
Introduction to OCaml

Yu Zhang

Course web site: http://staff.ustc.edu.cn/~yuzhang/tpl

Fall 2018

http://staff.ustc.edu.cn/~yuzhang/fpl
http://staff.ustc.edu.cn/~yuzhang/fpl
http://staff.ustc.edu.cn/~yuzhang/fpl
http://staff.ustc.edu.cn/~yuzhang/fpl
http://staff.ustc.edu.cn/~yuzhang/fpl
http://staff.ustc.edu.cn/~yuzhang/fpl
http://staff.ustc.edu.cn/~yuzhang/fpl
http://staff.ustc.edu.cn/~yuzhang/fpl
http://staff.ustc.edu.cn/~yuzhang/fpl
http://staff.ustc.edu.cn/~yuzhang/fpl

References

 Learn X in Y Minutes – Ocaml

 Real World OCaml

 Cornell CS 3110 Spring 2018

Data Structures and Functional Programming

 Introduction Functions Lists

 Data types More Variants

 Higher-order programming

 Official website http://ocaml.org/

 A web-based interpreter: http://try.ocamlpro.com/

https://learnxinyminutes.com/docs/ocaml/
https://learnxinyminutes.com/docs/ocaml/
https://learnxinyminutes.com/docs/ocaml/
https://learnxinyminutes.com/docs/ocaml/
https://realworldocaml.org/v1/en/html/a-guided-tour.html
https://realworldocaml.org/v1/en/html/a-guided-tour.html
https://realworldocaml.org/v1/en/html/a-guided-tour.html
http://www.cs.cornell.edu/courses/cs3110/2018sp/
http://www.cs.cornell.edu/courses/cs3110/2018sp/
http://www.cs.cornell.edu/courses/cs3110/2018sp/
http://www.cs.cornell.edu/courses/cs3110/2018sp/l/01-intro/lec.pdf
http://www.cs.cornell.edu/courses/cs3110/2018sp/l/02-fun/lec.pdf
http://www.cs.cornell.edu/courses/cs3110/2018sp/l/03-lists/lec.pdf
http://www.cs.cornell.edu/courses/cs3110/2018sp/l/04-data/lec.pdf
http://www.cs.cornell.edu/courses/cs3110/2018sp/l/05-variant/lec.pdf
http://www.cs.cornell.edu/courses/cs3110/2018sp/l/05-variant/lec.pdf
http://www.cs.cornell.edu/courses/cs3110/2018sp/l/06-hop/lec.pdf
http://www.cs.cornell.edu/courses/cs3110/2018sp/l/06-hop/lec.pdf
http://www.cs.cornell.edu/courses/cs3110/2018sp/l/06-hop/lec.pdf
http://www.cs.cornell.edu/courses/cs3110/2018sp/l/06-hop/lec.pdf
http://ocaml.org/
http://ocaml.org/
http://ocaml.org/
http://try.ocamlpro.com/
http://try.ocamlpro.com/

What is a functional language?

 A functional language:

 defines computations as mathematical functions

 avoids mutable state

State: the information maintained by a computation

Mutable: can be changed (antonym: immutable)

Functional Imperative

Abstraction level Higher Lower

Develop robust SW Easier Harder

State Immutable Mutable

Expression What to compute How to compute

Why study functional programming?

 Functional languages predict the future

 Garbage collection

Java [1995], LISP [1958]

 Generics

Java 5 [2004], ML [1990]

 Higher-order functions

C#3.0 [2007], Java 8 [2014], LISP [1958]

 Type inference

C++11 [2011], Java 7 [2011] and 8, ML [1990]

 What’s next?

Why study functional programming?

 Functional languages are sometimes used in

industry

https://ocaml.org/learn/companies.html

Why study functional programming?

 Functional languages are elegant

 Elegant code is easier to read and maintain

 Elegant code might (not) be easier to write

ML programming language

 Statically typed, general-purpose programming language

 “Meta-Language” of the LCF theorem proving system

LCF: Logic for Computable Functions

 Type safe, with formal semantics

 Compiled language, but intended for interactive use

 Combination of Lisp and Algol-like features

 Expression-oriented

 Higher-order functions

 Garbage collection

 Abstract data types

 Module system

 Exceptions

Robin Milner, ACM Turing-Award for ML, LCF Theorem Prover, …

OCaml (Objective Caml)

http://ocaml.org/

OCaml

 Immutable programming
Variable’s values cannot destructively be changed; makes reasoning about

program easier!

 Algebraic datatypes and pattern matching
Makes definition and manipulation of complex data structures easy to express

 First-class functions
Functions can be passed around like ordinary values

 Static type-checking
Reduce number of run-time errors

 Automatic type inference
No burden to write down types of every single variable

 Parametric polymorphism
Enables construction of abstractions that work across many data types

 Garbage collection
Automated memory management eliminates many run-time errors

 Modules
Advanced system for structuring large systems

Expressions (terms)

 Expressions:

 Primary building block of OCaml programs

 akin to statements or commands in imperative languages

 can get arbitrarily large since any expression can contain

subexpressions, etc.

 Every kind of expression has:

 Syntax

 Semantics:

 Type-checking rules (static semantics): produce a type or fail

with an error message

 Evaluation rules (dynamic semantics): produce a value

 (or exception or infinite loop)

 Used only on expressions that type-check

Values

 A value is an expression that does not need any further

evaluation

 34 is a value of type int

 34+17 is an expression of type int but is not a value

if expressions

 Syntax

if e1 then e2 else e3

 Evaluation

 if e1 evaluates to true, and if e2 evaluates to v,

then if e1 then e2 else e3 evaluates to v

 if e1 evaluates to false, and if e3 evaluates to v,

then if e1 then e2 else e3 evaluates to v

 Type checking

 if e1: bool and e2:t and e3:t

then if e1 then e2 else e3 : t

Question

To what value does this expression evaluate?

if 22=0 then 1 else 2

if 22=0 then "bear" else 2

Question

To what value does this expression evaluate?

if 22=0 then 1 else 2

2

if 22=0 then "bear" else 2

Question

To what value does this expression evaluate?

if 22=0 then 1 else 2

2

if 22=0 then "bear" else 2

Does not type check!!!

So never gets a chance to be evaluated.

Function definitions

 Examples

let rec pow (x : int) (y : int) : int =

 if y=0 then 1

 else x * pow x (y-1)

let rec pow x y =

 if y=0 then 1

 else x * pow x (y-1)

let cube x = pow x 3

let cube (x : int) : int = pow x 3

rec is required because the body

includes a recursive function call

no types written down!

compiler does type inference

Function definitions

 Syntax

let rec f x1 x2 ... xn = e

note: rec can be omitted if function is not recursive

 Evaluation

Not an expression! Just defining the function; will be evaluated

later, when applied

 Function Types

 Type t -> u is the type of a function that takes input of type t and

returns output of type u

 Type t1 -> t2 -> u is the type of a function that takes input of

type t1 and another input of type t2 and returns output of type u

Function definitions

 Syntax

let rec f x1 x2 ... xn = e

note: rec can be omitted if function is not recursive

 Evaluation

Not an expression! Just defining the function; will be evaluated

later, when applied

 Type-checking

Conclude that f : t1 -> ... -> tn -> u if e:u under these

assumptions:

• x1:t1, ..., xn:tn (arguments with their types)

• f: t1 -> ... -> tn -> u (for recursion)

Function application

 Syntax

f e1 e2 ... en

 Evaluation

1. Evaluate arguments e1...en to values v1...vn

2. Find the definition of f: let f x1 ... xn = e

3. Substitute vi for xi in e yielding new expression e’

4. Evaluate e’ to a value v, which is result

 Type-checking

if f : t1 -> ... -> tn -> u and e1:t1, ..., en:tn

then f e1 ... En:u

Anonymous functions

 Examples

 fun x -> x+1 is an anonymous function

 and we can bind it to a name:

let inc = fun x -> x+1

 Note

dual purpose for -> syntax: function types, function values

fun is a keyword :)

Anonymous functions

 Syntax

fun x1 x2 ... xn -> e

 Evaluation

A function is a value

 Type-checking

(fun x1 ... xn -> e) : t1->...->tn->t

if e:t under assumptions x1:t1, ..., xn:tn

Lists

let lst = [1;2;3]

let empty = []

let longer = 5::lst

let another = 5::1::2::3::[]

let rec sum xs =

 match xs with

 | [] -> 0

 | h::t -> h + sum t

let six = sum lst

let zero = sum empty

Lists

let lst = [1;2;3]

let empty = []

let longer = 5::lst

let another = 5::1::2::3::[]

let rec sum xs =

 match xs with

 | [] -> 0

 | h::t -> h + sum t

let six = sum lst

let zero = sum empty

[1;2;3]: int list

[]: t list for any type t

If e1 : t and e2 : t list then

e1::e2 : t list

Variants vs. records vs. tuples

 Variants: one-of types aka sum types

 type t = C1 | ... | Cn

 Records, tuples: each-of types aka product types

 type t = {f1:t1; ...; fn:tn}

{f1=p1; ...; fn=pn} (e1,e2,...,en)

e.f

Lists are just variants

 OCaml effectively codes up lists as variants

type 'a list = [] | :: of 'a * 'a list

 list is a type constructor parameterized on type

variable 'a

 [] and :: are constructors

 Just a bit of syntactic magic in the compiler to use [] and ::

instead of alphabetic identifiers

Options are just variants

 OCaml effectively codes up options as variants

type 'a option = None | Some of 'a

 option is a type constructor parameterized on type

variable 'a

 None and Some are constructors

Exceptions are (mostly) just variants

 OCaml effectively codes up exceptions as slightly strange

variants

type exn

exception MyNewException of string

 Type exn is an extensible variant that may have new

constructors added after its original definition

 Raise exceptions with raise e, where e is a value of

type exn

 Handle exceptions with pattern matching, just like you

would process any variant

Higher-order functions

 let double x = 2*x

let square x = x*x

let quad x = double (double x)

let fourth x = square (square x)

 let twice f x = f (f x)

val twice : ('a -> 'a) -> 'a -> 'a

 let quad x = twice double x

let fourth x = twice square x

Currying

 Currying:

 A function with multiple parameters is sugar for a

function with a tuple parameter

 Curried form: high-order function

 let plus (x, y) = x + y

is sugar for

 let plus (z : int * int) = match z with (x, y) -> x + y

 let plus = fun (z : int * int) -> match z with (x, y) -> x +

curried form

 let plus x y = x + y

Currying

 Currying:

 A function with multiple parameters is sugar for a

function with a tuple parameter

 Curried form: high-order function

 let plus (x, y) = x + y

is sugar for

 let plus (z : int * int) = match z with (x, y) -> x + y

 let plus = fun (z : int * int) -> match z with (x, y) -> x + y

curried form

 let plus x y = x + y

plus: int * int -> int

plus: int -> int -> int

Map and reduce

 Fold has many synonyms/cousins in various functional

languages, including scan and reduce

 Google organizes large-scale data-parallel computations

with MapReduce [OSDI 2004 Jeff Dean et al.]

“[Google’s MapReduce] abstraction is inspired by the map and

reduce primitives present in Lisp and many other functional

languages. We realized that most of our computations involved

applying a map operation to each logical record in our input in

order to compute a set of intermediate key/value pairs, and then

applying a reduce operation to all the values that shared the

same key in order to combine the derived data appropriately."

[Dean and Ghemawat, 2008]

https://research.google.com/archive/mapreduce-osdi04.pdf

Map

let rec add1 = function

 | [] -> []

 | h::t -> (h+1)::(add1 t)

let rec concat3110 = function

 | [] -> []

 | h::t -> (h^"3110")::(concat3110 t)

let rec map f = function

 | [] -> []

 | x::xs -> (f x)::(map f xs)

map : ('a -> 'b) -> 'a list -> 'b list

Map

let rec add1 = function

 | [] -> []

 | h::t -> (h+1)::(add1 t)

let rec concat3110 = function

 | [] -> []

 | h::t -> (h^"3110")::(concat3110 t)

let rec map f = function

 | [] -> []

 | x::xs -> (f x)::(map f xs)

map : ('a -> 'b) -> 'a list -> 'b list

let add1 =

 List.map (fun x -> x+1)

let concat3110 =

 List.map (fun s -> s^"3110")

Filter

let rec filter f = function

 | [] -> []

 | x::xs -> if f x

 then x::(filter f xs)

 else filter f xs

filter : ('a -> bool) -> 'a list -> 'a list

