
2020-04-02

1

Widening and Narrowing

Yu Zhang

Most content comes from http://cs.au.dk/~amoeller/spa/

1

Interval Analysis

• Compute upper and lower bounds for integers
• Possible applications:

- array bounds checking
- integer representation
- …

• Latticeof intervals:
Interval = lift ({ [l,h] | l,h ∈ N ∧ l ≤ h })

where
N= {-∝, ..., -2, -1, 0, 1, 2, ..., ∝}

and intervals are ordered by inclusion:
[𝑙 ,h] ⊑ [𝑙 ,h] iff 𝑙 ≤ 𝑙 ∧ h ≤ h]

2

The Interval Lattice

3

Interval Analysis Lattice

• The total lattice for a program point is𝐿 = 𝑉𝑎𝑟𝑠 → 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙
that provides bounds for each (integer) variable

• If using the worklist solver that initializes the worklist with only
the entrynode, use the lattice lift(L)
- bottom value of lift(L) represents “unreachable program point”
- bottom value of L represents “maybe reachable, but all variables are

non-integers”

• This lattice has infinite height, since the chain
[0,0] ⊑[0,1] ⊑[0,2] ⊑[0,3] ⊑[0,4]...

occurs in Interval

4

Interval Constraints

• For assignments:𝑥 = 𝐸 = 𝐽𝑂𝐼𝑁(𝑣) 𝑥 → 𝑒𝑣𝑎𝑙(𝐽𝑂𝐼𝑁 𝑣 , 𝐸)
• For all other nodes:𝑣 = 𝐽𝑂𝐼𝑁(𝑣)
where

5

Least upper bound

Evaluating Intervals

• The eval functionis an abstract evaluation:
- eval(σ, x) = σ(x)
- eval(σ, intconst) = [intconst,intconst]
- eval(σ, E1 op E2) = op(eval(σ,E1),eval(σ,E2))

• Abstract arithmetic operators:op([l1, h1
],[l2, h2

])= min∈ , , ∈[,] 𝑥 op 𝑦 , max∈ , , ∈[,] 𝑥 op 𝑦
• Abstract comparison operators (could be improved):op([l1, h1

],[l2, h2
]) = [0,1]

6

Not trivial to implement

2020-04-02

2

Fixed-point Problems

• The lattice has infinite height, so the fixed-point algorithm
does not work

• In Ln, the sequence of approximants
fi(⊥, ⊥, ..., ⊥)

is not guaranteed to converge

• (Exercise: give an example of a program where this
happens)

• Restricting to 32 bit integers is not a practical solution
• Widening gives a useful solution …

7

Widening

• Introduce a widening function ω: Ln→Ln so that
(ω∘f)i(⊥, ⊥, ..., ⊥)

converges on a fixed-point that is a safe approximation
of each fi(⊥, ⊥, ..., ⊥)

• i.e. the function ω coarsens the information

8

Turbo Charging the Iterations

9

Widening for Intervals

10

Divergence in Action

11

Z在while循环之后的
程序点的状态

Divergence in Action

12

8

2020-04-02

3

Correctness of Widening

• Widening works when:
- ω is an extensive and monotone function, and
- ω(L) is a finite-height lattice

• Safety: ∀i: fi(⊥, ⊥, ..., ⊥) ⊑(ω°f)i(⊥, ⊥, ..., ⊥)
since f is monotone and ω is extensive

• ω°f is a monotone function ω(L)→ω(L)
so the fixed-point exists

• Almost “correct by definition”!
• When used in the worklist algorithm, it suffices to apply

widening on back-edges in the CFG
13

Narrowing

• Widening generally shoots over the target
• Narrowing may improve the result by applying f
• Define:

fix = ⨆ f i(⊥, ⊥, ..., ⊥) fixω= ⨆(ω° f)i(⊥, ⊥, ..., ⊥)
then fix ⊑ fix ω

• But we also have that
fix ⊑ f(fixω) ⊑ fix ω

so applying f again may improve the result and remain
sound!

• This can be iterated arbitrarily many times
- may diverge, but safe to stop anytime

14

Backing up

15

Narrowing in Action

16

Correctnessof (Repeated) Narrowing

17

More Powerful Widening

• Defining the widening function based on constants
occurring in the given program may not work

18

https://en.wikipedia.org/wiki/McCarthy_91_function

• Note: this example requires interprocedural analysis…

2020-04-02

4

More Powerful Widening

19

More Powerful Widening
for Interval Analysis

• Extrapolates unstable bounds to B:

20

For the small example program, we now get the same result as with simple widening plus
narrowing (but now without using narrowing)

