
Introduction to OCaml

Yu Zhang

Course web site: http://staff.ustc.edu.cn/~yuzhang/tpl

Fall 2018

http://staff.ustc.edu.cn/~yuzhang/fpl
http://staff.ustc.edu.cn/~yuzhang/fpl
http://staff.ustc.edu.cn/~yuzhang/fpl
http://staff.ustc.edu.cn/~yuzhang/fpl
http://staff.ustc.edu.cn/~yuzhang/fpl
http://staff.ustc.edu.cn/~yuzhang/fpl
http://staff.ustc.edu.cn/~yuzhang/fpl
http://staff.ustc.edu.cn/~yuzhang/fpl
http://staff.ustc.edu.cn/~yuzhang/fpl
http://staff.ustc.edu.cn/~yuzhang/fpl

References

 Learn X in Y Minutes – Ocaml

 Real World OCaml

 Cornell CS 3110 Spring 2018

Data Structures and Functional Programming

 Introduction Functions Lists

 Data types More Variants

 Higher-order programming

 Official website http://ocaml.org/

 A web-based interpreter: http://try.ocamlpro.com/

https://learnxinyminutes.com/docs/ocaml/
https://learnxinyminutes.com/docs/ocaml/
https://learnxinyminutes.com/docs/ocaml/
https://learnxinyminutes.com/docs/ocaml/
https://realworldocaml.org/v1/en/html/a-guided-tour.html
https://realworldocaml.org/v1/en/html/a-guided-tour.html
https://realworldocaml.org/v1/en/html/a-guided-tour.html
http://www.cs.cornell.edu/courses/cs3110/2018sp/
http://www.cs.cornell.edu/courses/cs3110/2018sp/
http://www.cs.cornell.edu/courses/cs3110/2018sp/
http://www.cs.cornell.edu/courses/cs3110/2018sp/l/01-intro/lec.pdf
http://www.cs.cornell.edu/courses/cs3110/2018sp/l/02-fun/lec.pdf
http://www.cs.cornell.edu/courses/cs3110/2018sp/l/03-lists/lec.pdf
http://www.cs.cornell.edu/courses/cs3110/2018sp/l/04-data/lec.pdf
http://www.cs.cornell.edu/courses/cs3110/2018sp/l/05-variant/lec.pdf
http://www.cs.cornell.edu/courses/cs3110/2018sp/l/05-variant/lec.pdf
http://www.cs.cornell.edu/courses/cs3110/2018sp/l/06-hop/lec.pdf
http://www.cs.cornell.edu/courses/cs3110/2018sp/l/06-hop/lec.pdf
http://www.cs.cornell.edu/courses/cs3110/2018sp/l/06-hop/lec.pdf
http://www.cs.cornell.edu/courses/cs3110/2018sp/l/06-hop/lec.pdf
http://ocaml.org/
http://ocaml.org/
http://ocaml.org/
http://try.ocamlpro.com/
http://try.ocamlpro.com/

What is a functional language?

 A functional language:

 defines computations as mathematical functions

 avoids mutable state

State: the information maintained by a computation

Mutable: can be changed (antonym: immutable)

Functional Imperative

Abstraction level Higher Lower

Develop robust SW Easier Harder

State Immutable Mutable

Expression What to compute How to compute

Why study functional programming?

 Functional languages predict the future

 Garbage collection

Java [1995], LISP [1958]

 Generics

Java 5 [2004], ML [1990]

 Higher-order functions

C#3.0 [2007], Java 8 [2014], LISP [1958]

 Type inference

C++11 [2011], Java 7 [2011] and 8, ML [1990]

 What’s next?

Why study functional programming?

 Functional languages are sometimes used in

industry

https://ocaml.org/learn/companies.html

Why study functional programming?

 Functional languages are elegant

 Elegant code is easier to read and maintain

 Elegant code might (not) be easier to write

ML programming language

 Statically typed, general-purpose programming language

 “Meta-Language” of the LCF theorem proving system

LCF: Logic for Computable Functions

 Type safe, with formal semantics

 Compiled language, but intended for interactive use

 Combination of Lisp and Algol-like features

 Expression-oriented

 Higher-order functions

 Garbage collection

 Abstract data types

 Module system

 Exceptions

Robin Milner, ACM Turing-Award for ML, LCF Theorem Prover, …

OCaml (Objective Caml)

http://ocaml.org/

OCaml

 Immutable programming
Variable’s values cannot destructively be changed; makes reasoning about

program easier!

 Algebraic datatypes and pattern matching
Makes definition and manipulation of complex data structures easy to express

 First-class functions
Functions can be passed around like ordinary values

 Static type-checking
Reduce number of run-time errors

 Automatic type inference
No burden to write down types of every single variable

 Parametric polymorphism
Enables construction of abstractions that work across many data types

 Garbage collection
Automated memory management eliminates many run-time errors

 Modules
Advanced system for structuring large systems

Expressions (terms)

 Expressions:

 Primary building block of OCaml programs

 akin to statements or commands in imperative languages

 can get arbitrarily large since any expression can contain

subexpressions, etc.

 Every kind of expression has:

 Syntax

 Semantics:

 Type-checking rules (static semantics): produce a type or fail

with an error message

 Evaluation rules (dynamic semantics): produce a value

 (or exception or infinite loop)

 Used only on expressions that type-check

Values

 A value is an expression that does not need any further

evaluation

 34 is a value of type int

 34+17 is an expression of type int but is not a value

if expressions

 Syntax

if e1 then e2 else e3

 Evaluation

 if e1 evaluates to true, and if e2 evaluates to v,

then if e1 then e2 else e3 evaluates to v

 if e1 evaluates to false, and if e3 evaluates to v,

then if e1 then e2 else e3 evaluates to v

 Type checking

 if e1: bool and e2:t and e3:t

then if e1 then e2 else e3 : t

Question

To what value does this expression evaluate?

if 22=0 then 1 else 2

if 22=0 then "bear" else 2

Question

To what value does this expression evaluate?

if 22=0 then 1 else 2

2

if 22=0 then "bear" else 2

Question

To what value does this expression evaluate?

if 22=0 then 1 else 2

2

if 22=0 then "bear" else 2

Does not type check!!!

So never gets a chance to be evaluated.

Function definitions

 Examples

let rec pow (x : int) (y : int) : int =

 if y=0 then 1

 else x * pow x (y-1)

let rec pow x y =

 if y=0 then 1

 else x * pow x (y-1)

let cube x = pow x 3

let cube (x : int) : int = pow x 3

rec is required because the body

includes a recursive function call

no types written down!

compiler does type inference

Function definitions

 Syntax

let rec f x1 x2 ... xn = e

note: rec can be omitted if function is not recursive

 Evaluation

Not an expression! Just defining the function; will be evaluated

later, when applied

 Function Types

 Type t -> u is the type of a function that takes input of type t and

returns output of type u

 Type t1 -> t2 -> u is the type of a function that takes input of

type t1 and another input of type t2 and returns output of type u

Function definitions

 Syntax

let rec f x1 x2 ... xn = e

note: rec can be omitted if function is not recursive

 Evaluation

Not an expression! Just defining the function; will be evaluated

later, when applied

 Type-checking

Conclude that f : t1 -> ... -> tn -> u if e:u under these

assumptions:

• x1:t1, ..., xn:tn (arguments with their types)

• f: t1 -> ... -> tn -> u (for recursion)

Function application

 Syntax

f e1 e2 ... en

 Evaluation

1. Evaluate arguments e1...en to values v1...vn

2. Find the definition of f: let f x1 ... xn = e

3. Substitute vi for xi in e yielding new expression e’

4. Evaluate e’ to a value v, which is result

 Type-checking

if f : t1 -> ... -> tn -> u and e1:t1, ..., en:tn

then f e1 ... En:u

Anonymous functions

 Examples

 fun x -> x+1 is an anonymous function

 and we can bind it to a name:

let inc = fun x -> x+1

 Note

dual purpose for -> syntax: function types, function values

fun is a keyword :)

Anonymous functions

 Syntax

fun x1 x2 ... xn -> e

 Evaluation

A function is a value

 Type-checking

(fun x1 ... xn -> e) : t1->...->tn->t

if e:t under assumptions x1:t1, ..., xn:tn

Lists

let lst = [1;2;3]

let empty = []

let longer = 5::lst

let another = 5::1::2::3::[]

let rec sum xs =

 match xs with

 | [] -> 0

 | h::t -> h + sum t

let six = sum lst

let zero = sum empty

Lists

let lst = [1;2;3]

let empty = []

let longer = 5::lst

let another = 5::1::2::3::[]

let rec sum xs =

 match xs with

 | [] -> 0

 | h::t -> h + sum t

let six = sum lst

let zero = sum empty

[1;2;3]: int list

[]: t list for any type t

If e1 : t and e2 : t list then

e1::e2 : t list

Variants vs. records vs. tuples

 Variants: one-of types aka sum types

 type t = C1 | ... | Cn

 Records, tuples: each-of types aka product types

 type t = {f1:t1; ...; fn:tn}

{f1=p1; ...; fn=pn} (e1,e2,...,en)

e.f

Lists are just variants

 OCaml effectively codes up lists as variants

type 'a list = [] | :: of 'a * 'a list

 list is a type constructor parameterized on type

variable 'a

 [] and :: are constructors

 Just a bit of syntactic magic in the compiler to use [] and ::

instead of alphabetic identifiers

Options are just variants

 OCaml effectively codes up options as variants

type 'a option = None | Some of 'a

 option is a type constructor parameterized on type

variable 'a

 None and Some are constructors

Exceptions are (mostly) just variants

 OCaml effectively codes up exceptions as slightly strange

variants

type exn

exception MyNewException of string

 Type exn is an extensible variant that may have new

constructors added after its original definition

 Raise exceptions with raise e, where e is a value of

type exn

 Handle exceptions with pattern matching, just like you

would process any variant

Higher-order functions

 let double x = 2*x

let square x = x*x

let quad x = double (double x)

let fourth x = square (square x)

 let twice f x = f (f x)

val twice : ('a -> 'a) -> 'a -> 'a

 let quad x = twice double x

let fourth x = twice square x

Currying

 Currying:

 A function with multiple parameters is sugar for a

function with a tuple parameter

 Curried form: high-order function

 let plus (x, y) = x + y

is sugar for

 let plus (z : int * int) = match z with (x, y) -> x + y

 let plus = fun (z : int * int) -> match z with (x, y) -> x +

curried form

 let plus x y = x + y

Currying

 Currying:

 A function with multiple parameters is sugar for a

function with a tuple parameter

 Curried form: high-order function

 let plus (x, y) = x + y

is sugar for

 let plus (z : int * int) = match z with (x, y) -> x + y

 let plus = fun (z : int * int) -> match z with (x, y) -> x + y

curried form

 let plus x y = x + y

plus: int * int -> int

plus: int -> int -> int

Map and reduce

 Fold has many synonyms/cousins in various functional

languages, including scan and reduce

 Google organizes large-scale data-parallel computations

with MapReduce [OSDI 2004 Jeff Dean et al.]

“[Google’s MapReduce] abstraction is inspired by the map and

reduce primitives present in Lisp and many other functional

languages. We realized that most of our computations involved

applying a map operation to each logical record in our input in

order to compute a set of intermediate key/value pairs, and then

applying a reduce operation to all the values that shared the

same key in order to combine the derived data appropriately."

[Dean and Ghemawat, 2008]

https://research.google.com/archive/mapreduce-osdi04.pdf

Map

let rec add1 = function

 | [] -> []

 | h::t -> (h+1)::(add1 t)

let rec concat3110 = function

 | [] -> []

 | h::t -> (h^"3110")::(concat3110 t)

let rec map f = function

 | [] -> []

 | x::xs -> (f x)::(map f xs)

map : ('a -> 'b) -> 'a list -> 'b list

Map

let rec add1 = function

 | [] -> []

 | h::t -> (h+1)::(add1 t)

let rec concat3110 = function

 | [] -> []

 | h::t -> (h^"3110")::(concat3110 t)

let rec map f = function

 | [] -> []

 | x::xs -> (f x)::(map f xs)

map : ('a -> 'b) -> 'a list -> 'b list

let add1 =

 List.map (fun x -> x+1)

let concat3110 =

 List.map (fun s -> s^"3110")

Filter

let rec filter f = function

 | [] -> []

 | x::xs -> if f x

 then x::(filter f xs)

 else filter f xs

filter : ('a -> bool) -> 'a list -> 'a list

