2020-04-09

Path Sensitivity

Yu Zhang

Most content comes from http://cs.au.dk/~amoeller/spa/

S NY X

h

}

s

Information in Conditions

input;

0;

0;

ile (x>0) {

= Z+X;

Af sy § oy =y
Xo=ix=13

N =

The interval analysis (with widening) concludes:
x=[-»,0], y=[0,0], z=[-=»,s]
Modeling Conditions Encoding Conditions
Add artificial “assert” statements:)
X = input;
y = 0;
z = (65
The statement assert(E) models that E is true in the nhile Ced) =&
assert(x>0);
Z = Z+X;

current program state
* it causes a runtime error otherwise

* but we only insert it where the condition will
always be true

if (17>y) { assert(17>y); |y = y+1; }
else { assert(!(17>y)); }
A A L

assert(! (x>0));

(alternatively, we could add dataflow constraints on the CFG edges)

. preserves semantics since asserts are guarded by conditions

Constraints for Assert

+ Aftrivial but sound constraint:
v]= JOIN(v)
» A non-trivial constraint for assert(x>E):
[v]=JOIN(v)[x—gt(JOIN(v)(x),eval(JOIN(v),E))]
where
gt([ly,h41,[l2,h2]) = [14,h]0 [I,e]

» Similar constraints are defined for the dual cases
» More tricky to define for other conditions...

X

Y
Z

wh

}

as

The interval analysis now concludes:

Exploiting Conditions

input;

0;

0;

ile (x>0) {

assert(x>0);

Z = Z+X;

if (17>y) { assert(17>y); y = y+1; }
else { assert(!(17>y)); }

X = x-1;

sert(!(x>0));

x=[-=,0], y=[0,17], z=[0,«=]

2020-04-09

Branch Correlations

» With assert we have a simple form of path
sensitivity (sometimes called control sensitivity)

» But it is insufficient to handle correlation of
branches:

if (17 > x) { ... }
... // statements that do not change x

if (17 > x) { ... }

Open and Closed Files

* Built-in functions open() and close() on a file

* Requirements:
- never close a closed file
- never open an open file

open()
- Copen)
=
closel)

» We want a static analysis to check this...(for
simplicity, let us assume there is only one file)

A Tricky Example

if (condition) {
open();
flag = 1;

1 else {
flag = 0;

}

if (flag) {
close();

}

The Naive Analysis (1/2)

« The lattice models the status of the file:
L = (2{0pen,C|Osed},(;) {openlg.:‘]osed}

-
.
/ .

{cpén} {cl r;sed}
\“\v//

» For every CFG node, v, we have a constraint
variable [[v] denoting the status after v

JOIN(v) = U [w]

we pred(v)

The Naive Analysis(2/2)

Constraints for interesting statements:
[entry]= {closed}

[open()]= {open}

[close()]= {closed}

* For all otherCFG nodes: if (condition) {

open();

[v]= JOIN(v) flag = 1;

} else {
flag = 0;
+ Before the close() statement the }

analysis concludes that the file .

is {open,closed} ® if (flag) {
close();

}

The Slightly Less Naive Analysis

» We obviously need to keep track of the flag variable
» Our second attempt is the lattice:

L= (z{open,dosed}x 2{fTag=0,f1 ag:‘O}’CX(:)

Additionally, we add assert(...) if (condition) {
to model conditionals openQ;

flag = 1;
} else {
flag = 0;
* Even so, we still only know that 3
the file is {open,closed} and that - --
flag is {flag=0,flag#0} ® 1:%:;2%3:{

1

2020-04-09

Enhanced Program Relational Analysis

if (condition) { * We need an analysis that keeps track of relations
assert(condition); between variables
open();
flag = 1;

} else {
assert(!condition); » One approach is to maintain multiple abstract states

} flag = 0; per program point, one for each path context

b (Flag) 1 * For the file example we need the lattice:
assert(flag);
close(); L = Paths — 2{ope n,closed} (note: isomorphic to 2Paths<lopen.closed))

} else {

} assert(!flag); Where Paths = {flag=0,flag+0} is the set of path contexts

Relational Constraints(1/2) Relational Constraints(2/2)
* For the file statements: + For assert statements:

[entry] = *p.{c1osed}

[open()] = ~p.{open} [assert(flag)]=

[flag=0—J0iN(v)(fT1ag=0), Flag=0—

closed()] =ip.{cTosed} “infeasible”
[1= = [assert(!flag)]=

+ For flag assignments: \ [flag=0—JoIN(v)(TTag=0), flag=0—]
[flag = 0]|=['F'Iag=0—>pl£PJO,‘N(v)(p),'FTag.—;0—>®]

+ For all other CFG nodes:

[flag = n]=[f1 ag:0—>UDJO!N(v)(p), flag=0—-0]
p=s
where nis a non-0 [[V]] = JO|N(V) = }'P' U [[W]](P)
[flag = E]=1%q. F,LJPJ'O,’N(\.'){p) for any other £ constant number wepred(v)
Generated Constraints Minimal Solution

[entry] = kp.{c1osed} [entry] {closed} {closed}
[condition] = [entry] o [condition] {closed} [closed}
%asse E')C]](“?”T t1 0?)]] = [condition] [assert{condition)] {clased} {closed}
open()] = ip.{open
[flag = 1] =[f1ag=z0—U [open()](p), F1lag=0—2] E;:ei[?] (o;:n] Ezp:::
[assert(!condition)]=[condition] < = = £

.. p [assert{Icondition]] {closed} {closed}
[flag = 0]=[flag=0—U [assert(!condition)](p), flag=0—2] — {closed) @
.- -1=7p(f1ag = 1)(p) U [flag = 0l(p) e — =
[flagl=[.-1 =
[assert(flag)] - [f1ag=0—[flag](flag=0), flag=0—2] [fiag] {closed) {open}
[close()] = rp{closed} [assertifiag)]
[assert(!flag)]=[flag=0-[flag](flag=0), f1ag=0-a] [dose(] EEE (EE)
[exit] = %.p.([cTose ()](p) U [assert(! flag)](p) [assert(ifiag] fclosed} Z

[exit] {closed} {closed}

We now know the file is open before close() ©

2020-04-09

Challenges

« The static analysis designer must choose Paths
- Often as Boolean combinations of predicates from conditionals

- iterative refinement (e.g. counter-example guided abstraction
refinement) can be used for gradually finding relevant predicates

« Exponential blow-up:

- for k predicates, we have 2k different contexts
- Redundancy often cuts this down

* Reasoning about assert:

- how to update the lattice elements with sufficient precision?
- Possibly involves heavy-weight theorem proving

Improvements

* Run auxiliary analyses first, for example:
- constant propagation
- sign analysis

will help in handling flag assignments

» Dead code propagation, change
[open()]= p-{open}
into the still sound but more precise
Topen()]= Ap.if JOIN(v)(p)=Cthen & else {open}

