2020-04-13

Agenda

* Introduction to points-to analysis
Pointer Analysis * Andersen’s analysis

* Steensgaards’s analysis

Yu Zhang * Interprocedural points-to analysis

* Null pointer analysis

Most content comes from http://cs.au.dk/~amoeller/spa/ . F|0W—Sensitive pOintS-tO analysis
Analyzing Programs with Pointers Heap Pointers
How do we perform e.g. F s &X + For simplicity, we ignore records
constant propagation analysis | alloc E - alloc then only allocates a single cell
when the programming language | *E - only linear structures can be built in the heap
has pointers? | null B—0 '\
(or object references?) [— i i
O
. S *X=E;
*x = 42 | O—0O—0C—0
'y = -87; * Let’s at first also ignore functions as values
Z ol » We still have many interesting analysis challenges...
// is z 42 or -877

Pointer Targets Points-to Analysis
» The fundamental question about pointers: » Determine for each pointer variable X the set pt(X) of
What cells can they point to? the cells X may point to
s
+ We need a suitable abstraction * Aconservative (‘may points-to”) analysis: 7, .."; . or &7

- the set may be too large

» The set of (abstract) cells, Cells, contains
- can show absence of aliasing: pt(X) npt(Y) =<

- alloc-i for each allocation site with index i
- X for each program variable named X
- This is called allocation site abstraction + We'll focus on flow-insensitive analyses:

+ Each abstract cell may correspond to many concrete - Take place on the AST
memory cells at runtime - Before or together with the control-flow analysis

2020-04-13

Obtaining Points-to Information

» An almost-trivial analysis (called address-taken):
- include all alloc-i cells ;F: FFEFIESZFHISELS

- Include the X cell if the expression &X occurs in the
program

» Improvement for a typed language:
- Eliminate those cells whose types do not match
- This is sometimes good enough
- and clearly very fast to compute

Pointer Normalization

» Assume that all pointer usage is normalized:

- X=alloc P where P is null or an integer constant
- X=&Y

- X=Y

- X=*Y

- *X=Y

- X=null

» Simply introduce lots of temporary variables...
» All sub-expressions are now named
» We choose to ignore the fact that the cells created at

variable declarations are uninitialized

Agenda

* Introduction to points-to analysis
* Andersen’s analysis

* Steensgaards’s analysis

* Interprocedural points-to analysis
* Null pointer analysis

* Flow-sensitive points-to analysis

Andersen’s Analysis (1/2)

* For every cell ¢, introduce a constraint variable [[c]
ranging over sets of cells, i.e. [-]: Cells — 2%/

* Generate constraints: STEARREAA
- x=alloc P: alloc-ie [X]
. X=&vy: Ye[X]
< X=V M<ix
o X=%Yy c € [¥] = [<] < [X] for each ceCells
. BY oy c € [X] = [V] < [¢] for each cecCells
» X=null: (no constraints)

Andersen’s Analysis (2/2)

* The points-to map is defined as:

pt(X) = [X]

* The constraints fit into the cubic framework ©
* Unigue minimal solution in time O(n?)
* |n practice, for Java: O(n?)

* The analysis is flow-insensitive but directional
— models the direction of the flow of values in assignments

Example Program

var p,q,X,Y,Z;
p = alloc null;

X =Yy;
X = 2Z;
p = 2z;
p=d;
q = &y;
X = "p;
p = &z;

Cells={p, q, x,y, z, al loc-1}

2020-04-13

Applying Andersen

var p,q,X,y,Z; alloc-1 e [p]

p = alloc null; Iyl = x]

X =Y, [z] = [x]

X = Z; ce [pl = [2] = [a] for each ceCells
D = & lal = [r]

P =dq; yeldl

q = &y; c e [p] = [a] =[] for each cecells
X = *p; ze[pl

p = &z;

Smallest solution:
pt(p) ={alloc-1, y, z}
pt(a) ={y}

Agenda

* |ntroduction to points-to analysis
* Andersen’s analysis

* Steensgaards’s analysis

* |Interprocedural points-to analysis
* Null pointer analysis

* Flow-sensitive points-to analysis

Steensgaard’s Analysis

* View assignments as being bidirectional

* Generate constraints:

-« x=alloc p: alloc-ie [X]

- X=&Y: Ye [X]

« X=V: XI=1

. X= %Y c € [¥Y] = [[c] = [X] for each ceCells
. EXZ Y c € [X] = [Y] = [[c] for each ceClells

* Extra constraints:
¢, GE[c] = [[eq] = [[e;] and [c;] N [[e;]] 2 D = [[e] = [c,]

(whenever a cell may point to two cells, they are essentially merged into one)

* Steensgaard’s original formulation uses conditional unification for X=Y:
c € [¥] = [X] = [Y] for each ceCells (avoids unifying if ¥ is never a pointer)
15

T X O T

Applying Steensgaard

ar p,q,x,vy,z; alloc-1< [p]

= alloc null; I¥1=Ix]

- 21 [x]

I ae [Pl=I21-[d]
- [a] = [e]

p=2z y < [dl

= 4q; a e [p]= [a] = [x]

= &y; z e [p]

= *p; + the extra constraints

= &z;

Smallest solution:
pt(p) = { alloc-1, y, z}
pt(q) = {alloc-1, y, z}

al
b1l

al
b2
cl
bl

Another Example

Andersen:

oy D~~~
= &cl;

cl =

&d1;

= &b2;
= &c?2; Steensgaard:
= &d2;
= &c2;

Recall Our Type Analysis...

Focusing on pointers...
Constraints:

- X=alloc P: X1 =&[~]
- X=&y: (] = &[¥]
- X=v: I =1"1

. X=*y: &[] ="
. Ex=vy: [= &[¥]

Implicit extra constraint for term equality:
&t =&t, >t =t,

Assuming the program type checks, is the solution
for pointers the same as for Steensgaard’s analysis?

2020-04-13

Agenda

* Introduction to points-to analysis
* Andersen’s analysis

* Steensgaards’s analysis

* Interprocedural points-to analysis
* Null pointer analysis

* Flow-sensitive points-to analysis

Interprocedural Points-to Analysis

* In TIP, function values and pointers may be mixed
together:
(***x)(1,2,3)

* In this case the CFA and the points-to analysis
must happen simultaneously!

* The idea: Treat function values as a kind of
pointers

Function Call Normalization

Assume that all function calls are of the form
X=y(ay,...,a,)

y may be a variable whose value is a function pointer

Assume that all return statements are of the form
return z;

As usual, simply introduce lots of temporary
variables...

Include all function names in Cells

CFA with Andersen

* For the function call
x=y(ay,y .,y a,)
and every occurrence of
fGqg, oy x,) {..returnz; }

4 o
af:::’e;sen S analysis jc
ady close
i ¥ connecy,
ontrg, I-flow analysjs. fd

add these constraints:

felf
fe b= (lal < [x] fori=1,..n n [2] < [])

* (Similarly for simple function calls)
» Fits directly into the cubic framework!

CFA with Steensgaard

For the function call

x=y(a;y ..., a,)
and every occurrence of

fCxgy oy x,) {..returnz; }
add these constraints:

felf
fe yl= ([l =[xl for i=1,...n A [2] = [x])

(Similarly for simple function calls)

Fits into the unification framework, but requires a
generalization of the ordinary union-find solver

Context-sensitive Pointer Analysis

+ Generalize the abstract domain Cells — 2%l to
Contexts — Cells — 2Cells
(or equivalently: Cells x Contexts — 2¢¢lk)
where Contexts is a (finite) set of call contexts
* As usual, many possible choices of Contexts
— recall the call string approach and the functional approach
* We can also track the set of reachable contexts for
each function (like the use of lifted lattices earlier):

Contexts — lift(Cells — 2Cells)

+ Does this still fit into the cubic solver?

2020-04-13

Context-sensitive Pointer Analysis Context-sensitive Pointer Analysis

foo(a) {
return *a;

1 mk(O {
return alloc null;

bar() { 3
x = alloc null; baz() {
y = alloc null; var x,y;
':x = alloc null; x = mk();
*y = alloc null; y = mkQ);
q = foo(x) o
w = foo(y) ¥

Are X and Y aliases?

Are g and W aliases?

Context-sensitive Pointer Analysis Agenda

We can go one step further and introduce context-
sensitive heap (a.k.a. heap cloning)

Let each abstract cell be a pair of
- alloc-i (the alloc with index i) or X (a program variable)

¢ Introduction to points-to analysis

* Andersen’s analysis

- a heap context from a (finite) set HeapContexts * Steensgaards’s analysis

This allows abstract cells to be named by the source * Interprocedural points-to analysis
code allocation site : :

and (information from) the current context * Null pointer analysis

One choice: * Flow-sensitive points-to analysis
- set HeapContexts = Contexts
- at alloc, use the entire current call context as heap context

Null Pointer Analysis A Lattice for null Analysis
Decide for every dereference *p, is p different from null? « Define the simple lattice Null:
?

(Why not just treat null as a special cell in an Andersen or |
Steensgaard-style analysis?)

NN
Use the monotone framework where NN represents “definitely not null”
- Assuming that a points-to map pt has been computed and ? represents “maybe null”’

» Use for every program point the map lattice:

Let us consider an intraprocedural analysis Cells —Null

(i.e. we ignore function calls)

2020-04-13

Setting Up

» For every CFG node, v, we have a variable [v]:
- a map giving abstract values for all cells at the

program point after v
m

+ Auxiliary definition:
JOIN(v) = LI [w]

wepred(v)

(i.e. we make a forward analysis)

Null Analysis Constraints

» For operations involving pointers:

- X =alloc P: [vl=??? where Pis null o
- X =&Y: V= 222 an integer constant
- X=Y: [V]= 22?2
- X =Y [v]= 227
- X =Y vl= 22?2
- X =null: [vl=???
 For all other CFG nodes:
- [[v]= JOIN(v)

Null Analysis Constraints

» For a heap store operation *X =Y we need to model
the change of whatever X points to

+ That may be multiple abstract cells(i.e. the cells pt(X))

+ With the present abstraction, each abstract heap cell
alloc-i may describe multiple concrete cells

+ So we settle for weak update:
X =Y [v]= store(JOIN(v), X, Y)

where store(s, X, Y) = 6lu ~ o(u) U 6(Y)]
acpt(X)

Null Analysis Constraints

» For a heap load operation X = *Y we need to model
the change of the program variable X

» Our abstraction has a single abstract cell for X
» That abstract cell represents a single concrete cell

* So we can use strong update:
X =*Y: [v]= load(JOIN(v), X, Y)

where load(s, X, Y) = o[X = Lo(a)]
aept({Y)

Strong and Weak Updates

mkQ {
return alloc null;
}
a =mk(Q;
b = mk(Q;
*a = alloc null;
n=null;
is € null here? *b = n; // strong update here would be unsound!
C = *a;

The abstract cellal loc-1 corresponds to multiple concrete cells

Strong and Weak Updates

a alloc null;
b alloc null;
*a = alloc null;
*b = alloc null;
if (...) {

X = a;
} else {

X = b;

}
n

is C null here? “X = Nn; // strong update here would be unsound!

The points-to set for x contains multiple abstract cells

2020-04-13

Null Analysis Constraints

+ X=alloc P: [v]=JOINW)[X+~NN,alloc-1 7]

. X=&y: [v] = JOIN(v)[X ~ NN] - ”‘ a——
. X=v [V] = JOIN()[X = JOIN()(Y)]
» X=null: [v] = JOoIN(v)[X = 2

* In each case, the assignment modifies a program
variable

+ So we can use strong updates, as for heap load
operations

Strong and Weak Updates, Revisited

» Strong update: c[c—new-value]
- possible if ¢ is known to refer to a single concrete cell

- works for assignments to local variables (as long as TIP
doesn’t have e.g. nested functions)

» Weak update: o[c~ o(c) Linew-value]
- necessary if c may refer to multiple concrete cells
- bad for precision, we lose some of the power of flow-
sensitivity
- required for assignments to heap cells
(unless we extend the analysis abstraction!)

Interprocedural Null Analysis

» Context insensitive or context sensitive, as usual...
- at the after-call node, use the heap from the callee

+ But be careful! Pointers to local variables may
escape to the callee

- the abstract state at the after-call node cannot simply copy
the abstract values for local variables from the abstract
State function fiby, _, b

Escape Analysis
HERDHT: DITRISRE

ABRbEH— MR

Using the Null Analysis

» The pointer dereference *p is “safe” at entry of v if
JOIN(V)(p) = NN

» The quality of the null analysis depends on the
quality of the underlying points-to analysis

Example Program & Constraints

p = alloc null; Andersen generates:
a = &p; pt(p) = {alloc-1}
gt pt(a) = {p}
*p = n; pt(n) =

[p=alloc null]=1[p—NN,alloc-1~ ?]

[a=&p] = [p=alloc null1][g~ NN]

[n=nul11] = [g=&p][n = ?]

[*g=n] = [n=nu11][p = [n=nul1](p) u [n=nuTT](n)]
[*p=n] = [*g=n]lalloc-1 - [*g=n](alloc-1) u [*q=n](n)]

Solution

[p=alloc null]= [p~NN, g—=NN, n=>NN, alloc-1-7?]
[g=&p]= [p~NN, g—=NN, n—NN, alloc-1~7?]
[n=null]= [p—NN, g=NN, n—=?, alloc-1-7?]
[*g=n]=[p~?, g—=NN, n—?, alloc-1-7?]

[*p=n]= [p~?, g=NN, n=?, alloc-1-7]

» At the program point before the statement *q=n the
analysis now knows that q is definitely non-null

* ... and before *p=n, the pointer p is may be null

» Due to the weak updates for all heap store operations,
precision is bad for alloc-i cells

2020-04-13

Agenda

* Introduction to points-to analysis
= Andersen’s analysis

* Steensgaards’s analysis

* Interprocedural points-to analysis
* Null pointer analysis

* Flow-sensitive points-to analysis

Points-to Graphs

» Graphs that describe possible heaps:
- nodes are abstract cells
- edges are possible pointers between the cells

 The lattice of points-to graphs is 2CellsxCells
ordered under subset inclusion
(or alternatively, Cells— 2Cells)

» For every CFG node, v, we introduce a constraint variable [v]
describing the state after v

* Intraprocedural analysis (i.e. ignore function calls)

Constraints

* For pointer operations:
« x=alloc P: [v]=JoiNWHxU{(X alloc-i)}
< X=&v: [Vl =JOIN(IXU (X, 1))
. X=Y [v] = JOIN(u)AX U { (X, t) | (Y,) JOIN(v)}
* X=ky, vl = JOIN(v)»X U { (X, t) | (Y, s)ea, (s, t)eJOIN(v)}
o EX=Y V] = JOIN(v) U{ (s, t) | (X, s)cJOIN(v), (Y, t)= JOIN(v)}
« X=null: [v] =JON(v)IX T ot ek updatel
where 6dX = {(s,t)ec | s # X}
JOIN(v) = U[w]
* For all other CFG nodes: wepred(v)
¢ [v] =JOIN(v)

Example Program

var X,y,n,p,q,
x = alloc null;
*x = null; *y =
n = input;
while (n>0) {

p = alloc null; g = alloc null;

*p o= X3 *q = y;

X=p;, Y =4,

n n-1;

y = alloc null;
v

Result of Analysis

+ After the loop we have this points-to graph:

— £
P —{alloc-3] 1—7@“‘[“'

= <

\""- =
‘,m {all0c 2}\}

var x,y,n,p,q;
x = alloc null; y = alloc null;

» We conclude that fiximanul]; s

n = input;

H while (n>0) {
x and yWI” alWayS p = alloc null; q = alloc null;
be disjoint P ‘p’_“-y*g yi
n-1;

q;

X
n

1

Points-to Maps from Points-to Graphs

* A points-to map for each program point v:
pt(X) = {t| (X;t) e [V]}

» More expensive, but more precise:

pt(x) ={v, z} X
- flow-sensitive: pt(x) ={z} o

&y;
&z;

- Andersen:

2020-04-13

Improving Precision with Abstract
Counting

* The points-to graph is missing information:
— alloc-2 nodes always form a self-loop in the example

* We need a more detailed lattice:

2¢el=Cell o (Cell = Count)

where we for each cell keep track of

how many concrete cells that abstract cell ?

describes /_/'/ |\\
Count=0 1 =1

This permits strong updates on those

that describe precisely 1 concrete cell 1

Constraints and Better Results

X =allocP: ...
*X =Yoo

After the loop we have this extended points-to graph:

?

S —
ol T@P _q_—"r;’"
L3 y
)t'-'-'-’\/ 1 = i
=l e
“~[a110c-1 _}_‘a]‘lac—z ™
)

Thus, alloc-2 nodes form a self-loop

Escape Analysis

Perform a points-to analysis
. baz() {
Look at return expression var x:

Check reachability in the points-to return &x;
graph to arguments or variables 3
defined in the function itself

main() {
var p;
None of those p=baz();
*p=1;
U return *p;

no escaping stack cells }

