
Subtyping
(Dynamic Polymorphism)

Yu Zhang

Course web site: http://staff.ustc.edu.cn/~yuzhang/tpl

Fall 2018

http://staff.ustc.edu.cn/~yuzhang/fpl
http://staff.ustc.edu.cn/~yuzhang/fpl
http://staff.ustc.edu.cn/~yuzhang/fpl
http://staff.ustc.edu.cn/~yuzhang/fpl
http://staff.ustc.edu.cn/~yuzhang/fpl
http://staff.ustc.edu.cn/~yuzhang/fpl
http://staff.ustc.edu.cn/~yuzhang/fpl
http://staff.ustc.edu.cn/~yuzhang/fpl
http://staff.ustc.edu.cn/~yuzhang/fpl
http://staff.ustc.edu.cn/~yuzhang/fpl

References

• PFPL

- Chapter 24 Structural Subtyping

- Chapter 27 Inheritance

• TAPL (pdf)

- Chapter 15 Subtyping

• [Concepts in PLs]

http://www.cs.cmu.edu/~rwh/pfpl/2nded.pdf
http://www.cs.cmu.edu/~rwh/pfpl/2nded.pdf
http://www.cis.upenn.edu/~bcpierce/tapl/index.html
https://www.asc.ohio-state.edu/pollard.4/type/books/pierce-tpl.pdf
http://homepages.dcc.ufmg.br/~camarao/lp/concepts.pdf

Subtyping and Inheritance

• Interface

- The external view of an object

• Subtyping

- Relation between interfaces

• Implementation

- The internal representation of an object

• Inheritance

- Relation between implementations

Various Object-Oriented Languages

• Pure dynamically-typed OO languages

- Object implementation and run-time lookup

- Class-based languages (Smalltalk)

- Prototype-based languages (Self, JavaScript)

• Statically-typed OO languages

- C++

• using static typing to eliminate search

• problems with C++ multiple inheritance

- Java

• using Interfaces to avoid multiple inheritance

Smalltalk

• Developed at Xerox PARC: Smalltalk-76, -80

• Object metaphor extended and refined

- Used some ideas from Simula, but very different lang

- Everything is an object, even a class

- All operations are “messages to objects”

• Terminology
Object Instance of some class Class Defines behavior of its object

Selector Name of a message Message Selector together with parameter values

Method Code used by a class to
respond to message

Instance
variable

Data stored in object

Subclass Class defined by giving incremental modifications to some superclass

Smalltalk: Example

• Point class

class name Point

super class Object

class var pi

instance var x y

class messages and methods

<…names and code for 3 methods,
i.e. newX:Y:, newOrigin, initialize>

instance messages and methods

<…names and code for 5 methods
i.e. x:y:, moveDx:Dy:, x, y, draw>

• ColorPoint class

class name ColorPoint

super class Point

class var

instance var color

class messages and methods

newX:xv Y:yv C:cv
<…code…>

instance messages and methods

color <…code…>
draw <…code…>

override override add method

add instance
variable

Smalltalk: Run-time Representation

This is a schematic diagram meant to illustrate the main idea. Actual implementations may differ.

Smalltalk Summary

• Class

- creates objects that share methods

- pointers to template, dictionary, parent class

• Objects: created by a class, contains instance variables

• Encapsulation

- methods public, instance variables hidden

• Subtyping: implicit, no static type system

• Inheritance: subclasses, self, super

Single inheritance in Smalltalk-76, Smalltalk-80

Smalltalk: Object Interfaces

• Interface

- The messages understood by an object

• Example: point

x:y: set x,y coordinates of point

moveDx:Dy: method for changing location

x returns x-coordinate of a point

y returns y-coordinate of a point

draw display point in x,y location on screen

• The interface of an object is its type

Smalltalk: Subtyping

• If interface A contains all of interface B, then A

objects can also be used B objects.

 Point ColorPoint

x:y: x:y:

moveDx:Dy: moveDx:Dy:

x x

y y

draw color

draw

ColorPoint interface contains Point

ColorPoint is a subtype of Point

Subtyping and Inheritance

• Smalltalk/JavaScript subtyping is implicit

- Not a part of the programming language

- Important aspect of how systems are built

• Inheritance is explicit

- Used to implement systems

- No forced relationship to subtyping

C++

• C++ is an object-oriented extension of C, Bell Labs

• Object-oriented features

- Classes

- Objects, with dynamic lookup of virtual functions

- Inheritance

• Single and multiple inheritance

• Public and private base classes

- Subtyping

• Tied to inheritance mechanism

- Encapsulation

• Public, private, protected visibility

C++: Virtual functions

• Member functions are either

- Virtual, if explicitly declared or inherited as virtual

- Non-virtual otherwise

• Virtual functions

- Accessed by indirection through ptr in object

- May be redefined in derived (sub) classes

• Non-virtual functions

- Are called in the usual way. Just ordinary functions.

- Cannot redefine in derived classes (except overloading)

• Pay overhead only if you use virtual functions

Run-time Representation

Compare to Smalltalk/JavaScript

This is a schematic diagram meant to illustrate the main idea. Actual implementations may differ.

Multiple Inheritance

• Name clashes • Implicit resolution

- Language resolves name

conflicts with arbitrary rule

• Explicit resolution (C++)

- Programmer must

explicitly resolve name

conflicts

• Disallow name clashes

- Programs are not allowed

to contain name clashes

No solution is always best

class A {

 public:

 virtual void f() { … }

};

class B {

 public:

 virtual void f() { … }

};

class C : public A, public B{…};

…

 C* p;

 p->f(); // error

Multiple Inheritance

• Name clashes • Rewrite class C to call

A::f explicitly

 => eliminate ambiguity
class A {

 public:

 virtual void f() { … }

};

class B {

 public:

 virtual void f() { … }

};

class C : public A, public B{…};

…

 C* p;

 p->f(); // error

class C : public A, public B{

 public:

 void virtual f() {

 A::f();

 }

vtable for Multiple Inheritance
class A {

 public:

 virtual void f();

};

class B {

 public:

 int y;

 virtual void g();

 virtual void f();

};

class C : public A, public B{

 public:

 int z;

 virtual void f();

};

C *pc = new C;

B *pb = pc;

A * pa=pc;

pa, pb, pc point to
same object, but
different static types.

Diamond Inheritance in C++

• Standard base classes

- D members appear twice in C

• Virtual base classes

class A : public virtual D { … }

- Avoid duplication of base class members

- Require additional pointers so that D part of A, B parts

of object can be shared

• C++ multiple inheritance is complicated in because

of desire to maintain efficient lookup

C++ Subtyping

• Subtyping in principle

- A <: B if every A object can be used without type error

whenever a B object is required

• C++: A <: B if class A has public base class B

- Independent classes not subtypes

Function Subtyping

• Subtyping principle

- A <: B if an A expression can be safely used in any context

where a B expression is required

• Subtyping for function results (Covariance)

- If A <: B, then C→ A <: C→ B

• Subtyping for function arguments (Contravariance)

- If A <: B, then B→C <: A → C

• Terminology

- Covariance(协变): A <: B implies F(A) <: F(B)

- Contravariance(逆变): A <: B implies F(B) <: F(A)

Subtyping Principles

• Products

- Width subtyping(一个较宽的元组类型是一个较窄的元组类型

的子类型)

- Depth subtyping (Covariance)

- Function subtyping

1 1 1 1
[: , , :] : [: , , :]

i i j j

i j

m m m m   





: :

:

   

   

  

   

1 1 1 1

:

[: , , :] : [: , , :]
i i

j j j j
m m m m

 

   





Java

• 1990-95 James Gosling and others at Sun

• Syntax similar to C++

• Object

- has fields and methods

- is allocated on heap, not run-time stack

- accessible through reference (only ptr assignment)

- garbage collected

• Dynamic lookup

- Similar in behavior to other languages

- Static typing => more efficient than Smalltalk

- Dynamic linking, interfaces => slower than C++

Inheritance

• Similar to Smalltalk, C++

• Subclass inherits from superclass

- Single inheritance only (but Java has interfaces)

• Some additional features

- Conventions regarding super in constructor and

finalize methods

- Final classes and methods cannot be redefined

Interfaces vs Multiple Inheritance

• C++ multiple inheritance

- A single class may inherit from two base classes

- Constraints of C++ require derived class

representation to resemble all base classes

• Java interfaces

- A single class may implement two interfaces

- No inheritance (of implementation) involved

- Java implementation (discussed later) does not

require similarity between class representations

Subtyping

• Primitive types

- Conversions: int -> long, double -> long, …

• Class subtyping similar to C++

- Subclass produces subtype

- Single inheritance => subclasses form tree

• Interfaces

- Completely abstract classes

• no implementation

- Multiple subtyping

• Interface can have multiple subtypes (implements, extends)

• Arrays

- Covariant subtyping – not consistent with semantic principles

