
Overloading and Type Classes
(Adhoc Polymorphism)

Yu Zhang

Course web site: http://staff.ustc.edu.cn/~yuzhang/tpl

Yu Zhang: Overloading and Type Classes

References
• D. Rémy(Cambium project-team): Type systems for PLs

- Chapter 7 Overloading
• [Concepts in PLs] Revised Chapter 7 Type Classes
• PFPL

- Chapter 44 Type Abstractions and Type Classes
• Papers

- [ESOP 1988] Parametric Overloading in Polymorphic PLs
- [POPL 2007] Modular Type Classes

• Implementation
- Implementing, and Understanding Type Classes
- Implementing type classes as OCaml modules

• Types and Propositions:
- [TPHOLs 1997] Type classes and overloading in higher-order logic

Yu Zhang: Overloading and Type Classes

Outline

• Parametric Polymorphism vs. Overloading
• Why Overloading
• Overloading Mechanisms

- Static / dynamic resolution of overloading

• Parametric Overloading and Type Classes
also known as bounded polymorphism, or type classes

- Dictionary passing
- Macro
- Intentionally type analysis

Yu Zhang: Overloading and Type Classes

Parametric Polymorphism vs. Overloading

• Parametric polymorphism
- Single algorithm for any type

If , then , , …

• Overloading
- Single symbol may refer to different algorithms/operations.
- Each algorithm may have different unrelated type.
- Choice of algorithm determined by type context.

• Parametric overloading
- The types being instances of a single type expression over

some extended set of type variables

Yu Zhang: Overloading and Type Classes

int int int float flo has types , ,
but not for any .

at float
X X X X

+ → → → →
→ →

Why Overloading ?

• Many useful functions are not parametric
• Can list membership work for any type?

• Can list sorting work for any type?

member : . list boolX X X∀ → →

sort : . list listX X X∀ →

Yu Zhang: Overloading and Type Classes

Why Overloading ?

• Many useful functions are not parametric
• Can list membership work for any type?

- No! Only for types X that support equality.

• Can list sorting work for any type?

- No! Only for types X that support ordering.

member : . list boolX X X∀ → →

sort : . list listX X X∀ →

Yu Zhang: Overloading and Type Classes

Variants of Overloading

• Static overloading: static resolution strategy
- Simple semantics: meaning determined statically
- Does not increase expressiveness
- Reduce verbosity, increase modularity and abstraction

• Dynamic overloading
- meaning determined dynamically
- Increase expressiveness
- Extra mechanism to support the dynamic resolution

• Require full or partial type info., or some type-related info.

Yu Zhang: Overloading and Type Classes

Overloading Mechanisms

Static Overloading

• Approach 1: A function containing overloaded symbols
=> multiple functions

• e.g. double x = x + x
defines two versions: Int -> Int and Float -> Float

But, how to resolve
doubles (x, y, z) = (double x, double y, double z)
• 8 possible versions!

=> Exponential growth in number of versions

Yu Zhang: Overloading and Type Classes

Static Overloading

• Approach 2 (used in SML-MLton): restrict the definition, i.e.,
specify one of the possible versions as the meaning

• e.g. double x = x + x => double: Int -> Int
double 3 double 3.2

If you want double: Float -> Float, you need define the function
explicitly specifying type.

• In Java
- overloading a method in a class => static resolution
- But if an argument has a runtime type that is subtype

of the compile-time time => dynamic resolution

Yu Zhang: Overloading and Type Classes

Dynamic Overloading

• Resolution with a type passing semantics
Runtime type dispatch using a general typecase construct
- High runtime cost of typecase unless type patterns are

significantly restricted

• Resolution with a type erasing semantics
To avoid the expensive cost of typecase,

restrict the overloaded functions by using tags.

can be elaborated into

let . in []f x x xλ= +

let (). . in []f x x xλ λ= + +
 is then elaborated t1.0 (.o 1.0)f f +

e.g. Dictionary passing

Yu Zhang: Overloading and Type Classes

Parametric Overloading

• Overloading Equality
1. Equality was overloaded as an operator.

But member using ‘==’ does not work in general

Yu Zhang: Overloading and Type Classes

member [] False
member (:) () || member
member [1, 2, 3] 32
member "Haskell" 'k'

y
x xs y x y xs y==

=
=

Parametric Overloading

• Overloading Equality
1. Equality was overloaded as an operator.

But member using ‘==‘ does not work in general
2. Make type of equality fully polymorphic (Miranda)

(==) :: t -> t-> Bool
thus member is polymorphic, member:: [t] -> t-> Bool
If t does not provide a definition of equality, then there is a
runtime error when equality applied to a value of type t.
=> Violate principle of abstraction

Yu Zhang: Overloading and Type Classes

Parametric Overloading

• Overloading Equality
1. Equality was overloaded as an operator.

But member using ‘==‘ does not work in general
2. Make type of equality fully polymorphic (Miranda)
3. Make equality polymorphic in a limited way

(used in current SML)
(==) :: ‘’t -> ‘’t-> Bool ‘’t indicate t is an eqtype variable
member has precise type, i.e. [‘’t] -> ‘’t -> Bool
if t does not support equality, there will be a static error

Yu Zhang: Overloading and Type Classes

Parametric Overloading

• Overloading Equality
1. Equality was overloaded as an operator.

But member using ‘==‘ does not work in general
2. Make type of equality fully polymorphic (Miranda)
3. Make equality polymorphic in a limited way

(used in current SML)
(==) :: ‘’t -> ‘’t-> Bool ‘’t indicate t is an eqtype variable
member has precise type, i.e. [‘’t] -> ‘’t -> Bool
if t does not support equality, there will be a static error

Equality is a special case,
how can we generalize overloading?Yu Zhang: Overloading and Type Classes

Type Classes

• Type classes are a mechanism in Haskell
- Generalize eqtype to user-defined collections of types

(called type classes)
member:: (a-> a-> Bool) -> [a] -> a-> Bool
member cmp [] y = False
member cmp (x : xs) y = (cmp x y) || member cmp xs y

• Dictionary-passing style implementation [ESOP1988]

- Type-class declaration – dictionary
- Name of a type class method – label in the dictionary
- Parametric overloading

• pass the dictionary to the function

Yu Zhang: Overloading and Type Classes

Examples: Dictionary Passing

• Haskell • OCaml Dictionary

Label in the
dictionary

Yu Zhang: Overloading and Type Classes

More Examples

• Type class whose methods have a different of
overloading: e.g. Num

• An instance with a constraint:
e.g. a Show instance for all list types [a] where the element
type a is also restricted to be a member of Show.

show_list: ‘a show -> ‘a list show (OCaml)

• A class of comparable types
e.g. class Eq a (Haskell) or type 'a eq (OCaml)

• Polymorphic recursion
See http://okmij.org/ftp/Computation/typeclass.html#dict

Yu Zhang: Overloading and Type Classes

Other Implementations

• Type classes as macros
- Static monomorphization (compile-time)

• Takes the type-checked code with type classes
• generates code with no type classes and no bounded

polymorphism
vs. C++ templates ? Template instantiation may produce ill-
typed code

• Intentional type analysis (run-time)
choose the appropriate overloading operation at run-time

See http://okmij.org/ftp/Computation/typeclass.html#dict

Yu Zhang: Overloading and Type Classes

Mod: A Module Language

• Syntax

Yu Zhang: Overloading and Type Classes

