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Interprocedural analysis

* Analyzing the body of a single function:

— intraprocedural analysis

* Analyzing the whole program with function calls:

— interprocedural analysis

* A naive approach:
— analyze each function in isolation
— be maximally pessimistic about results of function calls
— rarely sufficient precision...



CFG for whole programs

The idea:
e construct a CFG for each function

* then glue them together to reflect function calls
and returns

We need to take care of:
* parameter passing
 return values

e values of local variables across calls
(including recursive functions, so not enough to
assume unique variable names)



A simplifying assumption

e Assume that all function calls are of the form

X = f(E;, ..., E);

* This can always be obtained by normalization



Interprocedural CFGs (1/3)

Split each original call node

l

X = f(E,, .., E)
into two nodes: l
48 = f(E, ., E)
|
Tt X = i
7
a special edge that l

connects the call node
with its after-call node
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the “call node”

the “after-call node”



Interprocedural CFGs (2/3)

Change each return node

l

return E

Into an assignment:

i

result = E

(where resul t is a fresh variable)



Interprocedural CFGs (3/3)

Add call edges and return edges:

function f(by, .., b))

function g(a;, .., a,)

s E)

J
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ooooo




Constraints

* For call/entry nodes:

— be careful to model evaluation of all the actual parameters
before binding them to the formal parameter names
(otherwise, it may fail for recursive functions)

e For after-call/exit nodes:
— like an assignment: X=result

— but also restore local variables from before the call
using the call™~after-call edge

 The details depend on the specific analysis...



Example: interprocedural sign analysis

e Recall the intraprocedural sign analysis...
e Lattice for abstract values:

T
I
Sign= + - 0
~.

1

e Lattice for abstract states:
Vars — Sign



Example: interprocedural sign analysis

* Constraint for entry node v of function f(b4, ..., b,):

[v] = U L[b;—eval([w],E7), ..., b,—>eval([w],E,)]
wepred(v)

with call node v’:
[V] = [V ]IX—=>[w](result)]

where wepred(v) ~
v
o~ = FCEy, .y E)

: {
(Recall: no global variables, no heap, >~ o /

and no higher-order functions) \ resu1tl= E

10



1)

2)

Alternative formulations

[vI =t.(Ll [w])

wepred(v)
Vwesucc(v): t ([v]) E [w] V@
— recall ”"solving inequations”
— may require fewer join operations /i\
if there are many CFG edges Wy ... W,

— more suitable for interprocedural flow
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The worklist algorithm

SN (original version)
Xy = L1L; ... X, =1
W= {vy, ..., V,}

while (Wz0) {
V; = W.removeNext()

y = f:(Xy, ..., X,)
1T (y=x;) {
for (v; e dep(v;)) {
W.add(v;)
}
X;i =Y
}

¥
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The worklist algorithm
(alternative version)

X, = 1; ... X, = 1L
W = {vy, ..., V,}
while (W=Z) {
Vi = W.removeNext()
y = t;(x;)
for (v; e dep(v;)) {
propagate(y,Vv;)
¥
¥

"
/N

W, ... W,

propagate(y,v;) {
Z = X; Uy
1t (z=x;) {
Xj = Z
W.add(v;)
}
}
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Agenda

* |Interprocedural analysis

* Context-sensitive
interprocedural analysis
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Interprocedurally invalid paths




Example

What is the sign of the return value of g°?

f(z2) {

return z*42;

}

gO {

var X,Y;

x = £(0);

y = T(87);
return X + Y,

Our current analysis says “T”
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Function cloning
(alternatively, function inlining)

Clone functions such that each function has
only one callee

Can avoid interprocedurally invalid paths ©
For high nesting depths, gives exponential blow-up ©
Doesn’t work on (mutually) recursive functions ®

Use heuristics to determine when to apply
(trade-off between CFG size and precision)
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Example, with cloning

What is the sign of the return value of g°?

f1(z1) {
return z1%42;

}

f2(z2) {
return z2%42;

}

gO {

var X,Y;

x = f1(0);

y = f2(87);
return X + y;

}
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Context sensitive analysis

* Function cloning provides a kind of context sensitivity
(also called polyvariant analysis)

* Instead of physically copying the function CFGs,
do it logically
* Replace the lattice for abstract states, States, by

Contexts — lift(States)

where Contexts is a set of call contexts
— the contexts are abstractions of the state at function entry
— Contexts must be finite to ensure finite height of the lattice

— the bottom element of lift(States) represents
“unreachable” contexts

e Different strategies for choosing the set Contexts...
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One-level cloning

Let c,,...,C,, be the call nodes in the program
Define Contexts={c,,...,c,} U {€}

— each call node now defines its own “call context”
(using € to represent the call context at the main function)
— the context is then like the return address of the top-most
stack frame in the call stack
Same effect as one-level cloning, but without actually
copying the function CFGs

Usually straightforward to generalize the constraints
for a context insensitive analysis to this lattice

(Example: context-sensitive sign analysis — later...)
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The call string approach

* lLetc,...,C, bethe call nodes in the program

* Define Contexts as the set of strings over {c,...,C,}
of length <k

— such a string represents the top-most k call locations
on the call stack

— the empty string € again represents the call context at
the main function

* For k=1 this amounts to one-level cloning
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Example:
interprocedural sign analysis with call strings (k=1)

Lattice for abstract states: Contexts — lift(Vars — Sign)
where Contexts={¢,Cc,C,}

f(z) {

var tl,t2;

tl = z*0;

t2 = tl1*7: [€ — unreachable,

return t2; clw 1[z~0, t1-0, t2+0],
} c2 - L[ze+, tles+, t20+]]

x = f(0); // cl

y = t(87); // c2 |
What is an example program
that requires k=2
to avoid loss of precision? ,



Context sensitivity with call strings
function entry nodes, for k=1

Constraint for entry node v of function f(b, ..., b,):

(if not ‘main’)  |¢ context
c': conrext at the call node

[[V]](C) = SVCV' ¢ i Y,
wepred(v) A W
cC=W A —~ 1= f(&, .., E)

f
c'€ Contexts A Nl R nl —
) \
[w](c’) # unreachable \

s'= 1[b;—eval([w](c),E7), ..., by,—~eval([w](c’),E,)]

23


x230
Text Box
c: context
c': conrext at the call node

x230
Text Box
c'

x230
Text Box
c


Context sensitivity with call strings
after-call nodes, for k=1

with call node v’ and exit node wepred(v):

[vI(c) = [v](c)IX—>[w](M)(resuTt)]

if [v'](c) # unreachable A [w](v’) # unreachable
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The functional approach

The call string approach considers control flow

— but why distinguish between two different call sites if

their abstract states are the same? & o005 000

The functional approach instead considers data

In the most general form, choose
Contexts = States
(requires States to be finite)
Each element of the lattice States — lift(States)
is now a map m that provides an element m(x) from
States (or “unreachable”) for each possible x

where x describes the state at function entry
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Example:
interprocedural sign analysis with the functional approach

Lattice for abstract states: Contexts — lift(Vars — Sign)

where Contexts = Vars — Sign

f(z) {
var tl,t2;
tl = z¥6;
t2 = tl1%*7;

return t2;

x = £(0);
y = £(87);

| |

| [z—0] |~ L[z~0, t1-0, t2~0]

)
~ -

L[zm+]|> L[z-+, tle+, T2+

all other contexts = unreachable |
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The functional approach

The lattice element for a function exit node is thus a
function summary that maps abstract function input to
abstract function output

This can be exploited at call nodes!
When entering a function with abstract state x:

— consider the function summary s for that function

— if s(x) already has been computed, use that to model the entire
function body, then proceed directly to the after-call node

Avoids the problem with interprocedurally invalid paths!
...but may be expensive if States is large
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Context sensitivity with the

functional approach
function entry nodes

Constraint for entry node v of function f(b, ..., b,):
(if not ‘main’)

V()= U sy c- : .
wepred(v) A
C = chi/’ /\ - i \:Vf(Elf.., E,)

c’€ Contexts A S < Shh /

[[W]](C’) # unreachable ' w= |

s¢'= 1[b;—eval([w](c),E7), ..., b,—eval([w](c’),E,;)]
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Context sensitivity with the

functional approach
after-call nodes

with call node v’ and exit node wepred(v):

[vI(c) = [vT(Q)X—>[wl(sg)(resuTt)

if [v’](c) # unreachable A [w](s.’) # unreachable
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