
2020-04-13

1

Pointer Analysis

Yu Zhang

Most content comes from http://cs.au.dk/~amoeller/spa/

1

Agenda

2

Analyzing Programs with Pointers

How do we perform e.g.
constant propagation analysis
when the programming language
has pointers?
(or object references?)

3

Heap Pointers

• For simplicity, we ignore records
- alloc then only allocates a single cell
- only linear structures can be built in the heap

• Let’s at first also ignore functions as values
• We still have many interesting analysis challenges...

4

Pointer Targets

• The fundamental question about pointers:
What cells can they point to?

• We need a suitable abstraction
• The set of (abstract) cells, Cells, contains

- alloc-i for each allocation site with index i
- X for each program variable named X

• This is called allocation site abstraction
• Each abstract cell may correspond to many concrete

memory cells at runtime

5

Points-to Analysis

• Determine for each pointer variable X the set pt(X) of
the cells X may point to

• A conservative (“may points-to”) analysis:
- the set may be too large
- can show absence of aliasing: pt(X) ∩ pt(Y) = ∅

• We’ll focus on flow-insensitive analyses:
- Take place on the AST
- Before or together with the control-flow analysis

6

2020-04-13

2

Obtaining Points-to Information

• An almost-trivial analysis (called address-taken):
- include all alloc-i cells 注：为程序正文中的分配点
- Include the X cell if the expression &X occurs in the

program

• Improvement for a typed language:
- Eliminate those cells whose types do not match
- This is sometimes good enough
- and clearly very fast to compute

7

Pointer Normalization

• Assume that all pointer usage is normalized:
- X=alloc P where P is null or an integer constant
- X=&Y
- X=Y
- X=*Y
- *X=Y
- X=null

• Simply introduce lots of temporary variables…
• All sub-expressions are now named
• We choose to ignore the fact that the cells created at

variable declarations are uninitialized
8

Agenda

9

Andersen’s Analysis (1/2)

10

基于集合的包含关系

Andersen’s Analysis (2/2)

11

Example Program

12
Cells= {p, q, x, y, z, alloc-1}

2020-04-13

3

Applying Andersen

13

Smallest solution:
pt(p) = { alloc-1, y, z}
pt(q) = { y}

Agenda

14

Steensgaard’s Analysis

15

基于类型及其等价关系

Applying Steensgaard

16

Smallest solution:
pt(p) = { alloc-1, y, z}
pt(q) = {alloc-1, y, z}

Another Example

17

Recall Our Type Analysis…

18

2020-04-13

4

Agenda

19

Interprocedural Points-to Analysis

• In TIP, function values and pointers may be mixed
together:

(***x)(1,2,3)

• In this case the CFA and the points-to analysis
must happen simultaneously!

• The idea: Treat function values as a kind of
pointers

20

Function Call Normalization

• Assume that all function calls are of the form
x=y(a1,...,an)

• y may be a variable whose value is a function pointer
• Assume that all return statements are of the form

return z;

• As usual, simply introduce lots of temporary
variables…

• Include all function names in Cells
21

CFA with Andersen

22

CFA with Steensgaard

23

Context-sensitive Pointer Analysis

24

2020-04-13

5

Context-sensitive Pointer Analysis

25

Context-sensitive Pointer Analysis

26

Context-sensitive Pointer Analysis

27

• We can go one step further and introduce context-
sensitive heap (a.k.a. heap cloning)

• Let each abstract cell be a pair of
- alloc-i (the alloc with index i) or X (a program variable)
- a heap context from a (finite) set HeapContexts

• This allows abstract cells to be named by the source
code allocation site
and (information from) the current context

• One choice:
- set HeapContexts = Contexts
- at alloc, use the entire current call context as heap context

Agenda

28

Null Pointer Analysis

• Decide for every dereference *p, is p different from null?

• (Why not just treat null as a special cell in an Andersen or
Steensgaard-style analysis?)

• Use the monotone framework
- Assuming that a points-to map pt has been computed

• Let us consider an intraprocedural analysis
(i.e. we ignore function calls)

29

A Lattice for null Analysis

• Define the simple lattice Null:

where NN represents “definitely not null”
and ? represents “maybe null”

• Use for every program point the map lattice:
Cells →Null

30

2020-04-13

6

Setting Up

• For every CFG node, v, we have a variable ⟦v⟧:
- a map giving abstract values for all cells at the

program point after v

• Auxiliary definition:

(i.e. we make a forward analysis)

31

Null Analysis Constraints

• For operations involving pointers:
- X =alloc P: ⟦v⟧= ???
- X =&Y: ⟦v⟧= ???
- X =Y: ⟦v⟧= ???
- X =*Y: ⟦v⟧= ???
- *X =Y: ⟦v⟧= ???
- X =null: ⟦v⟧= ???

• For all other CFG nodes:
- ⟦v⟧= JOIN(v)

32

where P is null or
an integer constant

Null Analysis Constraints

• For a heap store operation *X =Y we need to model
the change of whatever X points to

• That may be multiple abstract cells(i.e. the cells pt(X))
• With the present abstraction, each abstract heap cell

alloc-i may describe multiple concrete cells
• So we settle for weak update:

*X =Y: ⟦v⟧= store(JOIN(v), X, Y)

where

33

Null Analysis Constraints

• For a heap load operation X = *Y we need to model
the change of the program variable X

• Our abstraction has a single abstract cell for X
• That abstract cell represents a single concrete cell
• So we can use strong update:

X =*Y: ⟦v⟧= load(JOIN(v), X, Y)

where

34

Strong and Weak Updates

35
The abstract cell alloc-1 corresponds to multiple concrete cells

Strong and Weak Updates

36
The points-to set for x contains multiple abstract cells

2020-04-13

7

Null Analysis Constraints

• In each case, the assignment modifies a program
variable

• So we can use strong updates, as for heap load
operations

37

Strong and Weak Updates, Revisited

• Strong update: σ[c↦new-value]
- possible if c is known to refer to a single concrete cell
- works for assignments to local variables (as long as TIP

doesn’t have e.g. nested functions)

• Weak update: σ[c↦ σ(c) ⊔new-value]
- necessary if c may refer to multiple concrete cells
- bad for precision, we lose some of the power of flow-

sensitivity
- required for assignments to heap cells

(unless we extend the analysis abstraction!)

38

Interprocedural Null Analysis

• Context insensitive or context sensitive, as usual…
- at the after-call node, use the heap from the callee

• But be careful! Pointers to local variables may
escape to the callee
- the abstract state at the after-call node cannot simply copy

the abstract values for local variables from the abstract
state

39

Escape Analysis
逃逸分析：分析对象是

否逃逸出一个函数

Using the Null Analysis

• The pointer dereference *p is “safe” at entry of v if
JOIN(v)(p) = NN

• The quality of the null analysis depends on the
quality of the underlying points-to analysis

40

Example Program & Constraints

Andersen generates:
pt(p) = {alloc-1}
pt(q) = {p}
pt(n) = Ø

41

Solution

⟦p=alloc null⟧= [p↦NN, q↦NN, n↦NN, alloc-1↦?]⟦q=&p⟧= [p↦NN, q↦NN, n↦NN, alloc-1↦?]⟦n=null⟧= [p↦NN, q↦NN, n↦?, alloc-1↦?]⟦*q=n⟧= [p↦?, q↦NN, n↦?, alloc-1↦?]⟦*p=n⟧= [p↦?, q↦NN, n↦?, alloc-1↦?]

• At the program point before the statement *q=n the
analysis now knows that q is definitely non-null

• … and before *p=n, the pointer p is may be null
• Due to the weak updates for all heap store operations,

precision is bad for alloc-i cells
42

2020-04-13

8

Agenda

43

Points-to Graphs

• Graphs that describe possible heaps:
- nodes are abstract cells
- edges are possible pointers between the cells

• The lattice of points-to graphs is 2Cells×Cells

ordered under subset inclusion
(or alternatively, Cells→ 2Cells)

• For every CFG node, v, we introduce a constraint variable ⟦v⟧
describing the state after v

• Intraprocedural analysis (i.e. ignore function calls)

44

Constraints

45

Example Program

46

Result of Analysis

• After the loop we have this points-to graph:

• We conclude that
x and y will always
be disjoint

47

Points-to Maps from Points-to Graphs

• A points-to map for each program point v:
pt(X) = { t | (X,t) ∈⟦v⟧}

• More expensive, but more precise:
- Andersen: pt(x) = { y, z}
- flow-sensitive: pt(x) = { z}

48

2020-04-13

9

Improving Precision with Abstract
Counting

49

Constraints and Better Results

• X = alloc P: …
• *X =Y: …
• …
• After the loop we have this extended points-to graph:

• Thus, alloc-2 nodes form a self-loop

50

Escape Analysis

• Perform a points-to analysis
• Look at return expression
• Check reachability in the points-to

graph to arguments or variables
defined in the function itself

• None of those

no escaping stack cells

51

