
Subtyping
(Dynamic Polymorphism)

Yu Zhang

Course web site: http://staff.ustc.edu.cn/~yuzhang/tpl

References

• PFPL
- Chapter 24 Structural Subtyping
- Chapter 27 Inheritance

• TAPL (pdf)
- Chapter 15 Subtyping

• [Concepts in PLs]

Recap: Subtyping and Inheritance

• Interface
- The external view of an object

• Subtyping
- Relation between interfaces

• Implementation
- The internal representation of an object

• Inheritance
- Relation between implementations

Various Object-Oriented Languages

• Pure dynamically-typed OO languages
- Object implementation and run-time lookup
- Class-based languages (Smalltalk)
- Prototype-based languages (Self, JavaScript)

• Statically-typed OO languages
- C++

• using static typing to eliminate search
• problems with C++ multiple inheritance

- Java
• using Interfaces to avoid multiple inheritance

Smalltalk: Subtyping

• If interface A contains all of interface B, then A
objects can also be used B objects.

Point ColorPoint
x:y: x:y:
moveDx:Dy: moveDx:Dy:
x x
y y
draw color

draw

ColorPoint interface contains Point
ColorPoint is a subtype of Point

Subtyping and Inheritance

• Smalltalk/JavaScript subtyping is implicit
- Not a part of the programming language
- Important aspect of how systems are built

• Inheritance is explicit
- Used to implement systems
- No forced relationship to subtyping

C++

• C++ is an object-oriented extension of C, Bell Labs
• Object-oriented features

- Classes
- Objects, with dynamic lookup of virtual functions
- Inheritance

• Single and multiple inheritance
• Public and private base classes

- Subtyping
• Tied to inheritance mechanism

- Encapsulation
• Public, private, protected visibility

C++: Virtual functions

• Member functions are either
- Virtual, if explicitly declared or inherited as virtual
- Non-virtual otherwise

• Virtual functions
- Accessed by indirection through ptr in object
- May be redefined in derived (sub) classes

• Non-virtual functions
- Are called in the usual way. Just ordinary functions.
- Cannot redefine in derived classes (except overloading)

• Pay overhead only if you use virtual functions

C++ Subtyping

• Subtyping in principle
- A <: B if every A object can be used without type error

whenever a B object is required

• C++: A <: B if class A has public base class B
- Independent classes not subtypes

Java

• 1990-95 James Gosling and others at Sun
• Syntax similar to C++
• Object

- has fields and methods
- is allocated on heap, not run-time stack
- accessible through reference (only ptr assignment)
- garbage collected

• Dynamic lookup
- Similar in behavior to other languages
- Static typing => more efficient than Smalltalk
- Dynamic linking, interfaces => slower than C++

Inheritance
• Similar to Smalltalk, C++
• Subclass inherits from superclass

- Single inheritance only (but Java has interfaces)

• Some additional features
- Conventions regarding super in constructor and

finalize methods
- Final classes and methods cannot be redefined

Interfaces vs Multiple Inheritance

• C++ multiple inheritance
- A single class may inherit from two base classes
- Constraints of C++ require derived class

representation to resemble all base classes

• Java interfaces
- A single class may implement two interfaces
- No inheritance (of implementation) involved
- Java implementation (discussed later) does not

require similarity between class representations

Subtyping Principles

• Subtyping judgement
-

• Subsumption rule
• Numeric types

-

• Product types，Sum types

Γ ⊢ 𝑒: 𝜏 𝜏 <: 𝜏 Γ ⊢ 𝑒: 𝜏
𝜏 <: 𝜏 𝜏 <: 𝜏𝜏 <: 𝜏𝜏 <: 𝜏

𝐽 ⊆ 𝐼𝜏 ∈ <: 𝜏 ∈
Width subtyping

(较宽积类型是较窄积类型的子类型)

𝐽 ⊆ 𝐼𝜏 ∈ <: 𝜏 ∈

Subtyping Principles

• Variance:
- Product and sum types: Depth subtyping (Covariance)

- Partial function types
• covariant in its range.
• contravariant in its domain position

𝜏 <: 𝜏 (∀𝑖 ∈ 𝐼)𝜏 ∈ <: 𝜏 ∈ 𝜏 <: 𝜏 (∀𝑖 ∈ 𝐼)𝜏 ∈ <: 𝜏 ∈
𝜏 <: 𝜏𝜏 ⇀ 𝜏 <: 𝜏 ⇀ 𝜏

𝜏 <: 𝜏𝜏 ⇀ 𝜏 <: 𝜏 ⇀ 𝜏

Subtyping Principles

• Quantified Types

- Substitution：If , and ,
then

∆, 𝑡 type ⊢ 𝜏‘ <: 𝜏∆ ⊢ ∀(𝑡. 𝜏‘) <: ∀(𝑡. 𝜏) ∆, 𝑡 type ⊢ 𝜏‘ <: 𝜏∆ ⊢ ∃(𝑡. 𝜏‘) <: ∃(𝑡. 𝜏)

