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What is a functional language?  

 A functional language:  

 defines computations as mathematical functions 

 avoids mutable state 

State: the information maintained by a computation  

Mutable: can be changed (antonym: immutable) 

Functional Imperative 

Abstraction level Higher Lower 

Develop robust SW Easier Harder 

State Immutable Mutable 

Expression What to compute How to compute 



Why study functional programming? 

 Functional languages predict the future  

 Garbage collection 

Java [1995], LISP [1958] 

 Generics 

Java 5 [2004], ML [1990] 

 Higher-order functions 

C#3.0 [2007], Java 8 [2014], LISP [1958] 

 Type inference 

C++11 [2011], Java 7 [2011] and 8, ML [1990] 

 What’s next? 



Why study functional programming? 

 Functional languages are sometimes used in 

industry  

https://ocaml.org/learn/companies.html


Why study functional programming? 

 Functional languages are elegant 

 Elegant code is easier to read and maintain 

 Elegant code might (not) be easier to write  



ML programming language 

 Statically typed, general-purpose programming language 

 “Meta-Language” of the LCF theorem proving system 

LCF: Logic for Computable Functions 

 Type safe, with formal semantics 

 Compiled language, but intended for interactive use 

 Combination of Lisp and Algol-like features 

 Expression-oriented 

 Higher-order functions 

 Garbage collection 

 Abstract data types 

 Module system 

 Exceptions 

Robin Milner, ACM Turing-Award for ML, LCF Theorem Prover, …  



OCaml (Objective Caml)  

http://ocaml.org/ 



OCaml  

 Immutable programming 
Variable’s values cannot destructively be changed; makes reasoning about 

program easier! 

 Algebraic datatypes and pattern matching 
Makes definition and manipulation of complex data structures easy to express 

 First-class functions 
Functions can be passed around like ordinary values 

 Static type-checking 
Reduce number of run-time errors 

 Automatic type inference 
No burden to write down types of every single variable 

 Parametric polymorphism 
Enables construction of abstractions that work across many data types 

 Garbage collection 
Automated memory management eliminates many run-time errors 

 Modules 
Advanced system for structuring large systems 



Expressions (terms) 

 Expressions: 

 Primary building block of OCaml programs 

 akin to statements or commands in imperative languages 

 can get arbitrarily large since any expression can contain 

subexpressions, etc. 

 Every kind of expression has: 

 Syntax 

 Semantics: 

 Type-checking rules (static semantics): produce a type or fail 

with an error message 

 Evaluation rules (dynamic semantics): produce a value 

 (or exception or infinite loop) 

 Used only on expressions that type-check 



Values 

 A value is an expression that does not need any further 

evaluation 

 34 is a value of type int 

 34+17 is an expression of type int but is not a value 



if expressions 

 Syntax 

if e1 then e2 else e3 

 

 Evaluation 

 if e1 evaluates to true, and if e2 evaluates to v, 

then if e1 then e2 else e3 evaluates to v 

 if e1 evaluates to false, and if e3 evaluates to v, 

then if e1 then e2 else e3 evaluates to v 

 

 Type checking 

 if e1: bool and e2:t and e3:t 

then if e1 then e2 else e3 : t 



Question 

To what value does this expression evaluate? 

if 22=0 then 1 else 2 

 

 

 

if 22=0 then "bear" else 2 



Question 

To what value does this expression evaluate? 

if 22=0 then 1 else 2 

2 

 

 

if 22=0 then "bear" else 2 



Question 

To what value does this expression evaluate? 

if 22=0 then 1 else 2 

2 

 

 

if 22=0 then "bear" else 2 

Does not type check!!! 

So never gets a chance to be evaluated. 



Function definitions 

 Examples 

 

let rec pow (x : int) (y : int) : int = 

 if y=0 then 1 

 else x * pow x (y-1) 

 

let rec pow x y = 

 if y=0 then 1 

 else x * pow x (y-1) 

 

let cube x = pow x 3 

 

let cube (x : int) : int = pow x 3 

rec is required because the body 

includes a recursive function call 

no types written down!  

compiler does type inference 



Function definitions 

 Syntax 

let rec f x1 x2 ... xn = e 

note: rec can be omitted if function is not recursive 

 Evaluation 

Not an expression! Just defining the function; will be evaluated 

later, when applied 

 Function Types 

 Type t -> u is the type of a function that takes input of type t and 

returns output of type u 

 Type t1 -> t2 -> u is the type of a function that takes input of 

type t1 and another input of type t2 and returns output of type u 



Function definitions 

 Syntax 

let rec f x1 x2 ... xn = e 

note: rec can be omitted if function is not recursive 

 Evaluation 

Not an expression! Just defining the function; will be evaluated 

later, when applied 

 Type-checking 

Conclude that f : t1 -> ... -> tn -> u if e:u under these 

assumptions: 

• x1:t1, ..., xn:tn (arguments with their types) 

• f: t1 -> ... -> tn -> u (for recursion) 



Function application 

 Syntax 

f e1 e2 ... en 

 Evaluation 

1. Evaluate arguments e1...en to values v1...vn 

2. Find the definition of f:  let f x1 ... xn = e 

3. Substitute vi for xi in e yielding new expression e’ 

4. Evaluate e’ to a value v, which is result 

 Type-checking 

if f : t1 -> ... -> tn -> u and  e1:t1, ..., en:tn  

then  f e1 ... En:u 



Anonymous functions 

 Examples 

 fun x -> x+1 is an anonymous function 

 and we can bind it to a name: 

let inc = fun x -> x+1 

 Note 

dual purpose for -> syntax: function types, function values 

fun is a keyword :) 



Anonymous functions 

 Syntax 

fun x1 x2 ... xn -> e 

 Evaluation 

A function is a value 

 Type-checking 

(fun x1 ... xn -> e) : t1->...->tn->t 

if  e:t under assumptions x1:t1, ..., xn:tn 



Lists 

let lst = [1;2;3] 

let empty = [] 

 

let longer = 5::lst 

let another = 5::1::2::3::[] 

 

let rec sum xs = 

 match xs with 

 | [] -> 0 

 | h::t -> h + sum t 

let six = sum lst 

let zero = sum empty 



Lists 

let lst = [1;2;3] 

let empty = [] 

 

let longer = 5::lst 

let another = 5::1::2::3::[] 

 

let rec sum xs = 

 match xs with 

 | [] -> 0 

 | h::t -> h + sum t 

let six = sum lst 

let zero = sum empty 

[1;2;3]: int list 

[]: t list for any type t 

 

If e1 : t and e2 : t list then 

e1::e2 : t list 

 
 



Variants vs. records vs. tuples 

 Variants: one-of types aka sum types 

 type t = C1 | ... | Cn 

 Records, tuples: each-of types aka product types 

 type t = {f1:t1; ...; fn:tn}   

{f1=p1; ...; fn=pn}   (e1,e2,...,en) 

e.f 



Lists are just variants 

 OCaml effectively codes up lists as variants 

 

type 'a list = [ ] | :: of 'a * 'a list 

 

 list is a type constructor parameterized on type 

variable 'a 

 [ ] and :: are constructors 

 Just a bit of syntactic magic in the compiler to use [ ] and :: 

instead of alphabetic identifiers 



Options are just variants 

 OCaml effectively codes up options as variants 

 

type 'a option = None | Some of 'a 

 

 option is a type constructor parameterized on type 

variable 'a 

 None and Some are constructors 



Exceptions are (mostly) just variants 

 OCaml effectively codes up exceptions as slightly strange 

variants 

type exn 

exception MyNewException  of string 

 Type exn is an extensible variant that may have new 

constructors added after its original definition 

 Raise exceptions with raise e, where e is a value of 

type exn 

 Handle exceptions with pattern matching, just like you 

would process any variant 



Higher-order functions 

 let double x = 2*x 

let square x = x*x 

 

let quad x = double (double x) 

let fourth x = square (square x) 

 

 let twice f x = f (f x) 

val twice : ('a -> 'a) -> 'a -> 'a 

 let quad x = twice double x 

let fourth x = twice square x 



Currying 

 Currying:  

 A function with multiple parameters is sugar for a 

function with a tuple parameter 

 Curried form: high-order function 

     let plus (x, y) = x + y 

is sugar for 

     let plus (z : int * int) = match z with (x, y) -> x + y 

     let plus = fun (z : int * int) -> match z with (x, y) -> x +  

curried form 

     let plus x y = x + y 



Currying 

 Currying:  

 A function with multiple parameters is sugar for a 

function with a tuple parameter 

 Curried form: high-order function 

     let plus (x, y) = x + y        

is sugar for 

     let plus (z : int * int) = match z with (x, y) -> x + y 

     let plus = fun (z : int * int) -> match z with (x, y) -> x + y 

curried form 

     let plus x y = x + y 

plus: int * int -> int 

plus: int -> int -> int 



Map and reduce 

 Fold has many synonyms/cousins in various functional 

languages, including scan and reduce 

 Google organizes large-scale data-parallel computations 

with MapReduce  [OSDI 2004 Jeff Dean et al.] 

“[Google’s MapReduce] abstraction is inspired by the map and 

reduce primitives present in Lisp and many other functional 

languages. We realized that most of our computations involved 

applying a map operation to each logical record in our input in 

order to compute a set of intermediate key/value pairs, and then 

applying a reduce operation to all the values that shared the 

same key in order to combine the derived data appropriately." 

[Dean and Ghemawat, 2008] 

https://research.google.com/archive/mapreduce-osdi04.pdf


Map 

let rec add1 = function 

 | [ ] -> [ ] 

 | h::t -> (h+1)::(add1 t) 

 

let rec concat3110 = function 

 | [ ] -> [ ] 

 | h::t -> (h^"3110")::(concat3110 t) 

 

let rec map f = function 

 | [ ] -> [] 

 | x::xs -> (f x)::(map f xs) 

map : ('a -> 'b) -> 'a list -> 'b list 



Map 

let rec add1 = function 

 | [ ] -> [ ] 

 | h::t -> (h+1)::(add1 t) 

 

let rec concat3110 = function 

 | [ ] -> [ ] 

 | h::t -> (h^"3110")::(concat3110 t) 

 

let rec map f = function 

 | [ ] -> [] 

 | x::xs -> (f x)::(map f xs) 

map : ('a -> 'b) -> 'a list -> 'b list 

let add1 = 

    List.map (fun x -> x+1) 

 

 

let concat3110 = 

    List.map (fun s -> s^"3110") 



Filter 

let rec filter f = function 

 | [] -> [] 

 | x::xs -> if f x 

  then x::(filter f xs) 

  else filter f xs 

 

filter : ('a -> bool) -> 'a list -> 'a list 


