Static Program Analysis Part 8 – control flow analysis

http://cs.au.dk/~amoeller/spa/

Anders Møller & Michael I. Schwartzbach Computer Science, Aarhus University

Agenda

- Control flow analysis for the λ-calculus
- The cubic framework
- Control flow analysis for TIP with function pointers
- Control flow analysis for object-oriented languages

Control flow complications

- Function pointers in TIP complicate CFG construction:
 - several functions may be invoked at a call site
 - this depends on the dataflow
 - but dataflow analysis first requires a CFG
- Same situation for other features:
 - higher-order functions (closures)
 - a class hierarchy with objects and methods
 - prototype objects with dynamic properties

Control flow analysis

- A control flow analysis approximates the CFG
 - conservatively computes possible functions at call sites
 - the trivial answer: *all* functions

控制流分析是保守地粗略估计程序的过程间控制流,也称作调用图

- Control flow analysis is usually flow-insensitive:
 - it is based on the AST
 - the CFG is not available yet
 - a subsequent dataflow analysis may use the CFG
- Alternative: use flow-sensitive analysis
 - potentially on-the-fly, during dataflow analysis

CFA for the lambda calculus

• The pure lambda calculus

$E \rightarrow \lambda x.E$	(function definition)
$\mid E_1 E_2$	(function application)
<i>x</i>	(variable reference)

- Assume all λ -bound variables are distinct
- An *abstract closure* λx abstracts the function λx.E in all contexts (values of free variables)
- Goal: for each call site $E_1 E_2$ determine the possible functions for E_1 from the set { λx_1 , λx_2 , ..., λx_n }

Closure analysis

A flow-insensitive analysis that tracks function values:

- For every AST node, v, we introduce a variable [v] ranging over subsets of abstract closures
- For $\lambda x.E$ we have the constraint

 $\lambda x \in \llbracket \lambda x.E \rrbracket$

• For $E_1 E_2$ we have the *conditional* constraint $\lambda x \in \llbracket E_1 \rrbracket \Rightarrow (\llbracket E_2 \rrbracket \subseteq \llbracket x \rrbracket \land \llbracket E \rrbracket \subseteq \llbracket E_1 E_2 \rrbracket)$ for every function $\lambda x.E$

Agenda

- Control flow analysis for the λ -calculus
- The cubic framework
- Control flow analysis for TIP with function pointers
- Control flow analysis for object-oriented languages

The cubic framework

- We have a set of tokens $\{t_1, t_2, ..., t_k\}$
- We have a collection of variables {x₁, ..., x_n} ranging over subsets of tokens
- A collection of constraints of these forms:
 - $t \in X$

•
$$t \in x \Rightarrow y \subseteq z$$

- Compute the unique minimal solution
 - this exists since solutions are closed under intersection
- A cubic time algorithm exists!

The solver data structure

- Each variable is mapped to a node in a DAG
- Each node has a bitvector in {0,1}^k
 - initially set to all 0's
- Each bit has a list of pairs of variables
 used to model conditional constraints
- The DAG edges model inclusion constraints
- The bitvectors will at all times directly represent the minimal solution to the constraints seen so far

An example graph

Adding constraints (1/2)

- Constraints of the form $t \in x$:
 - look up the node associated with x
 - set the bit corresponding to t to 1
 - if the list of pairs for t is not empty, then add the edges corresponding to the pairs to the DAG

Adding constraints (2/2)

- Constraints of the form $t \in x \Rightarrow y \subseteq z$:
 - test if the bit corresponding to t is 1
 - if so, add the DAG edge from y to z
 - otherwise, add (y,z) to the list of pairs for t

Collapse cycles

- If a newly added edge forms a cycle:
 - merge the nodes on the cycle into a single node
 - form the union of the bitvectors
 - concatenate the lists of pairs
 - update the map from variables accordingly

Propagate bitvectors

• Propagate the values of all newly set bits along all edges in the DAG

Time complexity (1/2)

- O(n) functions and O(n) applications, with program size n
- O(n) singleton constraints, $O(n^2)$ conditional constraints
- O(n) nodes, O(n^2) edges, O(n) bits per node
- Total time for bitvector propagation: $O(n^3)$
- Total time for collapsing cycles: O(n³)
- Total time for handling lists of pairs: $O(n^3)$

Time complexity (2/2)

- Adding it all up, the upper bound is $O(n^3)$
- This is known as the *cubic time bottleneck*:
 - occurs in many different scenarios
 - but $O(n^3/\log n)$ is possible...

- A special case of general set constraints:
 - defined on sets of *terms* instead of sets of tokens
 - solvable in time $O(2^{2^n})$

Agenda

- Control flow analysis for the λ -calculus
- The cubic framework
- Control flow analysis for TIP with function pointers
- Control flow analysis for object-oriented languages

CFA for TIP with function pointers

• For a computed function call

$$E \rightarrow (E) (E, \dots, E)$$

we cannot immediately see which function is called

- A coarse but sound approximation:
 assume any function with right number of arguments
- Use CFA to get a much better result!

CFA constraints (1/2)

- Tokens are all functions $\{f_1, f_2, ..., f_k\}$
- For every AST node, v, we introduce the variable [[v]] denoting the set of functions to which v may evaluate
- For function definitions $f(...) \{...\}$: $f \in \llbracket f \rrbracket$
- For assignments x = E: $\llbracket E \rrbracket \subseteq \llbracket x \rrbracket$

CFA constraints (2/2)

- For **direct** function calls $f(E_1, ..., E_n)$: $\llbracket E_i \rrbracket \subseteq \llbracket a_i \rrbracket$ for i=1,..., $n \land \llbracket E' \rrbracket \subseteq \llbracket f(E_1, ..., E_n) \rrbracket$ where f has arguments $a_1, ..., a_n$ and return expression E'
- For computed function calls (E) (E₁, ..., E_n):
 f ∈ [[E]] ⇒ ([[E_i]] ⊆ [[a_i]] for i=1,...,n ∧ [[E']] ⊆ [[(E) (E₁, ..., E_n)]])
 for every function f with arguments a₁, ..., a_n
 and return expression E'
 - If we consider typable programs only:
 only generate constraints for those functions *f* for which the call would be type correct

Example program

```
inc(i) { return i+1; }
dec(j) { return j-1; }
ide(k) { return k; }
foo(n,f) {
 var r;
  if (n==0) { f=ide; }
 r = (f)(n);
 return r;
}
main() {
 var x,y;
 x = input;
  if (x>0) \{ y = foo(x,inc); \} else \{ y = foo(x,dec); \}
  return y;
}
```

Generated constraints

```
inc ∈ [[inc]]
dec \in \llbracket dec \rrbracket
ide ∈ [ide]
[ide] \subseteq [f]
\llbracket (f)(n) \rrbracket \subseteq \llbracket r \rrbracket
\mathsf{inc} \in \llbracket f \rrbracket \Rightarrow \llbracket n \rrbracket \subseteq \llbracket i \rrbracket \land \llbracket i+1 \rrbracket \subseteq \llbracket (f)(n) \rrbracket
dec \in \llbracket f \rrbracket \Rightarrow \llbracket n \rrbracket \subseteq \llbracket j \rrbracket \land \llbracket j - 1 \rrbracket \subseteq \llbracket (f) (n) \rrbracket
ide \in \llbracket f \rrbracket \Rightarrow \llbracket n \rrbracket \subseteq \llbracket k \rrbracket \land \llbracket k \rrbracket \subseteq \llbracket (f) (n) \rrbracket
[input] \subseteq [x]
[foo(x,inc)] \subseteq [y]
[foo(x, dec)] \subseteq [y]
foo \in [foo]
foo \in \llbracket foo \rrbracket \Rightarrow \llbracket x \rrbracket \subseteq \llbracket n \rrbracket \land \llbracket inc \rrbracket \subseteq \llbracket f \rrbracket \land \llbracket (f)(n) \rrbracket \subseteq \llbracket foo(x, inc) \rrbracket
foo \in \llbracket foo \rrbracket \Rightarrow \llbracket x \rrbracket \subseteq \llbracket n \rrbracket \land \llbracket dec \rrbracket \subseteq \llbracket f \rrbracket \land \llbracket (f)(n) \rrbracket \subseteq \llbracket foo(x, dec) \rrbracket
main ∈ [[main]]
```

Least solution

```
[inc] = {inc}
[dec] = {dec}
[ide] = {ide}
[ide] = {ide}
[f] = {inc, dec, ide}
[foo] = {foo}
[main] = {main}
```

With this information, we can construct the call edges and return edges in the interprocedural CFG

Agenda

- Control flow analysis for the λ -calculus
- The cubic framework
- Control flow analysis for TIP with function pointers
- Control flow analysis for object-oriented languages

Simple CFA for OO (1/3)

• CFA in an object-oriented language:

- Which method implementations may be invoked?
- Full CFA is a possibility...
- But the extra structure allows simpler solutions

Simple CFA for OO (2/3)

- Simplest solution:
 - select all methods named m with three arguments
- Class Hierarchy Analysis (CHA):
 - consider only the part of the class hierarchy rooted by the declared type of x

Simple CFA for OO (3/3)

- Rapid Type Analysis (RTA):
 - restrict to those classes that are actually used in the program in new expressions

• Variable Type Analysis (VTA):

- perform *intraprocedural* control flow analysis