
Anders Møller & Michael I. Schwartzbach

Computer Science, Aarhus University

Static Program Analysis
Part 9 – pointer analysis

http://cs.au.dk/~amoeller/spa/

http://cs.au.dk/~amoeller/spa/

Agenda

• Introduction to points-to analysis

• Andersen’s analysis

• Steensgaards’s analysis

• Interprocedural points-to analysis

• Null pointer analysis

• Flow-sensitive points-to analysis

2

Analyzing programs with pointers

How do we perform e.g.
constant propagation analysis
when the programming language
has pointers?
(or object references?)

3

E &X

| alloc E

| *E

| null

| …

S *X = E;

| …

E E(E, ..., E)

...

*x = 42;

*y = -87;

z = *x;

// is z 42 or -87?

Heap pointers

• For simplicity, we ignore records

– alloc then only allocates a single cell

– only linear structures can be built in the heap

• Let’s at first also ignore function pointers

• We still have many interesting analysis challenges...

x

y

z

4

Pointer targets

• The fundamental question about pointers:

What locations can they point to?

• We need a suitable abstraction

• The set of (abstract) cells, Cells, contains

– alloc-i for each allocation site with index i

– X for each program variable named X

• This is called allocation site abstraction

• The set of all (abstract) locations, Locs,
contains &p for every cell p

• Each abstract cell may correspond to many
concrete memory cells at runtime

5

Points-to analysis

• Determine for each pointer variable X the set
pt(x) of the cells X may point to

• A conservative (“may points-to”) analysis:

– the set may be too large

– can show absence of aliasing: pt(X) pt(Y) =

• We’ll focus on flow-insensitive analyses:

– take place on the AST

– before or together with the control-flow analysis

6

...

*x = 42;

*y = -87;

z = *x;

// is z 42 or -87?

Obtaining points-to information

• An almost-trivial analysis (called address-taken):

– include all alloc-i cells

– Include the X cell if the expression &X occurs in the program

• Improvement for a typed language:

– eliminate those cells whose types do not match

• This is sometimes good enough

– and clearly very fast to compute

7

Pointer normalization

• Assume that all pointer usage is normalized:

• X = alloc P where P is null or an integer constant

• X = &Y

• X = Y

• X = *Y

• *X = Y

• X = null

• Simply introduce lots of temporary variables…

• All sub-expressions are now named

• We choose to ignore the fact that the cells created at
variable declarations and allocs are uninitialized

8

Agenda

• Introduction to points-to analysis

• Andersen’s analysis

• Steensgaards’s analysis

• Interprocedural points-to analysis

• Null pointer analysis

• Flow-sensitive points-to analysis

9

Andersen’s analysis (1/2)

• For every cell c, introduce a constraint variable ⟦c⟧
ranging over sets of locations, i.e. ⟦∙⟧: Cells → 2Locs

• Generate constraints:

• X = alloc P: &alloc-i ⟦X⟧

• X = &Y: &Y ⟦X⟧

• X = Y: ⟦Y⟧ ⟦X⟧

• X = *Y: &α⟦Y⟧ ⟦α⟧ ⟦X⟧

• *X = Y: &α⟦X⟧ ⟦Y⟧ ⟦α⟧

• X = null: (no constraints)

10

Andersen’s analysis (2/2)

• The points-to map is defined as:
pt(X) = { α Cells | &α ⟦X⟧ }

• The constraints fit into the cubic framework

• Unique minimal solution in time O(n3)

• In practice, for Java: O(n2)

• The analysis is flow-insensitive but directional

– models the direction of the flow of values in assignments

11

x230
Line

x230
Line

Example program

12

var p,q,x,y,z;

p = alloc null;

x = y;

x = z;

*p = z;

p = q;

q = &y;

x = *p;

p = &z;

Applying Andersen

• Generated constraints:

• Smallest solution:
pt(p) = { alloc-1, y, z }

pt(q) = { y }
13

&alloc-1 ⟦p⟧

⟦y⟧ ⟦x⟧

⟦z⟧ ⟦x⟧

&α ⟦p⟧ ⟦z⟧ ⟦α⟧

⟦q⟧ ⟦p⟧

&y ⟦q⟧

&α ⟦p⟧ ⟦α⟧ ⟦x⟧

&z ⟦p⟧

Agenda

• Introduction to points-to analysis

• Andersen’s analysis

• Steensgaards’s analysis

• Interprocedural points-to analysis

• Null pointer analysis

• Flow-sensitive points-to analysis

14

Steensgaard’s analysis
• View assignments as being bidirectional

• Generate constraints:

• X = alloc P: ⟦X⟧ = &⟦alloc-i⟧

• X = &Y: ⟦X⟧ = &⟦Y⟧

• X = Y: ⟦X⟧ = ⟦Y⟧

• X = *Y: ⟦Y⟧ = &α ⟦X⟧ = α where α is fresh

• *X = Y: ⟦X⟧ = &α ⟦Y⟧ = α where α is fresh
• Terms:

– term variables, e.g. ⟦X⟧, ⟦alloc-i⟧, α (each representing the possible values of a cell)

– a single (unary) term constructor &t (representing the location of the cell that t represents)

– ⟦X⟧ is now a term variable, not a constraint variable holding a set of locations

• Fits with our unification solver! (union-find…)
• The points-to map is defined as pt(X) = { cCells | ⟦X⟧ = &⟦c⟧ }

• Note that there is only one kind of term constructor, so unification never fails16

x230
Line

Applying Steensgaard
• Generated constraints:

• Smallest solution:
pt(p) = { alloc-1, y, z }

pt(q) = { alloc-1, y, z }
17

&alloc-1 ⟦p⟧

⟦y⟧ = ⟦x⟧

⟦z⟧ = ⟦x⟧

&α ⟦p⟧ ⟦z⟧ = ⟦α⟧

⟦q⟧ = ⟦p⟧

&y ⟦q⟧

&α ⟦p⟧ ⟦α⟧ = ⟦x⟧

&z ⟦p⟧

+ the extra constraints

Another example

18

a1 = &b1;

b1 = &c1;

c1 = &d1;

a2 = &b2;

b2 = &c2;

c2 = &d2;

b1 = &c2; a1 b1 c1 d1

a2 b2 c2 d2

Andersen:

Steensgaard:

a1 b1 c1 d1

a2 b2 c2 d2

Recall our type analysis…

• Focusing on pointers…

• Constraints:
• X = alloc P: ⟦X⟧ = &⟦P⟧

• X = &Y: ⟦X⟧ = &⟦Y⟧

• X = Y: ⟦X⟧ = ⟦Y⟧

• X = *Y: &⟦X⟧ = ⟦Y⟧

• *X = Y: ⟦X⟧ = &⟦Y⟧

• Implicit extra constraint for term equality:
&t1 = &t2 t1 = t2

• Assuming the program type checks, is the solution
for pointers the same as for Steensgaard’s analysis?

20

Agenda

• Introduction to points-to analysis

• Andersen’s analysis

• Steensgaards’s analysis

• Interprocedural points-to analysis

• Null pointer analysis

• Flow-sensitive points-to analysis

21

Interprocedural points-to analysis

• If function pointers are distinct from heap pointers:

– first run a CFA

– then run Andersen or Steensgaard

• But in TIP both kinds may be mixed together:

(***x)(1,2,3)

• In this case the CFA and the points-to analysis must
happen simultaneously!

22

Function call normalization

• Assume that all function calls are of the form

x = y(a1, ..., an)

• y may be a variable whose value is a function pointer

• Assume that all return statements are of the form

return z;

• As usual, simply introduce lots of temporary variables…

• Include all function names in Locs
23

CFA with Andersen

• For the function call
x = y(a1, ..., an)

and every occurrence of

f(x1, ..., xn) { ... return z; }

add these constraints:

f ⟦f⟧

f ⟦y⟧ (⟦ai⟧ ⟦xi⟧ for i=1,...,n ⟦z⟧ ⟦x⟧)

• (Similarly for simple function calls)

• Fits directly into the cubic framework!

24

CFA with Steensgaard

• For the function call
x = y(a1, ..., an)

and every occurrence of

f(x1, ..., xn) { ... return z; }

add these constraints:

f ⟦f⟧

f ⟦y⟧ (⟦ai⟧ = ⟦xi⟧ for i=1,...,n ⟦z⟧ = ⟦x⟧)

• (Similarly for simple function calls)

• Fits into the unification framework, but requires a
generalization of the ordinary union-find solver

25

Context-sensitive pointer analysis

• Generalize the abstract domain Cells → 2Locs to
Contexts → Cells → 2Locs

(or equivalently: Cells × Contexts → 2Locs)
where Contexts is a (finite) set of call contexts

• As usual, many possible choices of Contexts

– recall the call string approach and the functional approach

• Also need to track the set of reachable contexts for
each function (like the use of lifted lattices earlier)

• Does this still fit into the cubic solver?

26

Context-sensitive pointer analysis

27

foo(a) {

return *a;

}

bar() {

...

x = alloc null; // alloc-1

y = alloc null; // alloc-2

*x = alloc null; // alloc-3

*y = alloc null; // alloc-4

...

q = foo(x);

w = foo(y);

...

}

Are q and w aliases?

Context-sensitive pointer analysis

28

mk() {

return alloc null; // alloc-1

}

baz() {

var x,y;

x = mk();

y = mk();

...

}

Are x and y aliases?

Context-sensitive pointer analysis

• We can go one step further and introduce
context-sensitive heap (a.k.a. heap cloning)

• Let each abstract cell be a pair of

– alloc-i (the alloc with index i) or X (a program variable)

– a heap context from a (finite) set HeapContexts

• This allows abstract cells to be named by
the source code allocation site
and (information from) the current context

• One choice:

– set HeapContexts = Contexts

– at alloc, use the entire current call context as heap context
29

Agenda

• Introduction to points-to analysis

• Andersen’s analysis

• Steensgaards’s analysis

• Interprocedural points-to analysis

• Null pointer analysis

• Flow-sensitive points-to analysis

30

Null pointer analysis

• Decide for every dereference *p,
is p different from null?

• (Why not just treat null as a special location
in an Andersen or Steensgaard-style analysis?)

• Use the monotone framework

– assuming that a points-to map pt has been computed

• Let us consider an intraprocedural analysis

(i.e. we ignore function calls)

31

A lattice for null analysis

• Define the simple lattice Null:

where NN represents “definitely not null”
and ? represents “maybe null”

• Use for every program point the map lattice:

Cells Null

?

NN

32

Setting up

• For every CFG node, v, we have a variable ⟦v⟧:

– a map giving abstract values for all cells
at the program point after v

• Auxiliary definition:

JOIN(v) = ⨆ ⟦w⟧

(i.e. we make a forward analysis)

wpred(v)

v

w1

w2

wk

33

Null analysis constraints

• For operations involving pointers:

• X = alloc P: ⟦v⟧ = ???

• X = &Y: ⟦v⟧ = ???

• X = Y: ⟦v⟧ = ???

• X = *Y: ⟦v⟧ = ???

• *X = Y: ⟦v⟧ = ???

• X = null: ⟦v⟧ = ???

• For all other CFG nodes:

• ⟦v⟧ = JOIN(v)

34

Null analysis constraints

• For a heap store operation *X = Y we need to
model the change of whatever X points to

• That may be multiple abstract cells
(i.e. the cells pt(X))

• With the present abstraction, each abstract heap cell
alloc-i may describe multiple concrete cells

• So we settle for weak update:

*X = Y: ⟦v⟧ = store(JOIN(v), X, Y)

where store(, X, Y) = [α ↦ (α) ⊔ (Y)]
αpt(X)

35

x230
Line

x230
Line

Null analysis constraints

• For a heap load operation X = *Y we need to
model the change of the program variable X

• Our abstraction has a single abstract cell for X

• That abstract cell represents a single concrete cell

• So we can use strong update:

X = *Y: ⟦v⟧ = load(JOIN(v), X, Y)

where load(, X, Y) = [X ↦ ⨆(α)]
αpt(Y)

36

x230
Line

x230
Line

x230
Line

Strong and weak updates

37

mk() {

return alloc null; // alloc-1

}

...

a = mk();

b = mk();

*a = alloc null; // alloc-2

n = null;

*b = n; // strong update here would be unsound!

c = *a;
is c null here?

The abstract cell alloc-1 corresponds to multiple concrete cells

Strong and weak updates

38

a = alloc null; // alloc-1

b = alloc null; // alloc-2

*a = alloc null; // alloc-3

*b = alloc null; // alloc-4

if (...) {

x = a;

} else {

x = b;

}

n = null;

*x = n; // strong update here would be unsound!

c = *x;
is c null here?

The points-to set for x contains multiple abstract cells

Null analysis constraints

• X = alloc P : ⟦v⟧ = JOIN(v)[X ↦ NN, alloc-i ↦ ?]

• X = &Y: ⟦v⟧ = JOIN(v)[X ↦ NN]

• X = Y: ⟦v⟧ = JOIN(v)[X ↦ JOIN(v)(Y)]

• X = null: ⟦v⟧ = JOIN(v)[X ↦ ?]

• In each case, the assignment modifies
a program variable

• So we can use strong updates,
as for heap load operations

39

Strong and weak updates, revisited

• Strong update: [c ↦ new-value]

– possible if c is known to refer to a single concrete cell

– works for assignments to local variables
(as long as TIP doesn’t have e.g. nested functions)

• Weak update: [c ↦ (c) ⊔ new-value]

– necessary if c may refer to multiple concrete cells

– bad for precision, we lose some of the power of
flow-sensitivity

– required for assignments to heap cells
(unless we extend the analysis abstraction!)

40

x230
Line

Interprocedural null analysis

• Context insensitive or context sensitive, as usual…

– at the after-call node, use the heap from the callee

• But be careful!
Pointers to local variables may escape to the callee

– the abstract state at the after-call node cannot simply copy
the abstract values for local variables from the abstract state
at the call node

41

⬚ = f(E1, ..., En);

result = E;

function f(b1, ..., bn)

x = ⬚

Using the null analysis

• The pointer dereference *p is “safe” at entry of v if

JOIN(v)(p) = NN

• The quality of the null analysis depends on the
quality of the underlying points-to analysis

42

Example program

Andersen generates:

pt(p) = {alloc-1}

pt(q) = {p}

pt(n) = Ø

43

p = alloc null;

q = &p;

n = null;

*q = n;

*p = n;

Generated constraints

44

⟦p=alloc null⟧ = [p ↦ NN , alloc-1↦ ?]

⟦q=&p⟧ = ⟦p=alloc null⟧[q ↦ NN]

⟦n=null⟧ = ⟦q=&p⟧[n↦ ?]

⟦*q=n⟧ = ⟦n=null⟧[p↦ ⟦n=null⟧(p) ⊔ ⟦n=null⟧(n)]

⟦*p=n⟧ = ⟦*q=n⟧[alloc-1↦ ⟦*q=n⟧(alloc-1) ⊔ ⟦*q=n⟧(n)]

Solution

⟦p=alloc null⟧ = [p ↦ NN, q ↦ NN, n ↦ NN , alloc-1↦ ?]

⟦q=&p⟧ = [p ↦ NN, q ↦ NN, n ↦ NN , alloc-1↦ ?]

⟦n=null⟧ = [p ↦ NN, q ↦ NN, n ↦ ?, alloc-1↦ ?]

⟦*q=n⟧ = [p ↦ ?, q ↦ NN, n ↦ ?, alloc-1 ↦ ?]

⟦*p=n⟧ = [p ↦ ?, q ↦ NN, n ↦ ?, alloc-1 ↦ ?]

• At the program point before the statement *q=n
the analysis now knows that q is definitely non-null

• … and before *p=n, the pointer p is maybe null

• Due to the weak updates for all heap store operations,
precision is bad for alloc-i locations

45

Agenda

• Introduction to points-to analysis

• Andersen’s analysis

• Steensgaards’s analysis

• Interprocedural points-to analysis

• Null pointer analysis

• Flow-sensitive points-to analysis

46

Points-to graphs

• Graphs that describe possible heaps:

– nodes are abstract cells

– edges are possible pointers between the cells

• The lattice of points-to graphs is 2CellsCells

ordered under subset inclusion
(or alternatively, Cells → 2Cells)

• For every CFG node, v, we introduce a constraint
variable ⟦v⟧ describing the state after v

• Intraprocedural analysis (i.e. ignore function calls)

48

x230
Line

Constraints

• For pointer operations:

• X = alloc P: ⟦v⟧ = JOIN(v)X { (X, alloc-i) }

• X = &Y: ⟦v⟧ = JOIN(v)X { (X, Y) }

• X = Y: ⟦v⟧ = assign(JOIN(v), X, Y)

• X = *Y: ⟦v⟧ = load(JOIN(v), X, Y)

• *X = Y: ⟦v⟧ = store(JOIN(v), X, Y)

• X = null: ⟦v⟧ = JOIN(v)X

• For all other CFG nodes:

• ⟦v⟧ = JOIN(v)

49

Auxiliary functions

• JOIN(v) = ⋃⟦w⟧

• X = { (s,t) | s X}

• assign(, X, Y) = X ∪ { (X, t) | (Y, t)}

• load(, X, Y) = X ∪ { (X, t) | (Y, s), (s, t)}

• store(, X, Y) = ∪ { (s, t) | (X, s), (Y, t)}
– note: weak update!

wpred(v)

50

Example program

51

var x,y,n,p,q;
x = alloc null; y = alloc null;
*x = null; *y = y;
n = input;
while (n>0) {

p = alloc null; q = alloc null;
*p = x; *q = y;
x = p; y = q;
n = n-1;

}

Result of analysis

• After the loop we have this points-to graph:

• We conclude that x and y will always be disjoint

p

x

alloc-3

alloc-1

q

y

alloc-4

alloc-2

52

Points-to maps from points-to graphs

• A points-to map for each program point v:

pt(X) = { t | (X,t) ⟦v⟧ }

• More expensive, but more precise:

– Andersen: pt(x) = { y, z }

– flow-sensitive: pt(x) = { z }

53

x = &y;
x = &z;

Improving precision with
abstract counting

• The points-to graph is missing information:

– alloc-2 nodes always form a self-loop in the example

• We need a more detailed lattice:

2CellCell (Cell → Count)

where we for each cell keep track of
how many concrete cells that abstract cell
describes

• This permits strong updates on those
that describe precisely 1 concrete cell

54

Count =

?

0 >1

1

Constraints

• X= alloc P: …

• *X = Y: …

• …

55

Better results

• After the loop we have this extended points-to graph:

• Thus, alloc-2 nodes form a self-loop

1

56

p

x

alloc-3

alloc-1

q

y

alloc-4

alloc-2

1

??

Interprocedural shape analysis

New issues to consider:

• parameter passing etc.

• weak updates to stack cells

• escaping of stack cells

60

Escape analysis

• Perform a points-to analysis

• Look at return expression

• Check reachability in the points-to
graph to arguments or variables
defined in the function itself

• None of those

no escaping stack cells

61

baz() {
var x;
return &x;

}

main() {
var p;
p=baz();
*p=1;
return *p;

}

