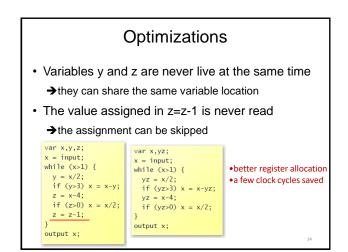
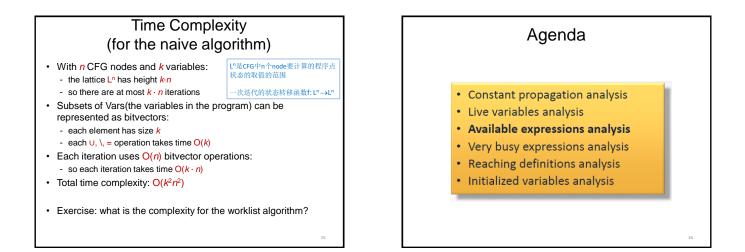
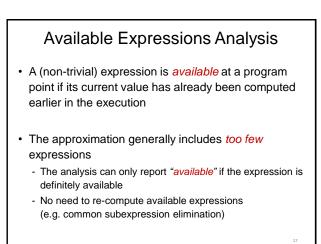
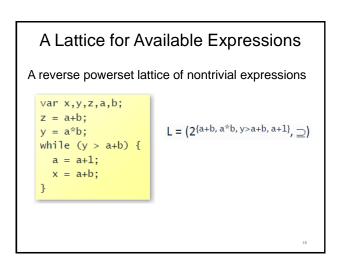


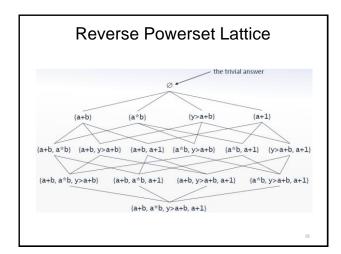
	$[[entry]] = \emptyset$
<pre>[[var x,y,z]] = [[z=input]] \ {x,y,z}</pre>	[[var x,y,z]]=@
[[x=input]] = [[x>1]] \ {x}	[[x=input]] =∅
$\llbracket x > 1 \rrbracket = (\llbracket y = x/2 \rrbracket \cup \llbracket output x \rrbracket) \cup \{x \}$	} [[x>1]] = {x}
$[[y=x/2]] = ([[y>3]] \setminus {y}) \cup {x}$	[[y=x/2]] = {x}
$[[y>3]] = [[x=x-y]] \cup [[z=x-4]] \cup \{y\}$	[[y>3]] = {x,y}
$[x=x-y] = ([z=x-4] \setminus \{x\}) \cup \{x,y\}$	$[[x=x-y]] = \{x,y\}$
$[[z=x-4]] = ([[z>0]] \setminus \{z\}) \cup \{x\}$	$[[z=x-4]] = \{x\}$
$[[z>0]] = [[x=x/2]] \cup [[z=z-1]] \cup \{z\}$	[[z>0]] = {x,z}
$[x=x/2] = ([z=z-1] \setminus \{x\}) \cup \{x\}$	$[[x=x/2]] = \{x,z\}$
$[[z=z-1]] = ([[x>1]] \setminus \{z\}) \cup \{z\}$	[[z=z-1]] = {x,z}
$[[output x]] = [[exit]] \cup \{x\}$	[[output x]] = {x}
$[[exit]] = \emptyset$	[[exit]] = Ø

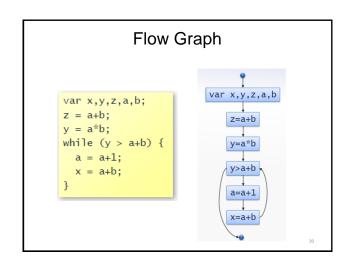


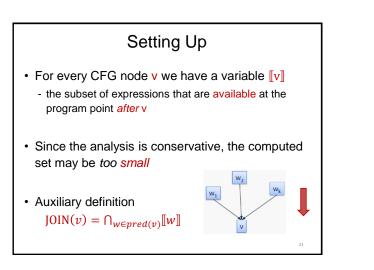


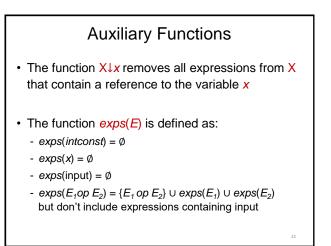






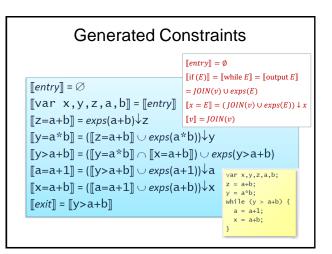


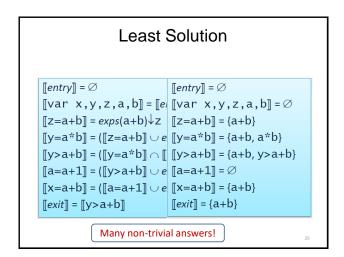


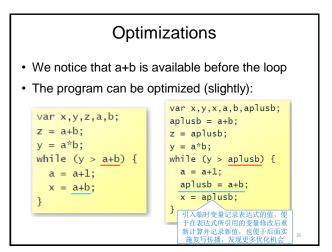


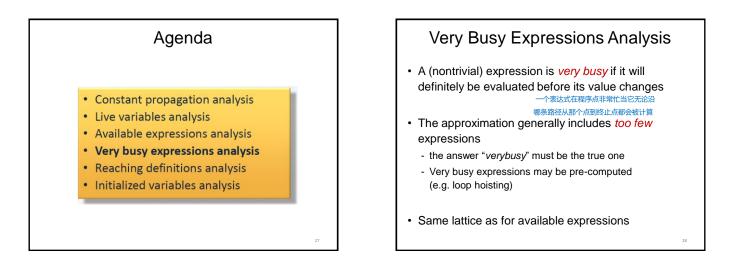
Availablity Constraints

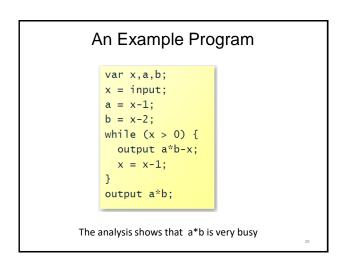
- For the entry node
 [entry] = Ø
- For conditions and output
 [if (E)] = [[while E]] = [[output E]] = JOIN(v) ∪ exps(E)
- For assignments $\llbracket x = E \rrbracket = (JOIN(v) \cup exps(E)) \downarrow x$
- For all other nodes
 [[v]] = JOIN(v)

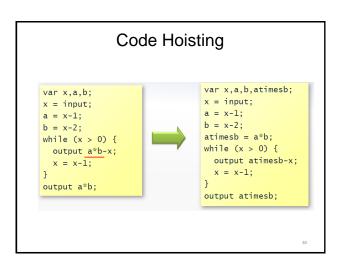


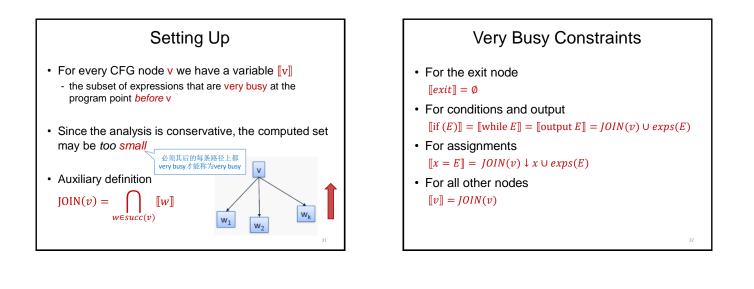


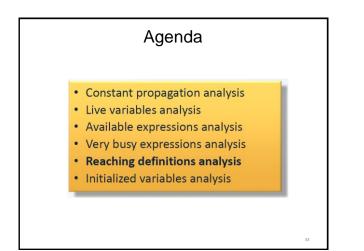


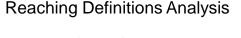




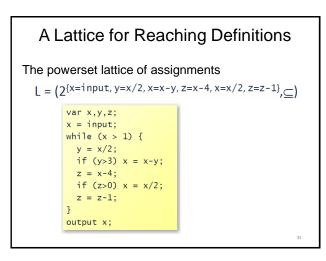


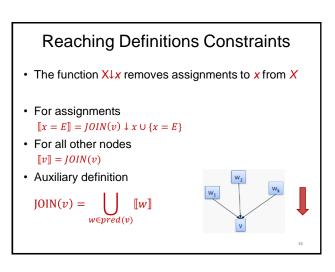


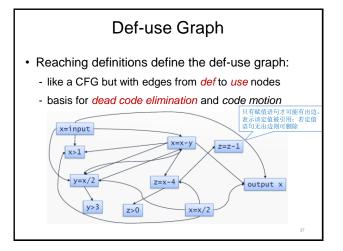




- The *reaching definitions* for a program point are those assignments that may define the current values of variables
- The conservative approximation may include *too many* possible assignments







Forward vs. Backward

- · A forward analysis:
 - computes information about the past behavior
 - examples: available expressions, reaching definitions
- A backward analysis:
 - computes information about the future behavior
 - examples: liveness, very busy expressions

May vs. Must

- · A may analysis:
 - describes information that is possibly true
 - an over-approximation
 - examples: liveness, reaching definitions
- A must analysis:
 - describes information that is definitely true
 - an under-approximation
 - examples: available expressions, very busy expressions

Classifying Analyses forward backward example: reaching definitions example: liveness [[v]] describes state after v [v] describes state before v may JOIN(v) = ∐[[w]] = ∪[[w]] $JOIN(v) = \bigsqcup[w] = \bigcup[w]$ d(v) w∈pre w∈succ(v) w∈su example: available expressions example: very busy expressions v describes state after v [[v] describes state before v must JOIN(v) = ∐[[w]] = ∩[[w]] JOIN(v) = ∐[[w]] = ∩[[w]]

