
Anders Møller & Michael I. Schwartzbach

Computer Science, Aarhus University

Static Program Analysis
Part 8 – control flow analysis

http://cs.au.dk/~amoeller/spa/

http://cs.au.dk/~amoeller/spa/

Agenda

• Control flow analysis for the
-calculus

• The cubic framework

• Control flow analysis for TIP
with function pointers

• Control flow analysis for
object-oriented languages

2

Control flow complications

• Function pointers in TIP complicate CFG construction:

– several functions may be invoked at a call site

– this depends on the dataflow

– but dataflow analysis first requires a CFG

• Same situation for other features:

– higher-order functions (closures)

– a class hierarchy with objects and methods

– prototype objects with dynamic properties

3

Control flow analysis

• A control flow analysis approximates the CFG

– conservatively computes possible functions at call sites

– the trivial answer: all functions

• Control flow analysis is usually flow-insensitive:

– it is based on the AST

– the CFG is not available yet

– a subsequent dataflow analysis may use the CFG

• Alternative: use flow-sensitive analysis

– potentially on-the-fly, during dataflow analysis

4

x230
Text Box
控制流分析是保守地粗略估计程序的过程间控制流，也称作调用图

CFA for the lambda calculus

• The pure lambda calculus

• Assume all -bound variables are distinct

• An abstract closure x abstracts the function x.E
in all contexts (values of free variables)

• Goal: for each call site E1E2 determine the possible
functions for E1 from the set {x1, x2, ..., xn}

5

E x.E (function definition)

| E1 E2 (function application)

| x (variable reference)

Closure analysis

A flow-insensitive analysis that tracks function values:

• For every AST node, v, we introduce a variable ⟦v⟧
ranging over subsets of abstract closures

• For x.E we have the constraint

x ⟦x.E⟧

• For E1E2 we have the conditional constraint

x ⟦E1⟧ (⟦E2⟧ ⟦x⟧ ⟦E⟧ ⟦E1E2⟧)

for every function x.E

6

Agenda

• Control flow analysis for the
-calculus

• The cubic framework

• Control flow analysis for TIP
with function pointers

• Control flow analysis for
object-oriented languages

7

The cubic framework

• We have a set of tokens {t1, t2, ..., tk}

• We have a collection of variables {x1, ..., xn}
ranging over subsets of tokens

• A collection of constraints of these forms:

 t x

 t x y z

• Compute the unique minimal solution

– this exists since solutions are closed under intersection

• A cubic time algorithm exists!
8

The solver data structure

• Each variable is mapped to a node in a DAG

• Each node has a bitvector in {0,1}k

– initially set to all 0’s

• Each bit has a list of pairs of variables

– used to model conditional constraints

• The DAG edges model inclusion constraints

• The bitvectors will at all times directly represent the
minimal solution to the constraints seen so far

9

An example graph

10

x1

x2

x3

x4

(x2,x4)

Adding constraints (1/2)

• Constraints of the form t x:

– look up the node associated with x

– set the bit corresponding to t to 1

– if the list of pairs for t is not empty, then add the edges
corresponding to the pairs to the DAG

11

0

(y,z)

x

t
1x

t

y

z

Adding constraints (2/2)

• Constraints of the form t x y z:

– test if the bit corresponding to t is 1

– if so, add the DAG edge from y to z

– otherwise, add (y,z) to the list of pairs for t

12

0x

t
0

(y,z)

x

t

1x

t
1x

t
y

z

Collapse cycles

• If a newly added edge forms a cycle:

– merge the nodes on the cycle into a single node

– form the union of the bitvectors

– concatenate the lists of pairs

– update the map from variables accordingly

13

1 1 0 0 0 0

0 0 1 0 0 0

1 0 1 0 0 1

x

z

y 1 1 1 0 0 1x,y,z

(a,b)

(c,d)

(a,b)

(c,d)

Propagate bitvectors

• Propagate the values of all newly set bits along all
edges in the DAG

14

1

1

1

1

1

1

Time complexity (1/2)

• O(n) functions and O(n) applications, with program size n

• O(n) singleton constraints, O(n2) conditional constraints

• O(n) nodes, O(n2) edges, O(n) bits per node

• Total time for bitvector propagation: O(n3)

• Total time for collapsing cycles: O(n3)

• Total time for handling lists of pairs: O(n3)

15

0

0

0

0

0

1

0

0

0

0

0

1

1

0

0

0

0

1

1

0

0

0

0

1

Time complexity (2/2)

• Adding it all up, the upper bound is O(n3)

• This is known as the cubic time bottleneck:

– occurs in many different scenarios

– but O(n3/log n) is possible…

• A special case of general set constraints:

– defined on sets of terms instead of sets of tokens

– solvable in time O(22)
n

16

Agenda

• Control flow analysis for the
-calculus

• The cubic framework

• Control flow analysis for TIP
with function pointers

• Control flow analysis for
object-oriented languages

17

CFA for TIP with function pointers

• For a computed function call

we cannot immediately see which function is called

• A coarse but sound approximation:

– assume any function with right number of arguments

• Use CFA to get a much better result!

18

E (E)(E, ..., E)

CFA constraints (1/2)

• Tokens are all functions {f1, f2, ..., fk}

• For every AST node, v, we introduce the variable ⟦v⟧
denoting the set of functions to which v may evaluate

• For function definitions f(...){...}:

f ⟦f⟧

• For assignments x = E:

⟦E⟧ ⟦x⟧

19

CFA constraints (2/2)
• For direct function calls f(E1, ..., En):

⟦Ei⟧ ⟦ai⟧ for i=1,...,n ⟦E’⟧ ⟦f(E1, ..., En)⟧

where f has arguments a1, ..., an

and return expression E’

• For computed function calls (E)(E1, ..., En):

f ⟦E⟧ (⟦Ei⟧ ⟦ai⟧ for i=1,...,n ⟦E’⟧ ⟦(E)(E1, ..., En)⟧)

for every function f with arguments a1, ..., an

and return expression E’

– If we consider typable programs only:
only generate constraints for those functions f
for which the call would be type correct

20

Example program

21

inc(i) { return i+1; }
dec(j) { return j-1; }
ide(k) { return k; }

foo(n,f) {
var r;
if (n==0) { f=ide; }
r = (f)(n);
return r;

}

main() {
var x,y;
x = input;
if (x>0) { y = foo(x,inc); } else { y = foo(x,dec); }
return y;

}

Generated constraints

inc ⟦inc⟧

dec ⟦dec⟧

ide ⟦ide⟧

⟦ide⟧ ⟦f⟧

⟦(f)(n)⟧ ⟦r⟧

inc ⟦f⟧ ⟦n⟧ ⟦i⟧ ⟦i+1⟧ ⟦(f)(n)⟧

dec ⟦f⟧ ⟦n⟧ ⟦j⟧ ⟦j-1⟧ ⟦(f)(n)⟧

ide ⟦f⟧ ⟦n⟧ ⟦k⟧ ⟦k⟧ ⟦(f)(n)⟧

⟦input⟧ ⟦x⟧

⟦foo(x,inc)⟧ ⟦y⟧

⟦foo(x,dec)⟧ ⟦y⟧

foo ⟦foo⟧

foo ⟦foo⟧ ⟦x⟧ ⟦n⟧ ⟦inc⟧ ⟦f⟧ ⟦(f)(n)⟧ ⟦foo(x,inc)⟧

foo ⟦foo⟧ ⟦x⟧ ⟦n⟧ ⟦dec⟧ ⟦f⟧ ⟦(f)(n)⟧ ⟦foo(x,dec)⟧

main ⟦main⟧

22

Least solution

⟦inc⟧ = {inc}

⟦dec⟧ = {dec}

⟦ide⟧ = {ide}

⟦f⟧ = {inc, dec, ide}

⟦foo⟧ = {foo}

⟦main⟧ = {main}

23

With this information, we can construct the call edges
and return edges in the interprocedural CFG

m

main

m

foo

调用点

返回点

foo 入口点 dec入口点main入口点

Agenda

• Control flow analysis for the
-calculus

• The cubic framework

• Control flow analysis for TIP
with function pointers

• Control flow analysis for
object-oriented languages

24

Simple CFA for OO (1/3)

• CFA in an object-oriented language:

• Which method implementations may be invoked?

• Full CFA is a possibility...

• But the extra structure allows simpler solutions

25

x.m(a,b,c)

Simple CFA for OO (2/3)

• Simplest solution:

– select all methods named m with three arguments

• Class Hierarchy Analysis (CHA):

– consider only the part of the class hierarchy rooted
by the declared type of x

26

x

Simple CFA for OO (3/3)

• Rapid Type Analysis (RTA):

– restrict to those classes that are actually used in the program
in new expressions

• Variable Type Analysis (VTA):

– perform intraprocedural control flow analysis

27

x

