Static Program Analysis
Part 7 — interprocedural analysis

http://cs.au.dk/~amoeller/spa/

Anders Mgller & Michael |. Schwartzbach
Computer Science, Aarhus University

http://cs.au.dk/~amoeller/spa/

Interprocedural analysis

* Analyzing the body of a single function:

— intraprocedural analysis

* Analyzing the whole program with function calls:

— interprocedural analysis

* A naive approach:
— analyze each function in isolation
— be maximally pessimistic about results of function calls
— rarely sufficient precision...

CFG for whole programs

The idea:
e construct a CFG for each function

* then glue them together to reflect function calls
and returns

We need to take care of:
* parameter passing
 return values

e values of local variables across calls
(including recursive functions, so not enough to
assume unique variable names)

A simplifying assumption

e Assume that all function calls are of the form

X = f(E;, ..., E);

* This can always be obtained by normalization

Interprocedural CFGs (1/3)

Split each original call node

l

X = f(E,, .., E)
into two nodes: l
48 = f(E, ., E)
|
Tt X = i
7
a special edge that l

connects the call node
with its after-call node

<~

K

the “call node”

the “after-call node”

Interprocedural CFGs (2/3)

Change each return node

l

return E

Into an assignment:

i

result = E

(where resul t is a fresh variable)

Interprocedural CFGs (3/3)

Add call edges and return edges:

function f(by, .., b))

function g(a;, .., a,)

s E)

J

. .
ooooo

Constraints

* For call/entry nodes:

— be careful to model evaluation of all the actual parameters
before binding them to the formal parameter names
(otherwise, it may fail for recursive functions)

e For after-call/exit nodes:
— like an assignment: X=result

— but also restore local variables from before the call
using the call™~after-call edge

 The details depend on the specific analysis...

Example: interprocedural sign analysis

e Recall the intraprocedural sign analysis...
e Lattice for abstract values:

T
I
Sign= + - 0
~.

1

e Lattice for abstract states:
Vars — Sign

Example: interprocedural sign analysis

* Constraint for entry node v of function f(b4, ..., b,):

[v] = U L[b;—eval([w],E7), ..., b,—>eval([w],E,)]
wepred(v)

with call node v’:
[V] = [V]IX—=>[w](result)]

where wepred(v) ~
v
o~ = FCEy, .y E)

: {
(Recall: no global variables, no heap, >~ o /

and no higher-order functions) \ resu1tl= E

10

1)

2)

Alternative formulations

[vI =t.(Ll [w])

wepred(v)
Vwesucc(v): t ([v]) E [w] V@
— recall ”"solving inequations”
— may require fewer join operations /i\
if there are many CFG edges Wy ... W,

— more suitable for interprocedural flow

11

The worklist algorithm

SN (original version)
Xy = L1L; ... X, =1
W= {vy, ..., V,}

while (Wz0) {
V; = W.removeNext()

y = f:(Xy, ..., X,)
1T (y=x;) {
for (v; e dep(v;)) {
W.add(v;)
}
X;i =Y
}

¥

x230
Text Box
[SPA] Page 50

The worklist algorithm
(alternative version)

X, = 1; ... X, = 1L
W = {vy, ..., V,}
while (W=Z) {
Vi = W.removeNext()
y = t;(x;)
for (v; e dep(v;)) {
propagate(y,Vv;)
¥
¥

"
/N

W, ... W,

propagate(y,v;) {
Z = X; Uy
1t (z=x;) {
Xj = Z
W.add(v;)
}
}

13

Agenda

* |Interprocedural analysis

* Context-sensitive
interprocedural analysis

14

Interprocedurally invalid paths

Example

What is the sign of the return value of g°?

f(z2) {

return z*42;

}

gO {

var X,Y;

x = £(0);

y = T(87);
return X + Y,

Our current analysis says “T”

16

Function cloning
(alternatively, function inlining)

Clone functions such that each function has
only one callee

Can avoid interprocedurally invalid paths ©
For high nesting depths, gives exponential blow-up ©
Doesn’t work on (mutually) recursive functions ®

Use heuristics to determine when to apply
(trade-off between CFG size and precision)

17

Example, with cloning

What is the sign of the return value of g°?

f1(z1) {
return z1%42;

}

f2(z2) {
return z2%42;

}

gO {

var X,Y;

x = f1(0);

y = f2(87);
return X + y;

}

18

Context sensitive analysis

* Function cloning provides a kind of context sensitivity
(also called polyvariant analysis)

* Instead of physically copying the function CFGs,
do it logically
* Replace the lattice for abstract states, States, by

Contexts — lift(States)

where Contexts is a set of call contexts
— the contexts are abstractions of the state at function entry
— Contexts must be finite to ensure finite height of the lattice

— the bottom element of lift(States) represents
“unreachable” contexts

e Different strategies for choosing the set Contexts...

19

One-level cloning

Let c,,...,C,, be the call nodes in the program
Define Contexts={c,,...,c,} U {€}

— each call node now defines its own “call context”
(using € to represent the call context at the main function)
— the context is then like the return address of the top-most
stack frame in the call stack
Same effect as one-level cloning, but without actually
copying the function CFGs

Usually straightforward to generalize the constraints
for a context insensitive analysis to this lattice

(Example: context-sensitive sign analysis — later...)

20

The call string approach

* lLetc,...,C, bethe call nodes in the program

* Define Contexts as the set of strings over {c,...,C,}
of length <k

— such a string represents the top-most k call locations
on the call stack

— the empty string € again represents the call context at
the main function

* For k=1 this amounts to one-level cloning

21

Example:
interprocedural sign analysis with call strings (k=1)

Lattice for abstract states: Contexts — lift(Vars — Sign)
where Contexts={¢,Cc,C,}

f(z) {

var tl,t2;

tl = z*0;

t2 = tl1*7: [€ — unreachable,

return t2; clw 1[z~0, t1-0, t2+0],
} c2 - L[ze+, tles+, t20+]]

x = f(0); // cl

y = t(87); // c2 |
What is an example program
that requires k=2
to avoid loss of precision? ,

Context sensitivity with call strings
function entry nodes, for k=1

Constraint for entry node v of function f(b, ..., b,):

(if not ‘main’) |¢ context
c': conrext at the call node

[[V]](C) = SVCV' ¢ i Y,
wepred(v) A W
cC=W A —~ 1= f(&, .., E)

f
c'€ Contexts A Nl R nl —
) \
[w](c’) # unreachable \

s'= 1[b;—eval([w](c),E7), ..., by,—~eval([w](c’),E,)]

23

x230
Text Box
c: context
c': conrext at the call node

x230
Text Box
c'

x230
Text Box
c

Context sensitivity with call strings
after-call nodes, for k=1

with call node v’ and exit node wepred(v):

[vI(c) = [v](c)IX—>[w](M)(resuTt)]

if [v'](c) # unreachable A [w](v’) # unreachable

x230
Rectangle

The functional approach

The call string approach considers control flow

— but why distinguish between two different call sites if

their abstract states are the same? & o005 000

The functional approach instead considers data

In the most general form, choose
Contexts = States
(requires States to be finite)
Each element of the lattice States — lift(States)
is now a map m that provides an element m(x) from
States (or “unreachable”) for each possible x

where x describes the state at function entry

25

x230
Line

x230
Line

x230
Line

x230
Text Box
e.g. 符号分析例中 , f(42), f(87) 的抽象状态都一样

Example:
interprocedural sign analysis with the functional approach

Lattice for abstract states: Contexts — lift(Vars — Sign)

where Contexts = Vars — Sign

f(z) {
var tl,t2;
tl = z¥6;
t2 = tl1%*7;

return t2;

x = £(0);
y = £(87);

| |

| [z—0] |~ L[z~0, t1-0, t2~0]

)
~ -

L[zm+]|> L[z-+, tle+, T2+

all other contexts = unreachable |

26

x230
Rectangle

The functional approach

The lattice element for a function exit node is thus a
function summary that maps abstract function input to
abstract function output

This can be exploited at call nodes!
When entering a function with abstract state x:

— consider the function summary s for that function

— if s(x) already has been computed, use that to model the entire
function body, then proceed directly to the after-call node

Avoids the problem with interprocedurally invalid paths!
...but may be expensive if States is large

27

Context sensitivity with the

functional approach
function entry nodes

Constraint for entry node v of function f(b, ..., b,):
(if not ‘main’)

V()= U sy c- : .
wepred(v) A
C = chi/’ /\ - i \:Vf(Elf.., E,)

c’€ Contexts A S < Shh /

[[W]](C’) # unreachable ' w= |

s¢'= 1[b;—eval([w](c),E7), ..., b,—eval([w](c’),E,;)]

28

x230
Text Box
c

x230
Text Box
c'

Context sensitivity with the

functional approach
after-call nodes

with call node v’ and exit node wepred(v):

[vI(c) = [vT(Q)X—>[wl(sg)(resuTt)

if [v’](c) # unreachable A [w](s.’) # unreachable

x230
Rectangle

