Static Program Analysis Part 6 – path sensitivity

http://cs.au.dk/~amoeller/spa/

Anders Møller & Michael I. Schwartzbach Computer Science, Aarhus University

Information in conditions

The interval analysis (with widening) concludes: $x = [-\infty, \infty], y = [0, \infty], z = [-\infty, \infty]$

Modeling conditions

Add artifical "assert" statements:

The statement assert(*E*) models that *E* is *true* in the current program state

- it causes a runtime error otherwise
- but we only insert it where the condition will always be true

Encoding conditions

```
x = input;
y = 0;
z = 0;
while (x>0) {
  assert(x>0);
  Z = Z + X;
  if (17>y) { assert(17>y); y = y+1; }
  else { assert(!(17>y)); }
  x = x - 1;
}
assert(!(x>0));
                        preserves semantics since asserts are guarded by conditions
```

(alternatively, we could add dataflow constraints on the CFG edges)

Constraints for assert

• A trivial but sound constraint:

[[v]] = *JOIN*(v)

- A non-trivial constraint for assert(x > E): $[v] = JOIN(v)[x \rightarrow gt(JOIN(v)(x), eval(JOIN(v), E))]$ where $gt([l_1, h_1], [l_2, h_2]) = [l_1, h_1] \sqcap [l_2, \infty]$
- Similar constraints are defined for the dual cases
- More tricky to define for other conditions...

Exploiting conditions

```
x = input;
y = 0;
z = 0;
while (x>0) {
  assert(x>0);
  Z = Z + X;
  if (17>y) { assert(17>y); y = y+1; }
  else { assert(!(17>y)); }
  x = x - 1;
}
assert(!(x>0));
```

The interval analysis now concludes:

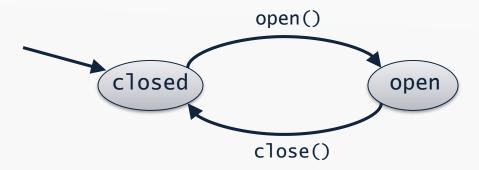
 $x = [-\infty, 0], y = [0, 17], z = [0, \infty]$

Branch correlations

- With assert we have a simple form of *path sensitivity* (sometimes called *control sensitivity*)
- But it is insufficient to handle *correlation* of branches:

Open and closed files

- Built-in functions open() and close() on a file
- Requirements:
 - never close a closed file
 - never open an open file



• We want a static analysis to check this... (for simplicity, let us assume there is only one file)

A tricky example

```
if (condition) {
  open();
  flag = 1;
} else {
  flag = 0;
}
if (flag) {
  close();
}
```

The naive analysis (1/2)

• The lattice models the status of the file:



- For every CFG node, v, we have a constraint variable
 [v] denoting the status after v
- $JOIN(v) = \bigcup_{w \in pred(v)} \llbracket w \rrbracket$

The naive analysis (2/2)

Constraints for interesting statements:

[[entry]] = {closed}
[[open()]] = {open}
[[close()]] = {closed}

- For all other CFG nodes:
 [[v]] = JOIN(v)
- Before the close() statement the analysis concludes that the file is {open,closed}

```
if (condition) {
    open();
    flag = 1;
} else {
    flag = 0;
}
....
if (flag) {
    close();
}
```

The slightly less naive analysis

- We obviously need to keep track of the flag variable
- Our second attempt is the lattice:

 $L = (2^{\{open,c]osed}\} \times 2^{\{f]ag=0,f]ag\neq0\}}, \subseteq \times \subseteq)$

- Additionally, we add assert(...) to model conditionals
- Even so, we still only know that the file is {open,closed} and that flag is {flag=0,flag≠0} ⊗

```
if (condition) {
    open();
    flag = 1;
} else {
    flag = 0;
}
...
if (flag) {
    close();
}
```

Enhanced program

```
if (condition) {
  assert(condition);
  open();
  flag = 1;
} else {
  assert(!condition);
  flag = 0;
}
if (flag) {
  assert(flag);
  close();
} else {
  assert(!flag);
}
```

Relational analysis

- We need an analysis that keeps track of *relations* between variables
- One approach is to maintain *multiple* abstract states per program point, one for each *path context*
- For the file example we need the lattice:

 $L = Paths \rightarrow 2^{\{open,closed\}}$ (note: isomorphic to $2^{Paths \times \{open,closed\}}$)

where Paths = {flag=0,flag≠0} is the set of path contexts

Relational constraints (1/2)

• For the file statements:

 $[[entry]] = \lambda p.{closed}$ $[[open()]] = \lambda p.{open}$ $[[closed()]] = \lambda p.{closed}$

• For flag assignments: $\llbracket flag = 0 \rrbracket = [flag=0 \rightarrow \bigcup_{p \in P} JOIN(v)(p), flag\neq 0 \rightarrow \emptyset]$ $\llbracket flag = n \rrbracket = [flag\neq 0 \rightarrow \bigcup_{p \in P} JOIN(v)(p), flag=0 \rightarrow \emptyset]$ where *n* is a non-0 $\llbracket flag = E \rrbracket = \lambda q. \bigcup_{p \in P} JOIN(v)(p) \text{ for any other } E$

"infeasible"

Relational constraints (2/2)

For assert statements:

 $[[assert(flag)]] = [flag \neq 0 \rightarrow JOIN(v)(flag \neq 0), flag = 0 \rightarrow \emptyset]$ $[[assert(!flag)]] = [flag=0 \rightarrow JOIN(v)(flag=0), flag \neq 0 \rightarrow \emptyset]$

• For all other CFG nodes:

 $\llbracket v \rrbracket = JOIN(v) = \lambda p. \bigcup \llbracket w \rrbracket(p)$ w \in pred(v)

Generated constraints

```
[[entry]] = \lambda p.\{closed\}
[[condition]] = [[entry]]
[[assert(condition)]] = [[condition]]
[open()] = \lambda p.{open}
[[f]ag = 1]] = [f]ag \neq 0 \rightarrow \bigcup [[open()]](p), f]ag = 0 \rightarrow \emptyset]
[[assert(!condition)]] = [[condition]]
[[f]ag = 0]] = [f]ag=0 \rightarrow \bigcup [[assert(!condition)]](p), f]ag \neq 0 \rightarrow \emptyset]
[...] = \lambda p.([[f]ag = 1]](p) \cup [[f]ag = 0]](p))
[[f]ag] = [...]
[assert(flag)] = [flag \neq 0 \rightarrow [flag](flag \neq 0), flag = 0 \rightarrow \emptyset]
[close()] = \lambda p.\{closed\}
[assert(!flag)] = [flag=0 \rightarrow [flag](flag=0), flag \neq 0 \rightarrow \emptyset]
[[exit]] = \lambda p.([[close()]](p) \cup [[assert(!flag)]](p))
```

Minimal solution

	flag = 0	flag ≠ 0
[[entry]]	{closed}	{closed}
[condition]]	{closed}	{closed}
[assert(condition)]	{closed}	{closed}
[[open()]]	{open}	{open}
[[flag = 1]]	Ø	{open}
<pre>[assert(!condition)]]</pre>	{closed}	{closed}
[[flag = 0]]	{closed}	Ø
[]	{closed}	{open}
[[flag]]	{closed}	{open}
[[assert(flag)]]	Ø	{open}
[[close()]]	{closed}	{closed}
[[assert(!flag)]]	{closed}	Ø
[[exit]]	{closed}	{closed}

We now know the file is **open** before **close()** ③

Challenges

- The static analysis designer must choose Paths
 - often as boolean combinations of predicates from conditionals
 - iterative refinement (e.g. *counter-example guided abstraction refinement*) can be used for gradually finding relevant predicates
- Exponential blow-up:
 - for *k* predicates, we have 2^{*k*} different contexts
 - redundancy often cuts this down
- Reasoning about assert:
 - how to update the lattice elements with sufficient precision?
 - possibly involves heavy-weight theorem proving

Improvements

- Run auxiliary analyses first, for example:
 - constant propagation
 - sign analysis

will help in handling flag assignments

Dead code propagation, change
 [open()] = λp.{open}
 into the still sound but more precise
 [open()] = λp.if JOIN(v)(p)=Ø then Ø else {open}