ {closed}

⟦...⟧ {closed} {open}

⟦flag⟧ {closed} {open}

⟦assert(flag)⟧ {open}

⟦close()⟧ {closed} {closed}

⟦assert(!flag)⟧ {closed}

⟦exit⟧ {closed} {closed}

18

Challenges

• The static analysis designer must choose Paths

– often as boolean combinations of predicates from conditionals

– iterative refinement (e.g. counter-example guided
abstraction refinement) can be used for gradually
finding relevant predicates

• Exponential blow-up:

– for k predicates, we have 2k different contexts

– redundancy often cuts this down

• Reasoning about assert:

– how to update the lattice elements with sufficient precision?

– possibly involves heavy-weight theorem proving
19

Improvements

• Run auxiliary analyses first, for example:

– constant propagation

– sign analysis

will help in handling flag assignments

• Dead code propagation, change

⟦open()⟧ = p.{open}

into the still sound but more precise

⟦open()⟧ = p.if JOIN(v)(p)= then else {open}

20

