

Fixed-point Problems

- The lattice has infinite height, so the fixed-point algorithm does not work ☺
- In $L^n,$ the sequence of approximants $f^i(\bot,\,\bot,\,...,\,\bot)$

is not guaranteed to converge

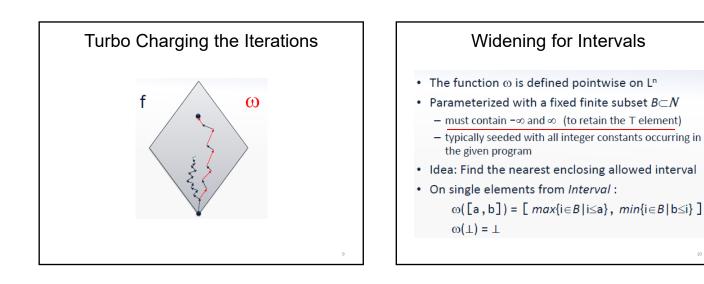
- (Exercise: give an example of a program where this happens)
- Restricting to 32 bit integers is not a practical solution
- Widening gives a useful solution ...

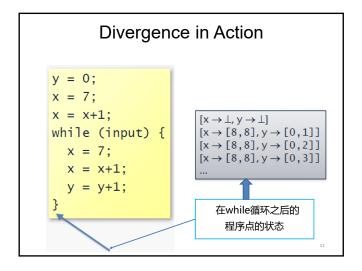
Widening

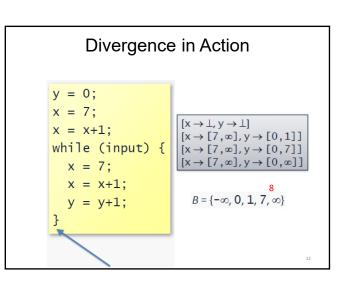
Introduce a widening function ω: Lⁿ→Lⁿ so that
(ω∘f)ⁱ(⊥, ⊥, ..., ⊥)

converges on a fixed-point that is a safe approximation of each $f(\bot, \bot, ..., \bot)$

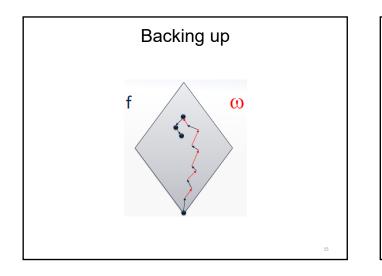
- i.e. the function $\boldsymbol{\omega}$ coarsens the information

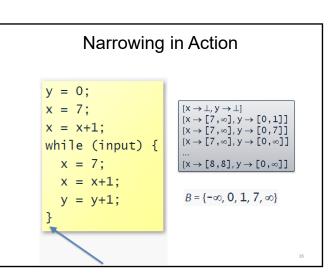


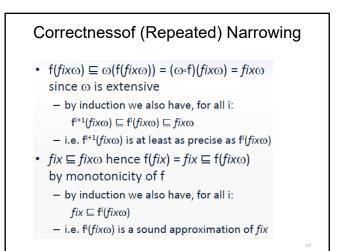


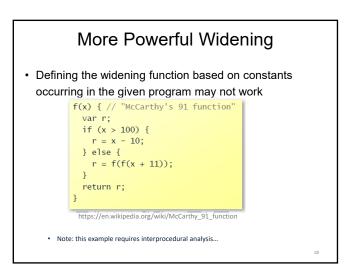


Correctness of Widening Narrowing · Widening works when: · Widening generally shoots over the target - ω is an *extensive* and *monotone* function, and · Narrowing may improve the result by applying f - ω(L) is a finite-height lattice · Define: $fix = \bigsqcup f^{i}(\bot, \bot, ..., \bot) \quad fix\omega = \bigsqcup(\omega^{\circ} f)^{i}(\bot, \bot, ..., \bot)$ Safety: ∀i: fⁱ(⊥, ⊥, ..., ⊥) ⊑(ω°f)ⁱ(⊥, ⊥, ..., ⊥) then $fix \sqsubseteq fix \omega$ since f is monotone and $\boldsymbol{\omega}$ is extensive ω° f is a monotone function $\omega(L) \rightarrow \omega(L)$ · But we also have that so the fixed-point exists $fix \sqsubseteq f(fix\omega) \sqsubseteq fix \omega$ **Exercise 4.16:** A function $f: L \to L$ where L is a lattice is *extensive* when $\forall x \in L: x \sqsubseteq f(x)$. Assume L is the powerset lattice $2^{\{0,1,2,3,4\}}$ Give examples so applying f again may improve the result and remain sound! · Almost "correct by definition"! · This can be iterated arbitrarily many times When used in the worklist algorithm, it suffices to apply - may diverge, but safe to stop anytime widening on back-edges in the CFG









More Powerful Widening

- A widening is a function ∇: L × L →L that is extensive in both arguments and satisfies the following property: for all increasing chains z₀ ⊑ z₁ ⊑ ..., the sequence y₀ = z₀, ..., y_{i+1} = y_i ∇ z_{i+1}, ... converges (i.e. stabilizes after a finite number of steps)
- Now replace the basic fixed point solver by computing $x_0 = \bot$, ..., $x_{i+1} = x_i \nabla F(x_i)$, ... until convergence

More Powerful Widening for Interval Analysis

• Extrapolates unstable bounds to B:

For the small example program, we now get the same result as with simple widening plus narrowing (but now without using narrowing)