
Applied Numerical Mathematics 56 (2006) 1491–1518

www.elsevier.com/locate/apnum

Space–time discontinuous Galerkin method for advection–diffusion
problems on time-dependent domains

J.J. Sudirham ∗, J.J.W. van der Vegt, R.M.J. van Damme

Department of Applied Mathematics, University of Twente, PO Box 217, 7500 AE, Enschede, The Netherlands

Available online 10 January 2006

Abstract

This article presents a space–time discontinuous Galerkin (DG) finite element discretization of the advection–diffusion equation
on time-dependent domains. In the space–time DG discretization no distinction is made between the space and time variables
and discontinuous basis functions are used both in space and time. This approach results in an efficient numerical technique for
physical applications which require moving and deforming elements, is suitable for hp-adaptation and results in a fully conservative
discretization. A complete derivation of the space–time DG method for the advection–diffusion equation is given, together with the
relation of the space–time discretization with the arbitrary Lagrangian Eulerian (ALE) approach. Detailed proofs of stability and
error estimates are also provided. The space–time DG method is demonstrated with numerical experiments that agree well with the
error analysis.
© 2005 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Many engineering applications require the solution of partial differential equations on time-dependent domains.
Examples are fluid-structure interaction problems, Stefan problems, and non-linear free surface water waves. These
problems require moving and deforming elements to accommodate for the changing of the domain boundary position
and it is generally important to maintain exact conservation of certain physical quantities. In this paper we present
a space–time discontinuous Galerkin (DG) finite element method which is well suited for problems on complicated
time-dependent domains. This DG method is an extension to parabolic problems of the space–time DG method for
non-linear hyperbolic problems presented in [16]. The aim of this paper is to provide a detailed derivation and analysis
of the space–time DG method for the advection–diffusion equation on time-dependent domains and verify these results
with numerical experiments.

The DG method has recently received significant interest since this technique is well suited to hp-adaptation and
parallel computing due to its high degree of locality. Also, the DG method results in an element wise conservative
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discretization, which is crucial when dealing with conservation laws. DG methods for the spatial discretization of dif-
ferent types of partial differential equations have been investigated by Cockburn and co-workers and detailed surveys
can be found in e.g. [2,8]. The main feature of the DG method is the use of basis functions which are discontinuous
across element faces. For problems on time-dependent domains which require moving and deforming elements there
is, however, a need of using basis functions which are also discontinuous in time as it provides greater flexibility
to deal with the remeshing and deformation of the computational mesh. The use of discontinuous basis functions in
time has been explored extensively by Hughes [11], Tezduyar [14] and their co-workers and demonstrated for a wide
range of problems which require moving and deforming meshes. In the so-called space–time DG method we com-
bine both DG techniques and obtain a versatile algorithm for the adaptive solution of partial differential equations on
time-dependent domains.

The organization of this paper is as follows. In Section 2 we introduce the advection–diffusion equation under
consideration. First, the equation is presented in the usual form, then after a description of the space–time domain,
the advection–diffusion equation is reformulated in the space–time framework. This section is completed with a
description of the boundary conditions imposed on different parts of the domain boundary. Section 3 starts with a
description of the construction of the space–time domain and elements. In this section we also introduce the finite
element spaces and several operators necessary to define the weak formulation. In Section 4 we present the derivation
of the DG weak formulation for the advection–diffusion equation. This section is completed with the transformation
of the weak formulation into an arbitrary Lagrangian Eulerian (ALE) formulation as this formulation is useful for
the actual implementation of the algorithm. In Section 5, we show that the space–time DG formulation is consistent,
coercive, stable and gives a unique solution. In Section 6 we provide error estimates in the DG norm and show the
hp-convergence of the method. This section is completed with error estimates at a specific time level in the L2-norm.
In Section 7 we show results of numerical experiments on a time-dependent computational domain to verify the
theoretical results and the accuracy of the space–time DG discretization. Finally, concluding remarks are made in
Section 8.

2. Advection–diffusion equation

In this section we consider the advection–diffusion equation in the usual form and in the space–time framework.
Let Ωt be an open, bounded domain in R

d , with d the number of spatial dimensions. The closure of Ωt is �Ωt and the
boundary of Ωt is denoted by ∂Ωt . The subscript t denotes the domain at time t as we consider the geometry of the
spatial domain to be time-dependent. The outward normal vector to ∂Ωt is denoted by n̄ = (n1, . . . , nd). Denoting
x̄ = (x1, . . . , xd) as the spatial variables, we consider a time-dependent advection–diffusion equation:

∂c

∂t
+

d∑
i=1

∂

∂xi

(
ui(t, x̄)c

) −
d∑

i,j=1

∂

∂xj

(
Dij (t, x̄)

∂c

∂xi

)
= 0, in Ωt, (1)

where u = (u1, . . . , ud) is a vector field whose entries are continuous real-valued functions on �Ωt . Furthermore, D ∈
R

d×d is a symmetric matrix of diffusion coefficients on �Ωt whose entries are continuous real-valued functions. This
matrix is positive definite in Ωt and positive semi-definite on ∂Ωt . Then there exists a symmetric matrix D� ∈ R

d×d ,
the matrix square root D� = D1/2, such that

D = D�D�. (2)

In the space–time discretization we directly consider a domain in R
d+1. A point x ∈ R

d+1 has coordinates (x0, x̄),
with x0 = t representing time. We then define the space–time domain E ⊂ R

d+1. The boundary of the space–time
domain ∂E consists of the hypersurfaces Ω0 := {x ∈ ∂E | x0 = 0}, ΩT := {x ∈ ∂E | x0 = T }, and Q := {x ∈ ∂E | 0 <

x0 < T }. We reformulate the advection–diffusion equation now in the space–time framework. First, we introduce the
vector function B ∈ R

d+1 and the symmetric matrix A ∈ R
(d+1)×(d+1) as:

B = (1, u), A =
(

0 0
0 D

)
.

Then the advection–diffusion equation (1) can be transformed into a space–time formulation as:

−∇ · (−Bc + A∇c) = 0 in E, (3)
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where ∇ = ( ∂
∂x0

, ∂
∂x1

, . . . , ∂
∂xd

) denotes the gradient operator in R
d+1. Later we will also use the notation �∇ to denote

the spatial gradient operator in R
d , defined as �∇ = ( ∂

∂x1
, . . . , ∂

∂xd
). The unit outward normal vector at ∂E is denoted

with n.
As different boundary conditions are imposed on ∂E , we discuss in more detail the subdivision of ∂E into different

parts. The boundary ∂E is divided into disjoint boundary subsets ΓS,Γ−, and Γ+, where each subset is defined as
follows:

ΓS := {
x ∈ ∂E : n̄TDn̄ > 0

}
, Γ− := {x ∈ ∂E \ ΓS : B · n < 0}, Γ+ := {x ∈ ∂E \ ΓS : B · n � 0}.

The subscript S denotes the part of ∂E where matrix D is symmetric positive definite, while the subscripts − and +
denote the inflow and outflow boundaries, respectively. We assume that ΓS has a non-zero surface measure. Note that
∂E = ΓS ∪Γ− ∪Γ+. We subdivide ΓS further into two sets: ΓS = ΓDS ∪ΓM , with ΓDS the part of ΓS with a Dirichlet
boundary condition and ΓM the part of ΓS with a mixed boundary condition. We also subdivide Γ− into two parts:
Γ− = ΓDB ∪ Ω0, with ΓDB the part of Γ− with a Dirichlet boundary condition and Ω0 the part of Γ− with the initial
condition. Note that ΓD = ΓDS ∪ΓDB ⊂ ∂E is the part of the space–time domain boundary with a Dirichlet boundary
condition. The boundary conditions on different parts of ∂E are written as

c = c0 on Ω0,

c = gD on ΓD,

αc + n · (A∇c) = gM on ΓM, (4)

with α � 0 and c0, gD,gM given functions defined on the boundary. There is no boundary condition imposed on Γ+.

3. Space–time description, finite element spaces and trace operators

3.1. Definition of space–time slabs, elements and faces

In this section we give a description of the space–time slabs, elements and faces used in the DG discretization.
First, consider the time interval I = [0, T ], partitioned by an ordered series of time levels t0 = 0 < t1 < · · · < tNt = T .
Denoting the nth time interval as In = (tn, tn+1), we have I = ⋃

n Īn. The length of In is defined as �nt = tn+1 − tn.
Let Ωtn be an approximation to the spatial domain Ω at tn for each n = 0, . . . ,Nt . A space–time slab is defined as the
domain En = E ∩ (In × R

d) with boundaries Ωtn , Ωtn+1 and Qn = ∂En \ (Ωtn ∪ Ωtn+1).
We now describe the construction of the space–time elements K in the space–time slab En. Let the domain Ωtn be

divided into Nn non-overlapping spatial elements Kn. At tn+1 the spatial elements Kn+1 are obtained by mapping
the elements Kn to their new position. Each space–time element K is obtained by connecting elements Kn and Kn+1

using linear interpolation in time. A sketch of the space–time slab En and element K for two spatial dimensions is
shown in Fig. 1. We denote by hK the radius of the smallest sphere containing each element K. The element boundary
∂K is the union of open faces of K, which contains three parts Kn,Kn+1, and Qn

K = ∂K\ (Kn ∪Kn+1). We denote by
nK the unit outward space–time normal vector on ∂K. The definition of the space–time domain is completed with the
tessellation T n

h , which consists of all space–time elements in En, and Th = ⋃
n T n

h , which consists of all space–time
elements in E .

Next, we consider several sets of faces S. The set of all faces in �E is denoted with F , the set of all interior faces
in E with Fint, and the set of all boundary faces on ∂E with Fbnd. In the space–time slab En we denote the set of all
faces with Fn and the set of all interior faces with Sn

I . The faces separating two space–time slabs are denoted as Sn
S .

Several sets of boundary faces are defined as follows. The set of faces on ΓDS and ΓDB are denoted with Sn
DS and

Sn
DB , respectively. These sets are grouped into Sn

D . The set of faces with a mixed boundary condition is denoted with
Sn

M . The set of faces with either a Dirichlet or a mixed boundary condition is denoted as Sn
DM . The sets Sn

I and Sn
D

are grouped into Sn
ID .

Depending on whether the advective flux on Sn
DS is inflow or outflow, we subdivide Sn

DS further into Sn
DSm and

Sn
DSp , where B ·n < 0 on Sn

DSm and B ·n � 0 on Sn
DSp . The sets Sn

DB and Sn
DSm are grouped into Sn

DBSm while the sets
Sn and Sn are grouped into Sn . These sets are important when we discuss the advective flux in Section 4.2.
M DSp MDSp



1494 J.J. Sudirham et al. / Applied Numerical Mathematics 56 (2006) 1491–1518
Fig. 1. Space–time slab En with space–time element K.

3.2. Finite element spaces and trace operators

First we recall standard definition of the Sobolev spaces Hs(D) (see e.g. [4]), with s a non-negative integer, in a
domain D ⊂ R

n, n is either d or d + 1:

Hs(D) := {
v ∈ L2(D): ∂γ v ∈ L2(D) for |γ | � s

}
,

where ∂γ denotes the weak derivative (see [4]) and γ the multi-index symbol, γ = (γ1, . . . , γn), with γi non-negative
integers. The length of γ is given by |γ | = ∑n

i=1 γi . When s = 0 the space is denoted as L2(D) which is equipped
with the standard inner-product and norm:

(w,v)D :=
∫
D

wv dK, ‖v‖L2(D) := (v, v)
1/2
D ,

and for s � 1, the Sobolev norm and semi-norm are defined as:

‖v‖Hs(D) :=
( ∑

|γ |�s

∥∥∂γ v
∥∥2

L2(D)

)1/2

, |v|Hs(D) :=
( ∑

|γ |=s

∥∥∂γ v
∥∥2

L2(D)

)1/2

.

We now introduce anisotropic Sobolev spaces on the domain D ⊂ R
d+1 such as in [9]. Here we restrict the definition

of anisotropy to the case where the Sobolev index can be different for the temporal and spatial variables. All spatial
variables have, however, the same index. Let (st , ss) be a pair of non-negative integers, with st , ss corresponding to
the temporal and spatial Sobolev index, respectively. For γt , γs � 0, the anisotropic Sobolev space of order (st , ss) on
D is defined by

H(st ,ss )(D) := {
v ∈ L2(D): ∂γt ∂γs v ∈ L2(D) for γt � st , |γs | � ss

}
,

with associated norm and semi-norm:

‖v‖H(st ,ss )(D) :=
( ∑

γt�st|γs |�ss

∥∥∂γt ∂γs v
∥∥2

L2(D)

)1/2

, |v|H(st ,ss )(D) :=
( ∑

γt=st|γs |=ss

∥∥∂γt ∂γs v
∥∥2

L2(D)

)1/2

.

Next, we introduce mappings of the space–time elements. Following the discussion in [9], we assume that each
element K ∈ Th is an image of a fixed master element K̂, with K̂ an open unit hypercube in R

d+1, constructed via two
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Fig. 2. Construction of elements K via composition of affine maps and diffeomorphisms (for d = 2).

mappings QK ◦ FK, where FK : K̂ → K̃ is an affine mapping and QK : K̃ → K is a (regular enough) diffeomorphism

(see Fig. 2). The definition of the Sobolev space H(st ,ss )(K̃) on K̃ follows the definition of the standard Sobolev space,
while the Sobolev space H(st ,ss )(K) is defined as follows:

H(st ,ss )(K) := {
v ∈ L2(K): v ◦ QK ∈ H(st ,ss )(K̃)

}
.

Since the DG method is a non-conforming method, it is necessary to introduce the concept of a broken anisotropic
Sobolev space. To each element K we assign a pair of nonnegative integers (st,K, ss,K) and collect them in the vectors
st = {st,K: K ∈ Th} and ss = {ss,K: K ∈ Th}. Then we assign to Th the broken Sobolev space H(st ,ss )(E,Th) :=
{v ∈ L2(E): v|K ∈ H(st,K,ss,K)(K), ∀K ∈ Th}, equipped with the broken Sobolev norm and corresponding semi-norm,
respectively,

‖v‖H(st ,ss )(E,Th) :=
( ∑
K∈Th

‖v‖2
H

(st,K,ss,K)
(K)

)1/2

, |v|H(st ,ss )(E,Th) :=
( ∑
K∈Th

|v|2
H

(st,K,ss,K)
(K)

)1/2

.

For v ∈ H(1,1)(E,Th), we define the broken gradient ∇hv of v by (∇hv)|K := ∇(v|K),∀K ∈ Th.
Now we introduce the finite element spaces associated with the tessellation Th that will be used in this paper. To

each element K we assign a pair of nonnegative integers pK = (pt,K,ps,K) as local polynomial degrees, where the
subscripts t and s denote time and space, and collect them into vectors pt = {pt,K: K ∈ Th} and ps = {ps,K: K ∈ Th}.
Defining Qpt,K,ps,K(K̂) as the set of all tensor-product polynomials on K̂ of degree pt,K in the time direction and
degree ps,K in each spatial coordinate direction, we then introduce the finite element space of discontinuous piecewise
polynomial functions as

V
(pt ,ps)
h := {

v ∈ L2(E): v|K ◦ QK ◦ FK ∈Q(pt,K,ps,K)(K̂), ∀K ∈ Th

}
.

In the derivation and analysis of the numerical discretization we also make use of the auxiliary space Σ
(pt ,ps)
h :

Σ
(pt ,ps)
h = {

τ ∈ L2(E)d+1: τ |K ◦ QK ◦ FK ∈ [
Q(pt,K,ps,K)(K̂)

]d+1
, ∀K ∈ Th

}
.

The so-called traces of v ∈ V
(pt ,ps)
h on ∂K are defined as: v±

K = limε↓0 v(x ± εnK). The traces of τ ∈ Σ
(pt ,ps)
h are

defined similarly.
Next, we define the average {{·}} and jump �·� operators as trace operators for the sets Fint and Fbnd. Note that

functions v ∈ V
(pt ,ps)
h and τ ∈ Σ

(pt ,ps)
h are in general multivalued on a face S ∈ Fint. Introducing the functions

vi := v|Ki
, τi := τ |Ki

, ni := n|∂Ki
, we define the average operator on S ∈Fint as:

{{v}} = 1

2
(v−

i + v−
j ), {{τ }} = 1

2
(τ−

i + τ−
j ), on S ∈ Fint,

while the jump operator is defined as:

�v�= v−ni + v−nj , �τ� = τ− · ni + τ− · nj , on S ∈Fint,
i j i j
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with i and j the indices of the elements Ki and Kj which connect to the face S ∈ Fint. On a face S ∈Fbnd, the average
and jump operators are defined as:

{{v}} = v−, {{τ }} = τ−, �v�= v−n, �τ�= τ− · n, on S ∈ Fbnd.

Note that the jump �v� is a vector parallel to the normal vector n and the jump �τ� is a scalar quantity. We also need
the spatial jump operator 〈〈·〉〉 for functions v ∈ V

(pt ,ps)
h , which is defined as:

〈〈v〉〉 = v−
i n̄i + v−

j n̄j , on S ∈ Fint, 〈〈v〉〉 = v−n̄, on S ∈Fbnd.

3.3. Lifting operators

In this section we introduce several lifting operators. The lifting operators discussed in this section are similar to
the ones introduced in [2,6]. These operators are required for the derivation of the space–time DG formulation in
Section 4 and also for the analysis in Sections 5 and 6.

First, we introduce the local lifting operator rS : (L2(S))d+1 → Σ
(pt ,ps)
h as:∫

E

rS(φ) · q dE = −
∫
S

φ · {{q}}dS, ∀q ∈ Σ
(pt ,ps)
h , ∀S ∈

⋃
n

Sn
ID. (5)

The support of the operator rS is limited to the element(s) that share the face S. Then we introduce the global lifting
operator R : (L2(

⋃
n Sn

ID))d+1 → Σ
(pt ,ps)
h as:∫

E

R(φ) · q dE =
∑

S∈⋃
n Sn

ID

∫
E

rS(φ) · q dE, ∀q ∈ Σ
(pt ,ps)
h . (6)

We specify the above lifting operators for the Dirichlet boundary condition. Let P be the L2 projection on Σ
(pt ,ps)
h ,

and replace φ by PgDn in (5). Then on faces S ∈ ⋃
n Sn

D we have∫
E

rS(PgDn) · q dE = −
∫
S

gDn · q dS, ∀q ∈ Σ
(pt ,ps)
h , ∀S ∈

⋃
n

Sn
D. (7)

For the global lifting operators, we proceed in a similar way. Using the projection operator P , we replace φ by
PgDn in (6) and (5) to have:∫

E

R(PgDn) · q dE = −
∑

S∈⋃
n Sn

D

∫
S

gDn · q dS, ∀q ∈ Σ
(pt ,ps)
h . (8)

Using (6) and (8), we then introduce RID : (L2(
⋃

n Sn
ID))d+1 → Σ

(pt ,ps)
h as:

RID(φ) = R(φ) − R(PgDn). (9)

The spatial part of the lifting operators R and rS , denoted by �R and r̄S , are obtained by eliminating the first component
of R and rS , respectively.

4. Space–time DG discretization for the advection–diffusion equation

In this section, we describe the derivation of the space–time DG weak formulation for the advection–diffusion
equation. As shown in e.g. [2,6], it is beneficial for a DG discretization to rewrite the second order partial differential
equation (3) into a system of first order equations. Following the same approach, we introduce an auxiliary variable
σ = A∇c to obtain the following system of first order equations:

σ = A∇c, (10)

−∇ · (−Bc + σ) = 0. (11)

In the next two sections we discuss the derivation of the weak formulation for (10) and (11).
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4.1. Weak formulation for the auxiliary variable

First, we consider the auxiliary equation (10). By multiplying this equation with an arbitrary test function τ ∈
Σ

(pt ,ps)
h and integrating over an element K ∈ Th, we obtain:∫

K

σ · τ dK =
∫
K

A∇c · τ dK, ∀τ ∈ Σ
(pt ,ps)
h .

Next, we substitute σ and c with their numerical approximations σh ∈ Σ
(pt ,ps)
h and ch ∈ V

(pt ,ps)
h . After integration by

parts twice and summation over all elements, we have for all τ ∈ Σ
(pt ,ps)
h the following formulation:∫

E

σh · τ dE =
∫
E

A∇hch · τ dE +
∑
K∈Th

∫
∂K

A(ĉh − c−
h )n · τ− d∂K. (12)

The variable ĉh is the numerical flux that must be introduced to account for the multivalued trace on ∂K.
We recall the following relation (see [2, relation (3.3)]), which holds for vectors τ and scalars φ, piecewise smooth

on Th:∑
K∈Th

∫
∂K

(τ · n)φ d∂K =
∑
S∈F

∫
S

{{τ }} · �φ�dS +
∑

S∈Fint

∫
S

�τ�{{φ}}dS. (13)

When applied to the last contribution in (12) and using the symmetry of the matrix A, this results in∑
K∈Th

∫
∂K

A(ĉh − c−
h )n · τ− d∂K =

∑
S∈F

∫
S

�ĉh − ch� · {{Aτ }}dS +
∑

S∈Fint

∫
S

{{ĉh − ch}}�Aτ�dS. (14)

We consider now the choice for the numerical flux ĉh. There are several options listed in [2]. After a thorough
study concerning the consistency, conservation properties, and matrix sparsity of each option, we choose the following
numerical flux, which is similar to the choices in [3,5,6]:

ĉh = {{ch}} on S ∈ Fint, ĉh = gD on S ∈
⋃
n

Sn
D, ĉh = c−

h elsewhere. (15)

Note that on faces S ∈ Sn
S , which are the element boundaries Kn and Kn+1, the normal vector n has values n =

(±1,0, . . . ,0︸ ︷︷ ︸
d×

) and thus An = (0, . . . ,0︸ ︷︷ ︸
(d+1)×

). Hence there is no coupling between the space–time slabs. Substituting the

choices for the numerical flux (15) into (14) and using the fact that entries of the matrix A are continuous functions,
we obtain for each space–time slab En:∑

K∈T n
h

∫
∂K

A(ĉh − c−
h )n · τ− d∂K = −

∑
S∈Sn

ID

∫
S

�ch� · A{{τ }}dS +
∑

S∈Sn
D

∫
S

gDn · Aτ dS. (16)

After summation over all space–time slabs, and using the symmetry of matrix A we can introduce the lifting opera-
tor (9) into (16) to obtain∑

K∈Th

∫
∂K

A(ĉh − c−
h )n · τ− d∂K =

∫
E

ARID

(�ch�) · τ dE . (17)

Introducing (17) into (12), we obtain for all τ ∈ Σ
(pt ,ps)
h :∫

E

σh · τ dE =
∫
E

A∇hch · τ dE +
∫
E

ARID

(�ch�) · τ dE,

which implies that we can express σh ∈ Σ
(pt ,ps)
h as:

σh = A∇hch + ARID

(�ch�) a.e. ∀x ∈ E . (18)
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4.2. Weak formulation of space–time DG method

The weak formulation for the advection–diffusion equation is obtained if we multiply (11) with arbitrary test
functions v ∈ V

(pt ,ps)
h , integrate by parts over element K, and then substitute c, σ with their numerical approximations

ch ∈ V
(pt ,ps)
h , σh ∈ Σ

(pt ,ps)
h :∫

E

(−Bch + σh) · ∇hv dE −
∑
K∈Th

∫
∂K

(−Bĉh + σ̂h) · nv− d∂K = 0. (19)

Here we replaced ch, σh on ∂K with the numerical fluxes ĉh, σ̂h, to account for the multivalued traces on ∂K.
The next step is to find appropriate choices for the numerical fluxes. We separate the numerical fluxes into an

advective flux Bĉh and a diffusive flux σ̂h. For the advective flux, the obvious choice is an upwind flux, as described
in [16]. However, for simplicity of proving the stability of the discretization, the upwind flux is written as the sum of
an average plus a jump penalty, as suggested in [7]. Thus, we write the numerical flux Bĉh as:

Bĉh = {{Bch}} + CS�ch�. (20)

The parameter CS is chosen as:

CS = 1

2
|B · n| on S ∈Fint. (21)

For conciseness of the proofs discussed later in Sections 5 and 6 we extend the definition of CS to the boundary of
the space–time domain as:

CS =
{−B · n/2, on S ∈ (

⋃
n Sn

DBSm ∪ Ω0),

+B · n/2, on S ∈ (
⋃

n Sn
MDSp ∪ Γ+).

(22)

If we substitute τ and φ in relation (13) with {{Bch}}+CS�ch� and v, respectively, the summation over the boundaries
∂K can be written as a sum over all faces as follows:∑

K∈Th

∫
∂K

({{Bch}} + CS�ch�) · nv− d∂K =
∑

S∈Fint

∫
S

({{Bch}} + CS�ch�) · �v�dS +
∑

S∈Fbnd

∫
S

Bch · nv dS. (23)

Now we consider the numerical flux σ̂h. From [2], we have several options for this numerical flux. For similar
reasons as in Section 4.1, we choose σ̂h = {{σh}}, which is the same as in [5,6]. By replacing σ̂h with {{σh}}, then
using (13) the contribution with σ̂h in (19) can also be written as a sum over all faces S ∈F :∑

K∈Th

∫
∂K

{{σ̂h}} · nv− d∂K =
∑
S∈F

∫
S

{{σh}} · �v�dS. (24)

Using (23)–(24) and (18) (to eliminate σh), the primal formulation for ch is obtained:∫
E

(−Bch + A∇hch + ARID

(�ch�)) · ∇hv dE +
∑

S∈Fint

∫
S

({{Bch}} + CS�ch�) · �v�dS +
∑

S∈Fbnd

∫
S

Bch · nv dS

−
∑
S∈F

∫
S

(
A{{∇hch}} + A

{{
RID

(�ch�)}}) · �v�dS = 0. (25)

This relation can be simplified using the following steps. Due to the symmetry of the matrix A and using the lifting
operator RID (9) we have the relation∫

E

ARID

(�ch�) · ∇hv dE = −
∑

S∈⋃
n Sn

ID

∫
S

A�ch� · {{∇hv}}dS +
∑

S∈⋃
n Sn

D

∫
S

AgDn · ∇hv dS. (26)

Further, the lifting operator RID has nonzero values only on faces S ∈ Sn
ID . Using R,RID (see (6) and (9)) we obtain

the following relation

−
∑
S∈F

∫
A

{{
RID

(�ch�)}} · �v�dS =
∫

AR
(�ch�) · R(�v�)dE −

∫
AR(PgDn) · R(�v�)dE . (27)
S E E
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Following a similar approach as in [6], we replace each term in (27) with the local lifting operator rS , defined in
Section 3.3, and make the following simplifications:∫

E

AR
(�ch�) · R(�v�)dE ∼=

∑
S∈⋃

n Sn
ID

∑
K∈Th

ηK

∫
K

ArS
(�ch�) · rS

(�v�)dK, (28)

∫
E

AR
(
PgDn

) · R(�v�)dE ∼=
∑

S∈⋃
n Sn

D

∑
K∈Th

ηK

∫
K

ArS(PgDn) · rS
(�v�)dK. (29)

In Section 5 we will derive a sufficient condition for the constant ηK > 0 to guarantee a stable and unique solution.
The advantage of this replacement is that the stiffness matrix in the weak formulation using the local lifting operators
is considerably sparser than the stiffness matrix resulting from the weak formulation with global lifting operators. We
refer to [2,6] for a further explanation.

Substituting relations (26)–(27) into (25), using relations (28)–(29), and considering the structure of matrix A, we
then obtain:

−
∫
E

Bch · ∇hv dE +
∫
E

D�∇hch · �∇hv dE −
∑

S∈⋃
n Sn

ID

∫
S

D〈〈ch〉〉 · {{�∇hv}}dS

+
∑

S∈⋃
n Sn

D

∫
S

gDDn̄ · �∇hv dS +
∑

S∈Fint

∫
S

({{Bch}} + CS�ch�) · �v�dS

+
∑

S∈Fbnd

∫
S

Bch · nv dS −
∑

S∈⋃
n Sn

ID

∫
S

D{{�∇hch}} · 〈〈v〉〉dS

−
∑

S∈Fbnd\⋃n Sn
D

∫
S

D�∇hch · n̄v dS +
∑

S∈⋃
n Sn

ID

∑
K∈Th

ηK

∫
K

Dr̄S
(�ch�) · r̄S

(�v�)dK

−
∑

S∈⋃
n Sn

D

∑
K∈Th

ηK

∫
K

Dr̄S(PgDn) · r̄S
(�v�)dK = 0. (30)

Here we used the spatial gradient operator �∇ , the spatial jump operator 〈〈·〉〉 (see Section 3.2) and the spatial lifting
operator r̄S (see Section 3.3). Next, we introduce the following boundary and initial conditions:

D�∇hch · n̄ = gM − αch on S ∈
⋃
n

Sn
M,

ch = gD on S ∈
⋃
n

Sn
DBSm,

ch = c0 on Ω0,

into (30). We introduce now the bilinear form a :V (pt ,ps)
h × V

(pt ,ps)
h → R:

a(ch, v) = aa(ch, v) + ad(ch, v), (31)

with aa :V (pt ,ps)
h × V

(pt ,ps)
h → R, ad :V (pt ,ps )

h × V
(pt ,ps)
h → R defined as:

aa(ch, v) = −
∫
E

Bch · ∇hv dE +
∑

S∈Fint

∫
S

({{Bch}} + CS�ch�) · �v�dS

+
∑

S∈(
⋃ Sn ∪Γ+)

∫
B · nchv dS, (32)
n MDSp S
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ad(ch, v) =
∫
E

D�∇hch · �∇hv dE −
∑

S∈⋃
n Sn

ID

∫
S

(
D〈〈ch〉〉 · {{�∇hv}} + D{{�∇hch}} · 〈〈v〉〉)dS

+
∑

S∈⋃
n Sn

ID

∑
K∈Th

ηK

∫
K

Dr̄S
(�ch�) · r̄S

(�v�)dK+
∑

S∈⋃
n Sn

M

∫
S

αchv dS, (33)

and the linear form � :V (pt ,ps)
h → R defined as:

�(v) = −
∑

S∈⋃
n Sn

D

∫
S

gDDn̄ · �∇hv dS +
∑

S∈⋃
n Sn

D

∑
K∈Th

ηK

∫
K

Dr̄S(PgDn) · r̄S
(�v�)dK+

∑
S∈⋃

n Sn
M

∫
S

gMv dS

−
∑

S∈⋃
n Sn

DBSm

∫
S

BgD · nv dS +
∫
Ω0

c0v dΩ. (34)

Note that the term
∑

S∈Fbnd\⋃n Sn
DM

∫
S
D�∇hch · n̄v dS is dropped from the bilinear form ad(·, ·) since on S ∈ Fbnd \⋃

n Sn
DM the matrix D is zero.

The space–time DG discretization for (1) can now be formulated as follows.
Find a ch ∈ V

(pt ,ps)
h such that:

a(ch, v) = �(v), ∀v ∈ V
(pt ,ps)
h . (35)

This formulation is the most straightforward for the analysis discussed in Sections 5 and 6, but for practical imple-
mentations, an arbitrary Lagrangian Eulerian (ALE) formulation is preferable. Therefore, in this paper, we also present
the ALE form of the space–time weak formulation (35). The relation between the space–time and ALE formulation
discussed here follows the derivation in [16].

Using a result from [16], the space–time normal vector n can be split into two parts: n = (nt , n̄), with nt the
temporal part and n̄ the spatial part of the space–time normal vector n. Next, we consider the normal vector n on
the faces S ∈ Fint, which consist of two sets: Fint = ⋃

n(Sn
I ∪ Sn

S ). On S ∈ Sn
S , the space–time normal vector is

n = (±1,0, . . . ,0︸ ︷︷ ︸
d×

) and is not affected by the mesh velocity. On the faces S ∈ Sn
I the space–time normal vector

depends on the mesh velocity ug :

n = (−ug · n̄, n̄), (36)

which also holds on the boundary faces S ∈Fbnd \ (Ω0 ∪ ΩT ).
If we recall the bilinear and linear forms in (32)–(34), then only aa(·, ·) and �(·) are needed to be rewritten into

the ALE formulation by splitting the normal vector n into a temporal and spatial part. The bilinear form ad in (33)
remains valid for the ALE formulation since it does not depend on nt . We now consider the contribution {{Bch}} · �v�
in (32). On S ∈ ⋃

n Sn
I , this contribution can be written in the ALE formulation using (36) as:

{{Bch}} · �v�= {{ch}}(u − ug) · 〈〈v〉〉,
while on S ∈ Sn

S this term does not change. Next, consider the term �ch� · �v�. Since the normal vector n has length
one, we immediately obtain

�ch� · �v�= (
c+
h − c−

h

)(
v+ − v−)

,

and thus this contribution also does not depend on the mesh velocity ug .
The bilinear form aa(·, ·) and linear functional �(·) in the ALE formulation are now equal to:

aa(ch, v) = −
∫
E

Bch · ∇hv dE +
∑

S∈⋃
n Sn

I

∫
S

({{ch}}(u − ug) · 〈〈v〉〉 + CS�ch� · �v�)dS

+
∑

S∈⋃ Sn

∫ ({{Bch}} + CS�ch�) · �v�dS +
∑

S∈(
⋃ Sn ∪Γ+)

∫
(u − ug) · n̄chv dS, (37)
n S S n MDSp S
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�(v) = −
∑

S∈⋃
n Sn

D

∫
S

gDDn̄ · �∇hv dS +
∑

S∈⋃
n Sn

D

∑
K∈Th

ηK

∫
K

Dr̄S(PgDn) · r̄S
(�v�)dK +

∑
S∈⋃

n Sn
M

∫
S

gMv dS

−
∑

S∈⋃
n Sn

DBSm

∫
S

gD(u − ug) · n̄v dS +
∫
Ω0

c0v dΩ, (38)

while ad(·, ·) is given by (33).

5. Consistency, coercivity and stability of the space–time DG discretization

In this section we present an analysis of the consistency, coercivity and stability of the space time discontinuous
Galerkin formulation (31)–(35). This section is divided into two subsections, Section 5.1 concerns with the main
results while detailed proofs can be found in Section 5.2.

5.1. Main results

The analysis of the space–time discontinuous Galerkin formulation is considerably simplified by the introduction
of a so-called DG norm, which is closely related to the bilinear form (31).

Definition 1. The DG norm |‖ · ‖|DG corresponding to the bilinear form (31) can be defined on H(0,1)(E) + V
(pt ,ps)
h ,

with H(0,1)(E) the anisotropic Sobolev space defined in Section 3.2, α � 0 and D� a symmetric positive semi-definite
matrix, as:

|‖v‖|2DG =
∑
K∈Th

‖v‖2
L2(K)

+
∑
K∈Th

∥∥D��∇hv
∥∥2

L2(K)
+

∑
S∈⋃

n Sn
ID

∑
K∈Th

∥∥D�r̄S
(�v�)∥∥2

L2(K)

+
∑

S∈⋃
n Sn

M

‖√αv‖2
L2(S)

+
∑
S∈F

∥∥C
1/2
S

∣∣�v�∣∣∥∥2
L2(S)

.

First, we discuss the consistency of the space–time DG method (35). This formulation is consistent when (35) is
also satisfied by c ∈ H 2(E), the solution of (3)–(4):

a(c, v) = �(v), ∀v ∈ H(1,1)(E,Th). (39)

The proof for consistency is straightforward. We replace ch in (31) by c. Since c solves (3)–(4), we have {{Bc}} = Bc

on S ∈ F , �c� = 0 and �∇hc� = 0 on S ∈ Fint, �c� = gDn on S ∈ Sn
D , and {{∇hc}} = ∇c on S ∈ Sn

ID . If we use these
relations into (31), perform integration by parts, and use the boundary conditions (4), we obtain �(v). Subtracting (35)
from (39) yields the Galerkin orthogonality property

a(c − ch, v) = 0, ∀v ∈ V
(pt ,ps)
h . (40)

The next result concerns the coercivity of the bilinear form a(·, ·). In order to prove the coercivity, we first in-
troduce the following inequality, which is a direct extension of the one discussed in [2, p. 1763], to the space–time
discretization,

‖v‖L2(E) � Cp

( ∑
K∈Th

∥∥D��∇hv
∥∥2

L2(K)
+

∑
S∈⋃

n Sn
ID

∑
K∈Th

∥∥D�r̄S
(�v�)∥∥2

L2(K)

)1/2

. (41)

The constant Cp in this inequality follows from the discrete Poincaré inequality in [1, Lemma 2.1]. We then prove the
coercivity in the following lemma.

Lemma 5.1. Let η0 = minK∈Th
ηK. Assume that η0 > Nf , with Nf the number of faces of each element K ∈ Th. Then,

if

βc

C2
+ inf

x∈E
�∇ · u(x) � b0 > 0, (42)
p
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with βc = min(1 − ε, η0 − Nf

ε
) > 0 for ε ∈ (

Nf

η0
,1), there exists a constant βa > 0, independent of the mesh size

h = maxK∈Th
hK, such that

a(v, v) � βa|‖v‖|2DG, ∀v ∈ V
(pt ,ps)
h , (43)

for 0 � pt � 1 and ps � 0, with βa = min(
b0
2 ,

βc

2 ).

The proof, which is given in Section 5.2.1, is an extension to the space–time framework of the analysis given in [6,7].
The condition �∇ · u � 0 for ∀x ∈ E such as in [10] is relaxed using the assumption (42).

The next result shows that the solution to (35) is bounded by known data.

Lemma 5.2. Assume that the parameters η0, βa,βc, b0 are such that Lemma 5.1 is satisfied and let ηm = maxK∈Th
ηK.

Then the solution to the weak formulation (35) satisfies the following upper bound:

β2
a |‖ch‖|2DG �

∑
K∈Th

∥∥D� �R(PgDn)
∥∥2

L2(K)
+ η2

m

∑
S∈⋃

n Sn
D

∑
K∈Th

∥∥D�r̄S(PgDn)
∥∥2

L2(K)

+
∑

S∈⋃
n Sn

M

∥∥α−1/2gM

∥∥2
L2(S)

+ 4
∑

S∈⋃
n Sn

DB

∥∥C
1/2
S gD

∥∥2
L2(S)

+ 4
∥∥C

1/2
S c0

∥∥2
L2(Ω0)

.

The proof, given in Section 5.2.2, is an extension to space–time framework of the analysis given in [10]. It mainly
consists of applying the Schwarz and arithmetic–geometric mean inequalities to linear form �(·) and making use of
the result from Lemma 5.1.

The upper bound for the solution given by Lemma 5.2 is independent of hK, the radius of the smallest sphere
containing each space–time element, hence also from the time step �nt , since �nt � hK. This result shows that the
space–time DG discretization is unconditionally stable when the proper stabilization coefficient η0 is chosen.

The next result states the existence of a unique solution of (35). The proof, which is given in Section 5.2.3, is
obtained by using the coercivity given in Lemma 5.1.

Theorem 5.3. Assume that η0 > Nf , with Nf the number of faces of each element K ∈ Th, and the parameters βa,βc

are chosen such that Lemma 5.1 is satisfied. Then the space–time discontinuous Galerkin discretization given by (35)
is unconditionally stable and has a unique solution for basis functions which are constant or linear in time.

5.2. Detailed proofs

5.2.1. Proof of coercivity in Lemma 5.1
To prove Lemma 5.1, we first consider aa(ch, v). Take ch = v in (32), use the relation: vB ·∇hv = − 1

2 (∇h ·B)v2 +
1
2∇h · (Bv2), and apply Gauss’ Theorem for aa(v, v) to obtain the following relation:

aa(v, v) = 1

2

∫
E

(∇h · B)v2 dE − 1

2

∑
K∈Th

∫
∂K

(B · n)v2 d∂K

+
∑

S∈Fint

∫
S

({{Bv}} + CS�v�) · �v�dS +
∑

S∈(
⋃

n Sn
MDSp∪Γ+)

∫
S

B · nv2 dS.

Using the identity (13) and the fact that vector B is a continuous function, the last equation is written further as

aa(v, v) = 1

2

∫
E

(∇ · B)v2 dE − 1

2

∑
S∈Fint

∫
S

B · �v2�dS

− 1

2

∑
S∈(

⋃
n Sn

DBSm∪Ω0)

∫
S

B · nv2 dS +
∑

S∈Fint

∫
S

{{Bv}} · �v�dS

+ 1

2

∑
S∈(

⋃ Sn ∪Γ+)

∫
B · nv2 dS +

∑
S∈Fint

∫
CS�v� · �v�dS. (44)
n MDSp S S
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Due to the continuity of vector B , on faces S ∈ Fint we have:∫
S

{{Bv}} · �v�dS = 1

2

∫
S

B · �v2�dS. (45)

As a consequence of (45) and using the definition of CS in (21)–(22), we can write the final form of aa(v, v) as:

aa(v, v) = 1

2

∫
E

(∇ · B)v2 dE +
∑
S∈F

∥∥C
1/2
S

∣∣�v�∣∣∥∥2
L2(S)

. (46)

Next, we consider ad(v, v) in (33) with ch = v. Using the global lifting operator �R, which is the spatial part of the
lifting operator R defined in (6), and the fact that matrix D� is symmetric, we can write ad(v, v) as:

ad(v, v) =
∑
K∈Th

∥∥D��∇hv
∥∥2

L2(K)
+ 2

∑
K∈Th

∫
K

D��∇hv · D� �R(�v�)dK

+
∑

S∈⋃
n Sn

ID

∑
K∈Th

ηK
∥∥D�r̄S

(�v�)∥∥2
L2(K)

+
∑

S∈⋃
n Sn

M

‖√αv‖2
L2(S)

. (47)

Using the Schwarz and arithmetic–geometric mean inequalities we obtain

2
∫
K

D��∇hv · D� �R(�v�)dK � −ε
∥∥D��∇hv

∥∥2
L2(K)

− 1

ε

∥∥D� �R(�v�)∥∥2
L2(K)

, (48a)

with ε > 0. As a consequence of (6) and the fact that the local lifting operator r̄S is only non-zero in the elements
connected to the face S, we also have∥∥D� �R(�v�)∥∥2

L2(K)
� Nf

∑
S∈⋃

n Sn
ID

∥∥D�r̄S
(�v�)∥∥2

L2(K)
, (48b)

with Nf the number of faces of each element K ∈ Th. Introducing (48a)–(48b) into (47) and combining with (46), we
deduce

a(v, v) � 1

2

∫
E

(�∇ · u)v2 dE + (1 − ε)
∑
K∈Th

∥∥D��∇hv
∥∥2

L2(K)
+

(
η0 − Nf

ε

) ∑
S∈⋃

n Sn
ID

∑
K∈Th

∥∥D�r̄S
(�v�)∥∥2

L2(K)

+
∑

S∈⋃
n Sn

M

‖√αv‖2
L2(S)

+
∑
S∈F

∥∥C
1/2
S

∣∣�v�∣∣∥∥2
L2(S)

, (49)

with η0 defined as η0 = minK∈Th
ηK. If we take η0 > Nf and ε ∈ (

Nf

η0
,1), and choose βc = min(1 − ε, η0 − Nf

ε
) > 0,

we obtain:

a(v, v) � 1

2

∫
E

(�∇ · u)v2 dE + βc

∑
K∈Th

∥∥D��∇hv
∥∥2

L2(K)
+ βc

∑
S∈⋃

n Sn
ID

∑
K∈Th

∥∥D�r̄S
(�v�)∥∥2

L2(K)

+
∑

S∈⋃
n Sn

M

‖√αv‖2
L2(S)

+
∑
S∈F

∥∥C
1/2
S

∣∣�v�∣∣∥∥2
L2(S)

. (50)

Making use inequality (41) into (50) and assuming the existence of b0 > 0 that satisfies (42), we then obtain:

a(v, v) � b0

2
‖v‖2

L2(E)
+ βc

2

∑
K∈Th

∥∥D��∇hv
∥∥2

L2(K)
+ βc

2

∑
S∈⋃

n Sn
ID

∑
K∈Th

∥∥D�r̄S
(�v�)∥∥2

L2(K)

+
∑

S∈⋃
n Sn

M

‖√αv‖2
L2(S)

+
∑
S∈F

∥∥C
1/2
S

∣∣�v�∣∣∥∥2
L2(S)

. (51)

Since βc/2 is always less than one, choosing βa = min(
b0 ,

βc ) completes the proof of the coercivity. �
2 2
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5.2.2. Proof of boundedness in Lemma 5.2
To prove Lemma 5.2, we take v = ch in (35), which results in the relation:

a(ch, ch) = �(ch). (52)

Using the lifting operator R in (8), the symmetry of matrix D, and the definition of CS on S ∈ Fbnd in (22), the
functional �(ch) can be written as:

�(ch) =
∑
K∈Th

∫
K

D� �R(PgDn) · D��∇hch dK

+
∑

S∈⋃
n Sn

D

∑
K∈Th

ηK

∫
K

D�r̄S(PgDn) · D�r̄S
(�ch�)dK +

∑
S∈⋃

n Sn
M

∫
S

gMch dS

+ 2
∑

S∈⋃
n Sn

DBSm

∫
S

CSgDch dS + 2
∫
Ω0

CSc0ch dΩ. (53)

Applying the Schwarz and arithmetic-geometric mean inequalities on each term in (53) and combining this result
with (52) and Lemma 5.1 using v = ch, we obtain the inequality

βa‖ch‖2
L2(E)

+
(

βa − ε1

2

) ∑
K∈Th

‖D��∇hch‖2
L2(K)

+
(

βa − ηmε2

2

) ∑
S∈⋃

n Sn
ID

∑
K∈Th

∥∥D�r̄S
(�ch�)∥∥2

L2(K)

+
(

βa − ε3

2

) ∑
S∈⋃

n Sn
M

‖√αch‖2
L2(S)

+ (βa − ε4)
∑
S∈F

∥∥C
1/2
S

∣∣�ch�
∣∣∥∥2

L2(S)

� 1

2ε1

∑
K∈Th

∥∥D� �R(PgDn)
∥∥2

L2(K)
+ ηm

2ε2

∑
S∈⋃

n Sn
D

∑
K∈Th

∥∥D�r̄S(PgDn)
∥∥2

L2(K)

+ 1

2ε3

∑
S∈⋃

n Sn
M

∥∥α−1/2gM

∥∥2
L2(S)

+ 1

ε4

∑
S∈⋃

n Sn
DBSm

∥∥C
1/2
S gD

∥∥2
L2(S)

+ 1

ε4

∥∥C
1/2
S c0

∥∥2
L2(Ω0)

,

with ε1, . . . , ε4 > 0 and ηm = maxK∈Th
ηK. Next, we substitute the following coefficients: ε1 = βa, ε2 = βa

ηm
, ε3 = βa ,

and ε4 = βa

2 and multiply the result with 2βa to complete the proof. �
5.2.3. Proof of the uniqueness in Theorem 5.3

To prove the uniqueness of the solution it is sufficient to show that the following homogeneous equation:
Find a ch ∈ V

(pt ,ps)
h such that:

a(ch, v) = 0, ∀v ∈ V
(pt ,ps)
h , with ch(0, x̄) = 0, (54)

has only the trivial solution ch = 0 for all t > 0.
We proceed as follows. Assume that ch is a solution of (54) and take v = ch in (31). Then we rewrite (43) as:

a(ch, ch) � βa

Nt−1∑
n=0

( ∑
K∈T n

h

‖ch‖2
L2(K)

+
∑
K∈T n

h

‖D��∇hch‖2
L2(K)

+
∑

S∈Sn
ID

∑
K∈T n

h

∥∥D�r̄S
(�ch�)∥∥2

L2(K)

+
∑

S∈Sn
M

‖√αch‖2
L2(S)

+
∑

S∈Fn

∥∥C
1/2
S

∣∣�ch�
∣∣∥∥2

L2(S)

)
.

Consider now the space–time slab for n = 0. The coercivity condition, in combination with the initial condition
c+
h = 0 at t = 0 and (54), imply that ch = 0 in the first space–time slab when constant or linear polynomials in time are

used. We can continue this argument to the other space–time slabs and obtain that ch = 0 is the only solution possible
for the homogeneous equation. Hence the DG algorithm has a unique solution ch for constant or linear basis functions
in time. The unconditional stability of the DG algorithm is a direct consequence of Lemma 5.2. �
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6. Error estimates and hp-convergence

First, let us define the projection P :L2(E) → V
(pt ,ps)
h as:∑

K∈Th

(Pw,v)K =
∑
K∈Th

(w, v)K, ∀v ∈ V
(pt ,ps)
h , (55)

which can be used to decompose the global error c − ch as:

c − ch = (c −Pc) + (Pc − ch) ≡ ρ + θ, (56)

with ρ the interpolation error and θ the discretization error. In the next section we discuss upper bounds for the
interpolation error ρ.

6.1. Bounds for the interpolation error

In this section we present upper bounds for the interpolation error ρ = c −Pc. These estimates are an extension of
the bounds for the interpolation error derived in [9] to general dimensions. We restrict the derivations for a separate
polynomial degree pt,K in time and a polynomial degree ps,K in each spatial variable.

Lemma 6.1. Assume that K is a space–time element in R
d+1 constructed via two mappings QK,FK, with FK : K̂ → K̃

and QK : K̃ → K. Assume also that hi,K, i = 1, . . . , d is the edge length of K̃ in the xi direction, and �nt the edge
length in the x0 direction (see illustration in Fig. 2 for d = 2). Let c|K ∈ H(kt,K+1,ks,K+1)(K), with kt,K, ks,K � 0. Let

P denote the L2 projection of c onto the finite element space V
(pt ,ps)
h , then the projection error ρ = c −Pc in K and

its trace at the boundary ∂K obey the error bounds:

‖ρ‖2
L2(K)

� CZK, (57)

‖�∇hρ‖2
L2(K)

� CNK, (58)

‖ρ‖2
L2(∂K)

� C(AK + BK), (59)

where

ZK =
d∑

i=1

(
hi,K
ps,K

)2sK∥∥∂
sK
i c

∥∥2
L2(K̃)

+
(

�nt

pt,K

)2s0,K∥∥∂
s0,K
0 c

∥∥2
L2(K̃)

,

NK =
d∑

i=1

h
2tK
i,K

p
2tK−1
s,K

∥∥∂
tK+1
i c

∥∥2
L2(K̃)

+
d∑

i=1

∑
j �=i

h
2tK+2
j,K

p
2tK
s,K

∥∥∂
tK+1
j ∂ic

∥∥2
L2(K̃)

+
d∑

i=1

(�nt)
2t0,K+2

p
2t0,K
t,K

∥∥∂
t0,K+1
0 ∂ic

∥∥2
L2(K̃)

,

AK =
d∑

i=1

(
hi,K
ps,K

)2tK+1∥∥∂
tK+1
i c

∥∥2
L2(K̃)

+
d∑

i=1

∑
j �=i

1

hi,K

(
hj,K
ps,K

)2sK∥∥∂
sK
j c

∥∥2
L2(K̃)

+
d∑

i=1

∑
j �=i

hi,K
ps,K

(
hj,K
ps,K

)2qK∥∥∂
qK
j ∂ic

∥∥2
L2(K̃)

,

BK =
d∑

i=1

1

hi,K

(
�nt

pt,K

)2s0,K∥∥∂
s0,K
0 c

∥∥2
L2(K̃)

+
d∑

i=1

hi,K
ps,K

(
�nt

pt,K

)2q0,K∥∥∂
q0,K
0 ∂ic

∥∥2
L2(K̃)

+
(

�nt

pt,K

)2t0,K+1∥∥∂
t0,K+1
0 c

∥∥2
L2(K̃)

+ 1

�nt

d∑
i=1

(
hi,K
ps,K

)2sK∥∥∂
sK
i c

∥∥2
L2(K̃)

+ �nt

pt,K

d∑(
hi,K
ps,K

)2qK∥∥∂
qK
i ∂0c

∥∥2
L2(K̃)

,

i=1
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with pt,K and ps,K the local polynomial degree in time and space, respectively, on element K, 0 < s0,K �
min(pt,K +1, kt,K +1), 0 < sK � min(ps,K +1, ks,K +1), 0 < q0,K � min(pt,K +1, kt,K), 0 < qK � min(ps,K +1,

ks,K), 0 < t0,K � min(pt,K, kt,K), and 0 < tK � min(ps,K, ks,K). The constant C has a positive value that depends
only on the spatial dimension d and the mapping QK.

Remark 6.2. In particular, when c is sufficiently smooth and the spatial shape of element K is regular: hK = hi,K,
i = 1, . . . , d , we obtain the following leading terms for each estimate given in Lemma 6.1:

‖ρ‖2
L2(K)

� C

(
h

2ps,K+2
K

p
2ps,K+2
s,K

+ �nt
2pt,K+2

p
2pt,K+2
t,K

)
|c|2

H
(pt,K+1,ps,K+1)

(K)
,

‖�∇hρ‖2
L2(K)

� C

(
h

2ps,K
K

p
2ps,K−1
s,K

+ �nt
2pt,K+2

p
2pt,K
t,K

)
|c|2

H
(pt,K+1,ps,K+1)

(K)
,

‖ρ‖2
L2(∂K)

� C

(
h

2ps,K+1
K

p
2ps,K+1
s,K

+ �nt
2pt,K+1

p
2pt,K+1
t,K

)
|c|2

H
(pt,K+1,ps,K+1)

(K)
.

The proof for Lemma 6.1 is a straightforward extension of Lemmas 3.13 and 3.17 in [9] to general dimensions
and therefore only the main steps are summarized. For details we refer to [9]. The first bound (57) follows directly
from Lemma 3.13 in [9]. The second bound (58) is obtained as follows. First, the bound for the partial derivative
in each spatial variable in Lemma 3.13 [9] is extended to general dimensions. The upper bound for the gradient is
then obtained by adding all the bounds for partial derivatives in the spatial variables. The third bound (59) is obtained
in a similar way. First, the bound of the interpolation error at each face of K is derived, which is an extension of
Lemma 3.17 in [9] to general dimensions. Then the upper bounds for the boundary faces of ∂K are added up.

We also need an upper bound for the following term:∑
S∈⋃

n Sn
ID

∥∥D�r̄S
(�ρ�)∥∥2

L2(E)
. (60)

The upper bound for this term is obtained through the following technique. First, we use a similar derivation as in [12,
Lemma 7.2] to express an upper bound of (60) in terms of the interpolation error ρ at the boundary:

∑
S∈⋃

n Sn
ID

∥∥D�r̄S
(�ρ�)∥∥2

L2(E)
� C �D

∑
K

d∑
i=1

h−1
i,Kp2

s,K‖ρ‖2
L2(∂Ki )

, (61)

with �D = maxK∈Th
‖D‖L∞(K), ∂Ki the boundary of K in the xi direction, i = 1, . . . , d , and the constant C depends

on the mapping QK. After that the upper bound for ρ on each ∂Ki (an extension of Lemma 3.17 in [9] to general
dimensions) is used. The result is shown in the following lemma.

Lemma 6.3. Assume that K is a space–time element in R
d+1 constructed via two mappings QK,FK, with FK : K̂ → K̃

and QK : K̃ → K. Assume also that hi,K, i = 1, . . . , d is the edge length of K̃ in the xi direction, and �nt the edge
length in the x0 direction. Let c|K ∈ H(kt,K+1,ks,K+1)(K), with kt,K, ks,K � 0. Let P denote the L2-projection of c

onto the finite element space V
(pt ,ps)
h , then the following estimate holds:

∑
S∈⋃

n Sn
ID

∥∥D�r̄S
(�ρ�)∥∥2

L2(E)
� C �D

∑
K∈Th

(RK + TK),

with �D = maxK∈T ‖D‖L∞(K) and

h
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RK =
d∑

i=1

p2
s,K

hi,K

(
hi,K
ps,K

)2tK+1∥∥∂
tK+1
i c

∥∥2
L2(K̃)

+
d∑

i=1

∑
j �=i

(
ps,K
hi,K

)2(hj,K
ps,K

)2sK∥∥∂
sK
j c

∥∥2
L2(K̃)

+
d∑

i=1

∑
j �=i

ps,K

(
hj,K
ps,K

)2qK∥∥∂
qK
j ∂ic

∥∥2
L2(K̃)

,

TK =
d∑

i=1

p2
s,K

hi,K�nt

(
�nt

pt,K

)2s0,K∥∥∂
s0,K
0 c

∥∥2
L2(K̃)

+
d∑

i=1

ps,K

(
�nt

pt,K

)2q0,K∥∥∂
q0,K
0 ∂ic

∥∥2
L2(K̃)

,

with pt,K and ps,K the local polynomial degree in time and space, respectively, on element K, 0 < s0,K �
min(pt,K +1, kt,K +1), 0 < sK � min(ps,K +1, ks,K +1), 0 < q0,K � min(pt,K +1, kt,K), 0 < qK � min(ps,K +1,

ks,K), 0 < t0,K � min(pt,K, kt,K), and 0 < tK � min(ps,K, ks,K). The constant C has a positive value that depends
only on the spatial dimension d and the mapping QK.

Remark 6.4. In particular, when c is sufficiently smooth and the spatial shape of element K is regular: hK = hi,K,
i = 1, . . . , d , we obtain the following leading terms for the estimate given in Lemma 6.3:

∑
S∈⋃

n Sn
ID

∥∥D�r̄S
(�ρ�)∥∥2

L2(E)
� C �D

∑
K∈Th

(
h

2ps,K
K

p
2ps,K−1
s,K

+ p2
s,K
hK

�nt
2pt,K+1

p
2pt,K+2
t,K

)
|c|2

H
(pt,K+1,ps,K+1)

(K)
.

6.2. Global estimates

As a first step in obtaining global estimates, we need an estimate for θ in terms of ρ, which is given by the following
lemma.

Lemma 6.5. There exists a constant βa > 0, defined in Lemma 5.1, independent of the mesh size h = maxK∈Th
hK,

such that the function θ defined in (56) satisfies the inequality

1

4
β2

a |‖θ‖|2DG �
∑
K∈Th

∥∥(D�)−1u
∥∥2

L∞(K)
‖ρ‖2

L2(K)
+ (Nf + 1)

∑
K∈Th

∥∥D��∇hρ
∥∥2

L2(K)

+ (
Nf + η2

m

) ∑
S∈⋃

n Sn
ID

∑
K∈Th

∥∥D�r̄S
(�ρ�)∥∥2

L2(K)
+ 1

2

∑
S∈⋃

n Sn
M

‖√αρ‖2
L2(S)

+ 2
∑

S∈Fint

∥∥C
1/2
S {{ρ}}∥∥2

L2(S)
+

∑
S∈Fint

∥∥C
1/2
S

∣∣�ρ�∣∣∥∥2
L2(S)

+
∑

S∈(
⋃

n Sn
MDSp∪Γ+)

2
∥∥C

1/2
S

∣∣�ρ�∣∣∥∥2
L2(S)

,

with βa = min(
b0
2 ,

βc

2 ), 0 < βc = min(1 − ε, η0 − Nf

ε
), for ε ∈ (

Nf

η0
,1), and b0 satisfies (42).

The proof for this lemma is given in Section 6.4.1.
Applying the triangle inequality to (56), we obtain the following bound on the global error c − ch in the DG norm:

|‖c − ch‖|DG � |‖ρ‖|DG + |‖θ‖|DG. (62)

Using Lemma 6.5, the error in the DG norm can now be expressed solely in terms of the projection error ρ. Introducing
the estimates for ρ given by Lemmas 6.1 and 6.3, the error bound can be formulated in the next theorem.

Theorem 6.6. Suppose that K is a space–time element in R
d+1 constructed via two mappings QK◦FK, with FK : K̂ →

K̃ and QK : K̃ →K. Suppose also that hi,K, i = 1, . . . , d is the edge length of K̃ in the xi direction, and �nt the edge

length in the x0 direction. Let c|K ∈ H(kt,K+1,ks,K+1)(K), with kt,K, ks,K � 0, and ch ∈ V
(pt ,ps)
h be the discontinuous

Galerkin approximation to c defined by (35). Then, the following error bound holds:

|‖c − ch‖|2DG � C
(

a1

∑
ZK + a2

∑
NK + a3

∑
(RK + TK) + a4

∑
(AK + BK)

)
,

K K K K
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with ZK,NK,AK,BK defined in Lemma 6.1, RK, TK in Lemma 6.3, βa in Lemma 6.5,

a1 = 1 + 4u2
Dβ2

a , a2 = (
1 + 4(Nf + 1)/β2

a

)�D,

a3 = (
1 + 4

(
Nf + η2

m

)
/β2

a

)�D, a4 = (
1 + 2/β2

a

)
ᾱ + (

1 + 20/β2
a

)�CS,

and

�D = max
K∈Th

‖D‖L∞(K), ᾱ = max
K∈Th

‖α‖L∞(K),

�CS = max
K∈Th

‖CS‖L∞(K), uD = max
K∈Th

∥∥(D�)−1u
∥∥

L∞(K)
.

The constant C is a positive constant that depends on the spatial dimension d and the mapping QK.

Corollary 6.7. When c is sufficiently smooth, the spatial shapes of all elements K ∈ Th are regular: h = hK, ∀K ∈ Th,
and uniform polynomial degrees (pt ,ps) are used for all elements K ∈ Th, then we obtain the error bound

|‖c − ch‖|2DG � C
(

a1

(
h2ps+2

p
2ps+2
s

+ �nt
2pt+2

p
2pt+2
t

)
+ a2

(
h2ps

p
2ps−1
s

+ �nt
2pt+2

p
2pt
t

)

+ a3

(
h2ps

p
2ps−1
s

+ p2
s

h

�nt
2pt+1

p
2pt+2
t

)
+ a4

(
h2ps+1

p
2ps+1
s

+ �nt
2pt+1

p
2pt+1
t

))
|c|2

H(pt +1,ps+1)(E)
.

6.3. Error estimates at specific time levels

The error estimate given by Theorem 6.6 is useful to determine the dependence of the error in the complete space–
time domain on the spatial mesh size, time step and the polynomial degrees. It is, however, also important to know the
error at a specific time level. In this section we provide an error estimate in the L2 norm for the domain ΩT at time T .
Following a similar procedure as in [15], we consider the following backward problem in time, related to (1):

−∂z

∂t
+

d∑
i=1

∂

∂xi

(
ui(t, x̄)z

) −
d∑

i,j=1

∂

∂xj

(
Dij (t, x̄)

∂z

∂xi

)
= 0, for t < T , (63)

with homogeneous boundary conditions at ∂E \ (Ω0 ∪ ΩT ) and the following initial condition:

z = φ at ΩT , (64)

with φ ∈ L2(ΩT ). Replacing t by tNt + 0 − t , the analogue of the weak formulation (35) for (63) is as follows.

Find a zh ∈ V
(pt ,ps)
h , such that for all w ∈ V

(pt ,ps)
h , the following relation is satisfied:

a(w, zh) = ��(w), (65)

with

��(w) =
∑

S⊂ΩT

∫
S

Bφ · nw dS = (φ,w)ΩT
, (66)

where the bilinear form a(·, ·) is defined in (31). Note that by replacing t by tNt + 0 − t , the definitions of the inflow–
outflow boundaries and the DG norm remain the same. In addition, the backward problem has a unique solution and
other results obtained for the original problem can be translated to this case, such as the orthogonality relation. We
start with an estimate for the discretization error θ = Pc − ch at time T .

Lemma 6.8. Assume that the conditions of Lemma 5.1 are satisfied. Let ch be the solution of (35), zh the solution
of (65), and θ = Pc − ch, then the following inequality holds:

(φ, θ)ΩT
�

(
Ce|‖ρ‖|DG +

(
2

∑
S∈Fint

∥∥C
1/2
S {{ρ}}∥∥2

L2(S)

)1/2)
|‖zh‖|DG, (67)

with Ce = 5 + 2
√

Nf + ηm + uD , and uD = maxK∈T ‖(D�)−1u‖L∞(K).
h
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The proof is given in Section 6.4.2. An estimate for the DG norm of the solution zh of the backward problem is
provided by the next lemma.

Lemma 6.9. The solution zh to (65) satisfies the following upper bound:

1

2
β2

a |‖zh‖|2DG � (φ,φ)ΩT
,

with βa > 0 satisfies Lemma 5.1.

The proof is given in Section 6.4.2. Using Lemma 6.9, the estimate given by (67) can further be written as

(φ, θ)ΩT
�

√
2

βa

(
Ce|‖ρ‖|DG +

(
2

∑
S∈Fint

∥∥C
1/2
S {{ρ}}∥∥2

L2(S)

)1/2)
‖φ‖L2(ΩT ).

After using the relation

‖θ‖L2(ΩT ) = sup
0�=φ∈L2(ΩT )

(φ, θ)ΩT

‖φ‖L2(ΩT )

,

we then have

‖θ‖L2(ΩT ) �
√

2

βa

(
Ce|‖ρ‖|DG +

(
2

∑
S∈Fint

∥∥C
1/2
S {{ρ}}∥∥2

L2(S)

)1/2)
. (68)

Using the hp-estimates for ρ in Lemma 6.1, we obtain the following bound.

Theorem 6.10. Suppose that K is a space–time element in R
d+1 constructed via two mappings QK ◦ FK, with

FK : K̂ → K̃ and QK : K̃ → K. Suppose also that hi,K, i = 1, . . . , d is the edge length of K̃ in the xi direction, and

�nt the edge length in the x0 direction. Let c|K ∈ H(kt,K+1,ks,K+1)(K), with kt,K, ks,K � 0 and ch ∈ V
(pt ,ps)
h be the

discontinuous Galerkin approximation to c defined by (35). Then the following error bound holds:

‖c − ch‖2
L2(ΩT )

� C
(∑

K

(
b1ZK + b2(NK + RK + TK) + (b3 + b4)(AK + BK)

))
,

with ZK,NK,AK,BK defined in Lemma 6.1, RK, TK in Lemma 6.3,

b1 = 2C2
e /β2

a , b2 = (
2C2

e /β2
a

)�D,

b3 = (
2C2

e /β2
a

)
ᾱ, b4 = (

2C2
e /β2

a + 4/β2
a + 1

)�CS,

the coefficients �D, ᾱ, �CS given in Theorem 6.6, Ce in Lemma 6.8, and βa satisfies Lemma 5.1. The constant C has a
positive value that depends only on the spatial dimension d and the mapping QK.

The proof of this theorem is immediate using (68) and Lemma 6.1.

Corollary 6.11. When c is sufficiently smooth, the spatial shapes of all elements K ∈ Th are regular: h = hK, ∀K ∈ Th,
and uniform polynomial degrees (pt ,ps) are used for all elements K ∈ Th, then we obtain the error bound

‖c − ch‖2
L2(ΩT )

� C
(

b1

(
h2ps+2

p
2ps+2
s

+ �nt
2pt+2

p
2pt+2
t

)
+ b2

(
2

h2ps

p
2ps−1
s

+ �nt
2pt+2

p
2pt
t

+ p2
s

h

�nt
2pt+2

p
2pt
t

)

+ (b3 + b4)

(
h2ps+1

p
2ps+1
s

+ �nt
2pt+1

p
2pt+1
t

))
|c|2

H(pt +1,ps+1)(E)
.
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6.4. Proofs

6.4.1. Proof of the upper bound for the discretization error θ in Lemma 6.5
The proof of Lemma 6.5 starts with the orthogonality relation (40) and the decomposition of the error (56), which

imply that

a(θ + ρ, v) = 0, ∀v ∈ V
(pt ,ps)
h . (69)

Taking v = θ , we obtain a(θ, θ) = −a(ρ, θ). We continue with the derivation of an estimate for |a(ρ, θ)|. First, we
consider the bilinear form aa(ρ, θ). Since θ ∈ V

(pt ,ps)
h , which is polynomial, we have ∂θ

∂t
∈ V

(pt ,ps)
h and we can use

the L2 orthogonality relation for the projection P , given by (55), to obtain:

aa(ρ, θ) = −
∑
K∈Th

∫
K

(D�)−1uρ · D��∇hθ dK +
∑

S∈Fint

∫
S

{{Bρ}} · �θ�dS

+
∑

S∈Fint

∫
S

CS�ρ� · �θ�dS +
∑

S∈(
⋃

n Sn
MDSp∪Γ+)

∫
S

B · nρθ dS. (70)

Using the same argument as in [7], that is by using (21) and the continuity property of B , we have: |{{Bρ}} · n| =
|B · n||{{ρ}}| = 2CS |{{ρ}}|. Then, by using the Schwarz inequality together with the arithmetic-geometric mean in-

equality in the form pq � p2

β
+ βq2

4 , we have the following estimate:

∣∣aa(ρ, θ)
∣∣ � 1

β

∑
K∈Th

∥∥(D�)−1u
∥∥2

L∞(K)
‖ρ‖2

L2(K)
+ 2

β

∑
S∈Fint

∥∥C
1/2
S {{ρ}}∥∥2

L2(S)

+ 1

β

∑
S∈Fint

∥∥C
1/2
S

∣∣�ρ�∣∣∥∥2
L2(S)

+ 2

β

∑
S∈(

⋃
n Sn

MDSp∪Γ+)

∥∥C
1/2
S

∣∣�ρ�∣∣∥∥2
L2(S)

+ 1

4
β

∑
K∈Th

‖D��∇hθ‖2
L2(K)

+ 3

4
β

∑
S∈Fint

∥∥C
1/2
S

∣∣�θ�∣∣∥∥2
L2(S)

+ 1

2
β

∑
S∈(

⋃
n Sn

MDSp∪Γ+)

∥∥C
1/2
S

∣∣�θ�∣∣∥∥2
L2(S)

. (71)

Next, we consider the bilinear form ad(ρ, θ). Using the lifting operator R, the bilinear form can be written as:

ad(ρ, θ) =
∑
K∈Th

∫
K

D�∇hρ · �∇hθ dK+
∑
K∈Th

∫
K

�R(�ρ�) · D�∇hθ dK

+
∑
K∈Th

∫
K

D�∇hρ · �R(�θ�)dK+
∑

S∈⋃
n Sn

ID

∑
K∈Th

ηK

∫
K

Dr̄S
(�ρ�) · r̄S

(�θ�)dK

+
∑

S∈⋃
n Sn

M

∫
S

αρθ dS. (72)

Applying the Schwarz’ inequality, inequality (48b) and arithmetic-geometric mean inequality yields:

∣∣ad(ρ, θ)
∣∣ � Nf + 1

β

∑
K∈Th

‖D��∇hρ‖2
L2(K)

+ Nf + η2
m

β

∑
S∈⋃

n Sn
ID

∑
K∈Th

∥∥D�r̄S
(�ρ�)∥∥2

L2(K)

+ 1

2β

∑
S∈⋃

n Sn
M

‖√αρ‖2
L2(S)

+ β

2

∑
K∈Th

‖D��∇hθ‖2
L2(K)

+ β

2

∑
S∈⋃ Sn

∑
K∈T

∥∥D�r̄S
(�θ�)∥∥2

L2(K)
+ β

2

∑
S∈⋃ Sn

‖√αθ‖2
L2(S)

, (73)
n ID h n M
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with ηm = maxK∈Th
ηK. Adding (71) and (73), combining the result with the coercivity estimate (43) for v = θ , and

taking β = βa , with βa defined in Lemma 5.1, we deduce:

βa

4
|‖θ‖|2DG � 1

βa

∑
K∈Th

∥∥(D�)−1u
∥∥2

L∞(K)
‖ρ‖2

L2(K)
+ Nf + 1

βa

∑
K∈Th

‖D��∇hρ‖2
L2(K)

+ Nf + η2
m

βa

∑
S∈⋃

n Sn
ID

∑
K∈Th

∥∥D�r̄S
(�ρ�)∥∥2

L2(K)

+ 1

2βa

∑
S∈⋃

n Sn
M

‖√αρ‖2
L2(S)

+ 2

βa

∑
S∈Fint

∥∥C
1/2
S {{ρ}}∥∥2

L2(S)

+ 1

βa

∑
S∈Fint

∥∥C
1/2
S

∣∣�ρ�∣∣∥∥2
L2(S)

+ 2

βa

∑
S∈(

⋃
n Sn

MDSp∪Γ+)

∥∥C
1/2
S

∣∣�ρ�∣∣∥∥2
L2(S)

. (74)

Multiplying the last equation with βa completes the proof of Lemma 6.5. �
6.4.2. Proof of the upper bound for φ in Lemma 6.8

The proof of Lemma 6.8 starts with introducing w = θ in (65) and using (69):

(φ, θ)ΩT
= aa(θ, zh) + ad(θ, zh) �

∣∣aa(ρ, zh)
∣∣ + ∣∣ad(ρ, zh)

∣∣.
We estimate now each term separately. First, we derive an estimate for the bilinear form aa(ρ, zh). Since ∂zh

∂t
∈

V
(pt ,ps)
h , the contribution

∫
K ρ

∂zh

∂t
dK is zero due to the orthogonality relation (55) and hence the bilinear form aa is

similar to (70). Using the Schwarz’ inequality, we can estimate aa as:

∣∣aa(ρ, zh)
∣∣ �

(
Cc|‖ρ‖|DG +

(
2

∑
S∈Fint

∥∥C
1/2
S {{ρ}}∥∥2

L2(S)

)1/2)
|‖zh‖|DG,

with Cc = 3 + uD and uD = maxK∈Th
‖(D�)−1u‖L∞(K). Next, we consider ad(ρ, zh), which is of the form (72).

Using inequality (48b), we obtain the upper bound for the bilinear form ad as follows:∣∣ad(ρ, zh)
∣∣ � Cd |‖ρ‖|DG|‖zh‖|DG,

with Cd = 2 + 2
√

Nf + ηm. Collecting all the terms we obtain the estimate

(φ, θ)ΩT
�

(
Ce|‖ρ‖|DG +

(
2

∑
S∈Fint

∥∥C
1/2
S {{ρ}}∥∥2

L2(S)

)1/2)
|‖zh‖|DG,

with Ce = Cc + Cd . �
6.4.3. Proof of the upper bound for zh in Lemma 6.9

To prove Lemma 6.9 we proceed as follows. First, we take w = zh in (65). Then we use the Schwarz and arithmetic-
geometric mean inequalities and the definition of CS on S ∈Fbnd (22) to obtain:

a(zh, zh) � 1

2α1
(φ,φ)ΩT

+ α1

∑
S∈F

∥∥C
1/2
S

∣∣�zh�
∣∣∥∥2

L2(S)
, (75)

with α1 > 0 an arbitrary constant. Since Lemma 5.1 also applies to the backward problem, we can state that

a(zh, zh) � βa|‖zh‖|2DG, (76)

with βa > 0 defined in Lemma 5.1. Combining (75) and (76) and choosing α1 = βa

2 , we obtain:

1

2
βa|‖zh‖|2DG � 1

βa

(φ,φ)ΩT
.

Multiplying the last equation with βa completes the proof. �
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7. Numerical results

In this section we present a number of numerical experiments in two spatial dimensions in order to verify the error
analysis discussed in this paper. We provide results for the following time-dependent advection–diffusion equation:

∂c

∂t
+ u

2∑
i=1

∂c

∂xi

− D

2∑
i=1

∂2c

∂x2
i

= 0, (0,1)2, (77)

Fig. 3. Convergence of space–time DG method when u = 1, D = 0 under �nt -refinement.

Fig. 4. Convergence of space–time DG method when u = 1, D = 1 under �nt -refinement.
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Fig. 5. Convergence of space–time DG method when u = 0, D = 1 under �nt -refinement.

Fig. 6. Convergence of space–time DG method when u = 1, D = 0 under h-refinement.

with u and D � 0 constants. The initial condition is

c(0, x1, x2) = sin(πx1) sin(πx2),

and the boundary conditions are chosen so that the analytical solution is given by

c(t, x1, x2) = sin
(
π(x1 − ut)

)
sin

(
π(x2 − ut)

)
exp

(−2Dπ2t
)
.

We consider three cases: (1) advection problem (u = 1,D = 0), (2) advection–diffusion problem (u = 1,D = 1), and
(3) diffusion problem (u = 0,D = 1).
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Fig. 7. Convergence of space–time DG method when u = 1, D = 1 under h-refinement.

Fig. 8. Convergence of space–time DG method when u = 0, D = 1 under h-refinement.

First, we investigate the behaviour of the space–time DG discretization on a sequence of successively finer time
intervals with a fixed number of elements in space and linear polynomial degrees: pt,K,ps,K = 1. We perform com-
putations from t = 0 until the final time T = 0.5. The results are given in Figs. 3–5. When there is no diffusion process
(D = 0), Fig. 3 shows that the error in the DG-norm as a function of the time step converges at the rate O(�nt

2) when
�nt � h, with h the spatial mesh size. This rate of convergence is better than the theoretical estimates presented in
Theorem 6.6. This means that the errors in the DG-norm are dominated by the L2-norm contribution (the first term in
Theorem 6.6), while the contributions due to the jumps at the element boundaries are negligible. When there is also
diffusion process present (D = 1), the errors in the DG-norm are dominated by the L2-norm of the derivatives (the
second term in Theorem 6.6), see Figs. 4 and 5. The errors in the DG-norm converge then at the rate O(�nt), verifying
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Fig. 9. Convergence of space–time DG method when u = 1, D = 0 under h-refinement for square and deformed mesh.

Fig. 10. Convergence of space–time DG method when u = 1, D = 1 under h-refinement for square and deformed mesh.

the theoretical estimates in Theorem 6.6. At the final time T = 0.5, the rates of the convergence of the space–time DG
discretization are better than the theoretical estimates given in Theorem 6.10.

Next, we study the rates of convergence on meshes with a different spatial mesh size and increasing polynomial
degrees. We compare the error for equal polynomial degrees: pt,K = ps,K and also for linear polynomials in time:
pt,K = 1. The results are shown in Figs. 6–8. When there is no diffusion (D = 0) and equal polynomial degrees in
time and space are used, Fig. 6 shows that the error in the DG-norm converges at the rate hps+1. This rate is better
than is obtained in the theoretical estimates Theorem 6.6. This indicates that the errors in the DG-norm are dominated
by the L2-norm contribution and we can neglect contribution from the L2-norm on the boundary ∂K. However, when
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Fig. 11. Convergence of space–time DG method when u = 0, D = 1 under h-refinement for square and deformed mesh.

Fig. 12. Convergence of space–time DG method when u = 1, D = 0 under p-refinement.

diffusion is also present (D = 1), from Figs. 7 and 8 we can conclude that the errors in the DG-norm are also influenced
by L2-norm of the derivatives and hence the errors converge at the rate hps as we expect from Theorem 6.6.

Using linear polynomials in time, we observe that as the mesh becomes finer, then the error is dominated by the
error in time, but this only occurs at relatively small error levels. The tests with linear polynomials in time were
performed since the analysis presented in Section 5 could only prove a unique solution for polynomials linear in time
and we want to investigate the effect of restricting the polynomial degree in time on the accuracy.

We also investigate the effect of the mesh movement on the accuracy. We construct the mesh movement as follows.
At tn we have a uniform square mesh. At tn+1, the uniform mesh is deformed by randomly perturbing the interior
nodes. Thus the meshes at tn and tn+1 are not identical, and the mesh velocity (discussed in Section 4.2) is present.
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Fig. 13. Convergence of space–time DG method when u = 1, D = 1 under p-refinement.

Fig. 14. Convergence of space–time DG method when u = 0, D = 1 under p-refinement.

The plots of the errors in the DG-norm on time deforming meshes are shown in Figs. 9–11. The figures show that the
errors in the DG-norm on a square mesh and on a time deforming mesh converge at the same rate.

Finally, we investigate the convergence of the space–time DG method with p-refinement and the results are shown
in Figs. 12–14. Here we only study the p-refinement for equal polynomial degrees in time and space: pt,K = ps,K on
a square mesh. We observe that on a linear-log scale, the errors in the DG-norm for all three cases become straight
lines which indicate exponential convergence in p.
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8. Concluding remarks

In this paper we present a new space–time DG method for the advection–diffusion equation in time-dependent
domains. We study and prove the consistency, coercivity, stability and the existence of a unique solution of the method.
We also present an error estimate in the DG-norm on the space–time domain and in the L2-norm at a specific time
level.

The numerical results show that for pure advection problem, the space–time DG discretization with h-refinement
converges in the DG-norm faster than the theoretical estimate in Theorem 6.6. For the case when diffusion is present
the convergence of the space–time DG discretization with h-refinement is numerically observed to be optimal in the
DG norm, thus verifies the theoretical estimates. The use of a time deforming mesh does not influence the rates of
convergence. The rates of convergence with p-refinement is numerically observed to be optimal in the DG-norm for all
three cases. Further, although the space–time DG discretization was only proven to be stable for the linear polynomials
in time, in the numerical simulations the algorithm performs also well for higher polynomial degrees in time.

Presently, the space–time discontinuous Galerkin method is being extended to the incompressible Navier–Stokes
equations. Also, the analysis of a posteriori error estimates for the space–time DG discretization is being conducted.
This will be used to control the mesh adaptation which can be done straightforwardly with a space–time DG method.
The space–time DG method presented in this paper has been successfully applied to wet-chemical etching processes,
for more details see [13].

Acknowledgements

This research has been conducted in the STW project TWI.5453: Analysis and Control of Transport Phenomena
in Wet-Chemical Etching Processes. The financial support from STW is gratefully acknowledged. We also would
like to thank the referees for giving valuable improvements to the paper and to Prof. P. Houston for pointing out the
interpolation estimates in [9].

References

[1] D.N. Arnold, An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal. 19 (4) (1982) 742–760.
[2] D.N. Arnold, F. Brezzi, B. Cockburn, L.D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer.

Anal. 39 (5) (2002) 1749–1779.
[3] F. Bassi, S. Rebay, Numerical evaluation of two discontinuous Galerkin methods for the compressible Navier–Stokes equations, Int. J. Numer.

Meth. Fluids. 40 (2002) 197–207.
[4] S.C. Brenner, L.R. Scott, The Mathematical Theory of Finite Element Methods, second ed., Springer, Berlin, 2002.
[5] F. Brezzi, G. Manzini, D. Marini, P. Pietra, A. Russo, Discontinuous finite elements for diffusion problems, Atti del Convegno in Memoria di

F. Brioschi, Milano, Instituto Lombardo di Scienze e Lettere, 1997.
[6] F. Brezzi, G. Manzini, D. Marini, P. Pietra, A. Russo, Discontinuous Galerkin approximations for elliptic problems, Numer. Methods Partial

Differential Equations 16 (2000) 365–378.
[7] F. Brezzi, L.D. Marini, E. Süli, Discontinuous Galerkin methods for first-order hyperbolic problems, Math. Models Methods Appl. Sci. 14 (12)

(2004) 1893–1903.
[8] B. Cockburn, C.W. Shu, Runge–Kutta discontinuous Galerkin method for convection dominated problems, J. Sci. Comput. 6 (3) (2001)

173–261.
[9] E.H. Georgoulis, Discontinuous Galerkin Methods on Shaped-Regular and Anisotropic Meshes, PhD thesis, Christ Church, University of

Oxford, 2003.
[10] P. Houston, Ch. Schwab, E. Süli, Discontinuous hp-finite element methods for advection–diffusion–reaction problems, SIAM J. Numer.

Anal. 39 (6) (2002) 2133–2163.
[11] A. Masud, T.J.R. Hughes, A space–time Galerkin/least squares finite element formulation of the Navier–Stokes equations for moving domain

problems, Comput. Methods Appl. Mech. Eng. 146 (1997) 91–126.
[12] D. Schotzau, Ch. Schwab, A. Toselli, Mixed hp-DGFEM for incompressible flows, SIAM J. Numer. Anal. 40 (6) (2003) 2171–2194.
[13] J.J. Sudirham, R.M.J. van Damme, J.J.W. van der Vegt, Space–time discontinuous Galerkin method for wet-chemical etching of microstruc-

tures, in: Proceedings of European Congress in Applied Sciences and Engineering, ECCOMAS, Jyvaskyla, Finland, 2004.
[14] T.E. Tezduyar, M. Behr, S. Mittal, A.A. Johnson, Computation of unsteady incompressible flows with the stabilized finite element methods:

Space–time formulations, iterative strategies and massively parallel implementation, in: New Methods in Transient Analysis, AMD, vol. 143,
ASME, 1992.

[15] V. Thomée, Galerkin Finite Element Methods for Parabolic Problems, Springer, Berlin, 1997.
[16] J.J.W. van der Vegt, H. van der Ven, Space–time discontinuous Galerkin finite element method with dynamic grid motion for inviscid com-

pressible flows, Part I. General formulation, J. Comput. Phys. 182 (2002) 546–585.


