
Anders Møller & Michael I. Schwartzbach

Computer Science, Aarhus University

Static Program Analysis
Part 7 – interprocedural analysis

http://cs.au.dk/~amoeller/spa/

http://cs.au.dk/~amoeller/spa/


Interprocedural analysis

• Analyzing the body of a single function:

– intraprocedural analysis

• Analyzing the whole program with function calls:

– interprocedural analysis

• A naive approach:

– analyze each function in isolation

– be maximally pessimistic about results of function calls

– rarely sufficient precision…

2



CFG for whole programs

The idea:

• construct a CFG for each function

• then glue them together to reflect function calls
and returns

We need to take care of:

• parameter passing

• return values

• values of local variables across calls 
(including recursive functions, so not enough to 
assume unique variable names)

3



A simplifying assumption

• Assume that all function calls are of the form

• This can always be obtained by normalization

4

X = f(E1, ..., En);



Interprocedural CFGs (1/3)

Split each original call node

into two nodes:

5

X = f(E1, ..., En)

⬚ = f(E1, ..., En)

X = ⬚

the “call node”

the “after-call node”

a special edge that 
connects the call node
with its after-call node



Interprocedural CFGs (2/3)

Change each return node

into an assignment:

(where result is a fresh variable)

6

return E

result = E



Interprocedural CFGs (3/3)

Add call edges and return edges:

7

⬚ = f(E1, ..., En)

result = E

function g(a1, ..., am)
function f(b1, ..., bn)

X = ⬚



Constraints

• For call/entry nodes:

– be careful to model evaluation of all the actual parameters 
before binding them to the formal parameter names
(otherwise, it may fail for recursive functions)

• For after-call/exit nodes:

– like an assignment:  X = result

– but also restore local variables from before the call
using the call↷after-call edge

• The details depend on the specific analysis…
8



Example: interprocedural sign analysis

• Recall the intraprocedural sign analysis…

• Lattice for abstract values:

• Lattice for abstract states:
Vars Sign

9

⊤

+ - 0

⊥

Sign = 



Example: interprocedural sign analysis

• Constraint for entry node v of function f(b1,..., bn):

⟦v⟧ = ⨆ ⊥[b1eval(⟦w⟧,E1), ..., bneval(⟦w⟧,En)]

• Constraint for after-call node v labeled X = ⬚, 
with call node v’:

⟦v⟧ = ⟦v’⟧[X⟦w⟧(result)] 

(Recall: no global variables, no heap, 
and no higher-order functions)

10

wpred(v)

⬚ = f(E1, ..., En)

result = E

function f(b1, ..., bn)

X = ⬚

where wpred(v)

w w



1) ⟦v⟧ = tv(⨆ ⟦w⟧)

2) wsucc(v):  tv(⟦v⟧) ⊑ ⟦w⟧

– recall ”solving inequations”
– may require fewer join operations

if there are many CFG edges
– more suitable for interprocedural flow

Alternative formulations

11

wpred(v)

w1    …  wn

tv
v

w1    …  wn

tv
v



x1 = ⊥; ... xn = ⊥

W = {v1, ..., vn}

while (W) {

vi = W.removeNext()

y = fi(x1, ..., xn)

if (yxi) {

for (vj  dep(vi)) {

W.add(vj)

}

xi = y

}

}

The worklist algorithm 
(original version)

12

w1    …  wn

tv
v

x230
Text Box
[SPA] Page 50



x1 = ⊥; ... xn = ⊥

W = {v1, ..., vn}

while (W) {

vi = W.removeNext()

y = ti(xi)

for (vj  dep(vi)) {

propagate(y,vj)

} 

}

The worklist algorithm 
(alternative version)

13

propagate(y,vj) {

z = xj ⊔ y

if (zxj) {

xj = z
W.add(vj)

} 

}

w1    …  wn

tv
v



Agenda

• Interprocedural analysis

• Context-sensitive 
interprocedural analysis

14



⬚ = f(E1, ..., En) ⬚ = f(E’1, ..., E’n)

X’ = ⬚X = ⬚

Interprocedurally invalid paths

15



Example

16

f(z) {

return z*42;

}

g() {

var x,y;

x = f(0);

y = f(87);

return x + y;

}

Our current analysis says “⊤”

What is the sign of the return value of g?



Function cloning 
(alternatively, function inlining)

• Clone functions such that each function has 
only one callee

• Can avoid interprocedurally invalid paths 

• For high nesting depths, gives exponential blow-up 

• Doesn’t work on (mutually) recursive functions 

• Use heuristics to determine when to apply
(trade-off between CFG size and precision)

17



Example, with cloning

18

f1(z1) {

return z1*42;

}

f2(z2) {

return z2*42;

}

g() {

var x,y;

x = f1(0);

y = f2(87);

return x + y;

}

What is the sign of the return value of g?



Context sensitive analysis
• Function cloning provides a kind of context sensitivity 

(also called polyvariant analysis)

• Instead of physically copying the function CFGs, 
do it logically

• Replace the lattice for abstract states, States, by 

Contexts → lift(States)

where Contexts is a set of call contexts

– the contexts are abstractions of the state at function entry

– Contexts must be finite to ensure finite height of the lattice

– the bottom element of lift(States) represents 
“unreachable” contexts

• Different strategies for choosing the set Contexts…
19



One-level cloning

• Let c1,…,cn be the call nodes in the program

• Define Contexts={c1,…,cn}  {ε}

– each call node now defines its own “call context”
(using ε to represent the call context at the main function) 

– the context is then like the return address of the top-most 
stack frame in the call stack

• Same effect as one-level cloning, but without actually 
copying the function CFGs

• Usually straightforward to generalize the constraints 
for a context insensitive analysis to this lattice

• (Example: context-sensitive sign analysis – later…)
20



The call string approach

• Let c1,…,cn be the call nodes in the program

• Define Contexts as the set of strings over {c1,…,cn} 
of length k

– such a string represents the top-most k call locations 
on the call stack

– the empty string ε again represents the call context at 
the main function

• For k=1 this amounts to one-level cloning

21



Example: 
interprocedural sign analysis with call strings (k=1) 

22

f(z) {

var t1,t2;

t1 = z*6;

t2 = t1*7;

return t2;

}

...

x = f(0);  // c1

y = f(87); // c2

...

Lattice for abstract states:   Contexts → lift(Vars → Sign)
where Contexts={ε,c1,c2}

[ε ↦ unreachable,             

c1 ↦ ⊥[z↦0, t1↦0, t2↦0],

c2 ↦ ⊥[z↦+, t1↦+, t2↦+]]

What is an example program 
that requires k=2
to avoid loss of precision?



Context sensitivity with call strings
function entry nodes, for k=1

23

sw = ⊥[b1eval(⟦w⟧(c’),E1), ..., bneval(⟦w⟧(c’),En)]C’ w w

⟦v⟧(c) = ⨆          sw

wpred(v) ∧
c = w ∧

c’∈ Contexts ∧

⟦w⟧(c’)  unreachable

Constraint for entry node v of function f(b1,..., bn):
(if not ‘main’)

C’

⬚ = f(E1, ..., En)

result = E

function f(b1, ..., bn)

X = ⬚

v

w

x230
Text Box
c: contextc': conrext at the call node

x230
Text Box
c'

x230
Text Box
c



Context sensitivity with call strings
after-call nodes, for k=1

24

⟦v⟧(c) = ⟦v’⟧(c)[X⟦w⟧(v’)(result)] 

Constraint for after-call node v labeled X = ⬚, 
with call node v’ and exit node wpred(v):

if ⟦v’⟧(c)  unreachable ∧ ⟦w⟧(v’)  unreachable

⬚ = f(E1, ..., En)

result = E

function f(b1, ..., bn)

X = ⬚

v

w

v’

x230
Rectangle



The functional approach

• The call string approach considers control flow

– but why distinguish between two different call sites if 
their abstract states are the same?

• The functional approach instead considers data

• In the most general form, choose
Contexts = States

(requires States to be finite)

• Each element of the lattice  States → lift(States) 
is now a map m that provides an element m(x) from 
States (or “unreachable”) for each possible x 
where x describes the state at function entry

25

x230
Line

x230
Line

x230
Line

x230
Text Box
e.g. 符号分析例中 , f(42), f(87) 的抽象状态都一样



Example: 
interprocedural sign analysis with the functional approach

26

f(z) {

var t1,t2;

t1 = z*6;

t2 = t1*7;

return t2;

}

...

x = f(0);

y = f(87);

...

Lattice for abstract states:   Contexts → lift(Vars → Sign)
where Contexts = Vars → Sign

[⊥[z↦0] ↦ ⊥[z↦0, t1↦0, t2↦0],

⊥[z↦+] ↦ ⊥[z↦+, t1↦+, t2↦+],

all other contexts ↦ unreachable ]

x230
Rectangle



The functional approach

• The lattice element for a function exit node is thus a 
function summary that maps abstract function input to 
abstract function output

• This can be exploited at call nodes!

• When entering a function with abstract state x:

– consider the function summary s for that function

– if s(x) already has been computed, use that to model the entire 
function body, then proceed directly to the after-call node

• Avoids the problem with interprocedurally invalid paths!

• …but may be expensive if States is large

27



Context sensitivity with the 
functional approach

function entry nodes 

28

sw = ⊥[b1eval(⟦w⟧(c’),E1), ..., bneval(⟦w⟧(c’),En)]C’ w w

⟦v⟧(c) = ⨆          sw

wpred(v) ∧
c = sw ∧

c’∈ Contexts ∧

⟦w⟧(c’)  unreachable

Constraint for entry node v of function f(b1,..., bn):
(if not ‘main’)

C’

C’
⬚ = f(E1, ..., En)

result = E

function f(b1, ..., bn)

X = ⬚

v

w

x230
Text Box
c

x230
Text Box
c'



Context sensitivity with the 
functional approach

after-call nodes

29

⟦v⟧(c) = ⟦v’⟧(c)[X⟦w⟧(sv’)(result)] 

Constraint for after-call node v labeled X = ⬚, 
with call node v’ and exit node wpred(v):

if ⟦v’⟧(c)  unreachable ∧ ⟦w⟧(sv’)  unreachable

C

C

⬚ = f(E1, ..., En)

result = E

function f(b1, ..., bn)

X = ⬚

v

w

v’

x230
Rectangle




