
Overloading and Type Classes
(Adhoc Polymorphism)

Yu Zhang

Course web site: http://staff.ustc.edu.cn/~yuzhang/tpl

Fall 2018

http://staff.ustc.edu.cn/~yuzhang/tpl
http://staff.ustc.edu.cn/~yuzhang/tpl
http://staff.ustc.edu.cn/~yuzhang/tpl
http://staff.ustc.edu.cn/~yuzhang/tpl
http://staff.ustc.edu.cn/~yuzhang/tpl
http://staff.ustc.edu.cn/~yuzhang/tpl
http://staff.ustc.edu.cn/~yuzhang/tpl
http://staff.ustc.edu.cn/~yuzhang/tpl
http://staff.ustc.edu.cn/~yuzhang/tpl
http://staff.ustc.edu.cn/~yuzhang/tpl

References

• D. Rémy: Type systems for PLs

- Chapter 7 Overloading

• [Concepts in PLs] Revised Chapter 7 Type Classes

• Papers

- [ESOP 1988] Parametric Overloading in Polymorphic PLs

- [POPL 2007] Modular Type Classes

• Implementation

- Implementing, and Understanding Type Classes

- Implementing type classes as OCaml modules

• Types and Propositions

- [TPHOLs 1997]

http://www.cse.unsw.edu.au/~chak/papers/mtc-popl.pdf
http://www.cse.unsw.edu.au/~chak/papers/mtc-popl.pdf
http://www.cse.unsw.edu.au/~chak/papers/mtc-popl.pdf
https://staff.ustc.edu.cn/~yuzhang/fopl/readings/concepts-ch7r.pdf
https://link.springer.com/content/pdf/10.1007/3-540-19027-9_9.pdf
http://www.cse.unsw.edu.au/~chak/papers/mtc-popl.pdf
http://www.cse.unsw.edu.au/~chak/papers/mtc-popl.pdf
http://www.cse.unsw.edu.au/~chak/papers/mtc-popl.pdf
http://okmij.org/ftp/Computation/typeclass.html
http://www.cse.unsw.edu.au/~chak/papers/mtc-popl.pdf
http://blog.shaynefletcher.org/search/label/OCamlhttp:/blog.shaynefletcher.org/2016/10/haskell-type-classes-in-ocaml-and-c.html
http://blog.shaynefletcher.org/search/label/OCamlhttp:/blog.shaynefletcher.org/2016/10/haskell-type-classes-in-ocaml-and-c.html
http://blog.shaynefletcher.org/search/label/OCamlhttp:/blog.shaynefletcher.org/2016/10/haskell-type-classes-in-ocaml-and-c.html
http://blog.shaynefletcher.org/search/label/OCamlhttp:/blog.shaynefletcher.org/2016/10/haskell-type-classes-in-ocaml-and-c.html
https://link.springer.com/chapter/10.1007/BFb0028402
https://link.springer.com/chapter/10.1007/BFb0028402

Outline

• Parametric Polymorphism vs. Overloading

• Why Overloading

• Overloading Mechanisms

- Static / dynamic resolution of overloading

• Parametric Overloading and Type Classes

also known as bounded polymorphism, or type classes

- Dictionary passing

- Macro

- Intentionally type analysis

Parametric Polymorphism vs. Overloading

• Parametric polymorphism

- Single algorithm for any type

• Overloading

- Single symbol may refer to different algorithms/operations.

- Each algorithm may have different unrelated type.

- Choice of algorithm determined by type context.

• Parametric overloading

- The types being instances of a single type expression over

some extended set of type variables

: : int inI t : bool boof , then , l, ...f X X f f

int int int float flo has types , ,

but not for any .

at float

X X X X

Why Overloading ?

• Many useful functions are not parametric

• Can list membership work for any type?

• Can list sorting work for any type?

member : . list boolX X X

sort : . list listX X X

Why Overloading ?

• Many useful functions are not parametric

• Can list membership work for any type?

- No! Only for types X that support equality.

• Can list sorting work for any type?

- No! Only for types X that support ordering.

member : . list boolX X X

sort : . list listX X X

Variants of Overloading

• Static overloading: static resolution strategy

- Simple semantics: meaning determined statically

- Does not increase expressiveness

- Reduce verbosity, increase modularity and abstraction

• Dynamic overloading

- meaning determined dynamically

- Increase expressiveness

- Extra mechanism to support the dynamic resolution

• Require full or partial type info., or some type-related info.

Overloading Mechanisms

Static Overloading

• Approach 1: A function containing overloaded symbols

=> multiple functions

• E.g. double x = x + x

defines two versions: Int -> Int and Float -> Float

But, how to resolve

doubles (x, y, z) = (double x, double y, double z)

• 8 possible versions!

=> Exponential growth in number of versions

Static Overloading

• Approach 2 (used in SML-MLton): restrict the definition,

i.e., specify one of the possible versions as the meaning

• E.g. double x = x + x => double: Int -> Int

 double 3 double 3.2

If you want double: Float -> Float, you need define the function

explicitly specifying type.

• In Java

- overloading a method in a class => static resolution

- But if an argument has a runtime type that is subtype

of the compile-time time => dynamic resolution

http://mlton.org/

Dynamic Overloading

• Resolution with a type passing semantics

Runtime type dispatch using a general typecase construct

- High runtime cost of typecase unless type patterns are

significantly restricted

• Resolution with a type erasing semantics

To avoid the expensive cost of typecase,

 restrict the overloaded functions by using tags.

can be elaborated into

let . in []f x x x

let (). . in []f x x x

 is then elaborated t1.0 (.o 1.0)f f

e.g. Dictionary passing

Parametric Overloading

• Overloading Equality

1. Equality was overloaded as an operator.

But member using ‘==‘ does not work in general

member [] False

member (:) () || member

member [1, 2, 3] 32

member "Haskell" 'k'

y

x xs y x y xs y

Parametric Overloading

• Overloading Equality

1. Equality was overloaded as an operator.

But member using ‘==‘ does not work in general

2. Make type of equality fully polymorphic (Miranda)

 (==) :: t -> t-> Bool

thus member is polymorphic, member:: [t] -> t-> Bool

If t does not provide a definition of equality, then there is a

runtime error when equality applied to a value of type t.

=> Violate principle of abstraction

Parametric Overloading

• Overloading Equality

1. Equality was overloaded as an operator.

But member using ‘==‘ does not work in general

2. Make type of equality fully polymorphic (Miranda)

3. Make equality polymorphic in a limited way

(used in current SML)

 (==) :: ‘’t -> ‘’t-> Bool ‘’t indicate t is an eqtype variable

 member has precise type, i.e. [‘’t] -> ‘’t -> Bool

 if t does not support equality, there will be a static error

Parametric Overloading

• Overloading Equality

1. Equality was overloaded as an operator.

But member using ‘==‘ does not work in general

2. Make type of equality fully polymorphic (Miranda)

3. Make equality polymorphic in a limited way

(used in current SML)

 (==) :: ‘’t -> ‘’t-> Bool ‘’t indicate t is an eqtype variable

 member has precise type, i.e. [‘’t] -> ‘’t -> Bool

 if t does not support equality, there will be a static error

Equality is a special case,
how can we generalize overloading?

Type Classes

• Type classes are a mechanism in Haskell

- Generalize eqtype to user-defined collections of types

(called type classes)

member:: (a-> a-> Bool) -> [a] -> a-> Bool

member cmp [] y = False

member cmp (x : xs) y = (cmp x y) || member cmp xs y

• Dictionary-passing style implementation [ESOP1988]

- Type-class declaration – dictionary

- Name of a type class method – label in the dictionary

- Parametric overloading

• pass the dictionary to the function

https://link.springer.com/content/pdf/10.1007/3-540-19027-9_9.pdf

Examples: Dictionary Passing

• Haskell • OCaml Dictionary

Label in the
dictionary

http://okmij.org/ftp/Computation/typeclass.html
http://okmij.org/ftp/Computation/typeclass.html

More Examples

• Type class whose methods have a different of

overloading: e.g. Num

• An instance with a constraint:

e.g. a Show instance for all list types [a] where the element

type a is also restricted to be a member of Show.

show_list: ‘a show -> ‘a list show (OCaml)

• A class of comparable types

e.g. class Eq a (Haskell) or type 'a eq (OCaml)

• Polymorphic recursion

See http://okmij.org/ftp/Computation/typeclass.html#dict

http://okmij.org/ftp/Computation/typeclass.html
http://okmij.org/ftp/Computation/typeclass.html
http://okmij.org/ftp/Computation/typeclass.html

Other Implementations

• Type classes as macros

- Static monomorphization (compile-time)

• Takes the type-checked code with type classes

• generates code with no type classes and no bounded

polymorphism

vs. C++ templates ? Template instantiation may produce ill-

typed code

• Intentional type analysis (run-time)

 choose the appropriate overloading operation at run-time

See http://okmij.org/ftp/Computation/typeclass.html#dict

http://okmij.org/ftp/Computation/typeclass.html

