
2020-04-09

1

Path Sensitivity

Yu Zhang

Most content comes from http://cs.au.dk/~amoeller/spa/

1

Information in Conditions

2

Modeling Conditions

3

Add artificial “assert” statements:

The statement assert(E) models that E is true in the
current program state
• it causes a runtime error otherwise
• but we only insert it where the condition will

always be true

Encoding Conditions

4

(alternatively, we could add dataflow constraints on the CFG edges)

Constraints for Assert

• A trivial but sound constraint:⟦v⟧= JOIN(v)
• A non-trivial constraint for assert(x>E):⟦v⟧=JOIN(v)[x→gt(JOIN(v)(x),eval(JOIN(v),E))]

where
gt([l1,h1],[l2,h2]) = [l1,h1]⊓ [l2,∞]

• Similar constraints are defined for the dual cases
• More tricky to define for other conditions...

5

Exploiting Conditions

6

The interval analysis now concludes:
x= [-∞,0], y= [0,17], z= [0,∞]

2020-04-09

2

Branch Correlations

• With assert we have a simple form of path
sensitivity (sometimes called control sensitivity)

• But it is insufficient to handle correlation of
branches:

7

Open and Closed Files

• Built-in functions open() and close() on a file

• Requirements:
- never close a closed file
- never open an open file

• We want a static analysis to check this...(for
simplicity, let us assume there is only one file)

8

A Tricky Example

9

The Naive Analysis (1/2)

• The lattice models the status of the file:
L = (2{open,closed},⊆)

• For every CFG node, v, we have a constraint
variable ⟦v⟧ denoting the status after v

10

The Naive Analysis(2/2)

• Constraints for interesting statements:⟦entry⟧= {closed}⟦open()⟧= {open}⟦close()⟧= {closed}

• For all otherCFG nodes:⟦v⟧= JOIN(v)

• Before the close() statement the
analysis concludes that the file
is {open,closed}

11

The Slightly Less Naive Analysis

• We obviously need to keep track of the flag variable
• Our second attempt is the lattice:

• Additionally, we add assert(...)
to model conditionals

• Even so, we still only know that
the file is {open,closed} and that
flag is {flag=0,flag≠0}

12

2020-04-09

3

Enhanced Program

13

Relational Analysis

• We need an analysis that keeps track of relations
between variables

• One approach is to maintain multiple abstract states
per program point, one for each path context

• For the file example we need the lattice:

Where Paths = {flag=0,flag≠0} is the set of path contexts

14

Relational Constraints(1/2)

15

Relational Constraints(2/2)

16

Generated Constraints

17

Minimal Solution

18
We now know the file is open before close()

2020-04-09

4

Challenges

• The static analysis designer must choose Paths
- Often as Boolean combinations of predicates from conditionals
- iterative refinement (e.g. counter-example guided abstraction

refinement) can be used for gradually finding relevant predicates

• Exponential blow-up:
- for k predicates, we have 2k different contexts
- Redundancy often cuts this down

• Reasoning about assert:
- how to update the lattice elements with sufficient precision?
- Possibly involves heavy-weight theorem proving

19

Improvements

• Run auxiliary analyses first, for example:
- constant propagation
- sign analysis
will help in handling flag assignments

• Dead code propagation, change⟦open()⟧= p.{open}
into the still sound but more precise⟦open()⟧= λp.if JOIN(v)(p)=∅then ∅ else {open}

20

