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Abstract

A space–time discontinuous Galerkin finite element method for the Oseen equations on time-dependent flow domains is pre-
sented. The algorithm results in a higher order accurate conservative discretization on moving and deforming meshes and is well
suited for hp-adaptation. A detailed analysis of the stability of the numerical discretization is given which shows that the algorithm
is unconditionally stable, also when equal order polynomial basis functions for the pressure and velocity are used. The accuracy of
the space–time discretization is investigated using a detailed hp-error analysis and computations on a model problem.
© 2007 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Many problems in fluid dynamics require moving and deforming meshes. Important examples are fluid–structure
interaction, water waves and multi-fluid flows with clearly defined interfaces. In all of these problems the compu-
tational mesh has to follow the boundary motion and interior points need to move in order to maintain a consistent
mesh without grid folding. Also, when the boundary deformation becomes too large it is no longer possible to simply
move the interior mesh points and a completely new mesh has to be generated. An important problem one has to face
on these dynamic meshes is how to maintain a conservative numerical discretization, which preserves accuracy and
efficiency, despite the mesh deformation.

An excellent technique to achieve this is the space–time discontinuous Galerkin finite element method. In this
method basis functions are used which are discontinuous at element faces, both in space and time. Also, by defining the
problem in four dimensional space, automatically a conservative finite element discretization is obtained on moving
and deforming meshes. Since in a space–time DG method the basis functions in an element are only weakly coupled
to the basis functions in neighboring elements, the algorithm is well suited for local mesh refinement (h-adaptation)
or adjustment of the polynomial order (p-refinement). In addition, if a new mesh has to be generated one only has to
transfer time fluxes at the interface between the old and the new mesh and it is not necessary to interpolate data from
the old to the new mesh.
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In a series of articles, we have developed a solution adaptive space–time DG method for the compressible Euler and
Navier–Stokes equations [16,20,21] and applied this technique to a number of aerodynamical applications. In addition,
in [19] we have given a detailed error and stability analysis for a space–time DG method for the advection–diffusion
equation. The objective of this article is to extend this work to a space–time DG discretization of the time-dependent
Oseen equations, which are the linearized Navier–Stokes equations. The Oseen equations are the main component
in an iterative scheme to solve the incompressible Navier–Stokes equations, for instance with a Picard iteration.
A thorough understanding of the space–time DG algorithm for the Oseen equations is therefore a prerequisite before
applying it to the incompressible Navier–Stokes equations.

The discontinuous Galerkin discretization for the steady Stokes, Oseen and incompressible Navier–Stokes has been
considered by Cockburn, Kanschat, and Schötzau in a series of articles [8–10]. Also, the analysis in [17,18] provides
important information on the construction of DG algorithms for incompressible flows, but space–time DG algorithms
for these equations have not been developed so far. The main focus of this article is therefore the extension of the DG
method for incompressible flows to the space–time framework and to analyze the stability and accuracy of the resulting
algorithm. An important aspect in space–time DG algorithms is also the efficient solution of the algebraic equations
resulting from the space–time discretization. An excellent technique for this is provided by multigrid methods, which
have been extensively analyzed for discontinuous Galerkin discretizations by Hemker, Hoffmann and van Raalte in
[13–15], but the application of these techniques to the Oseen equations is presently still a topic of ongoing research.

There are several important points that have to be considered in the development of a DG discretization for the
Oseen equations, which are also relevant for a space–time DG method.

The first issue is the DG discretization of the viscous terms. The obvious choice is to discretize the viscous terms
in a similar way as done for elliptic equations (for a unified analysis, see [3]), but now extended to vector fields.
There are basically two approaches, the techniques proposed by Bassi and Rebay [4] and Brezzi et al. [6,7], and
the local discontinuous Galerkin method proposed by Cockburn and Shu in [8–10]. Based on our experience with
the advection–diffusion equation [19] and the compressible Navier–Stokes equations [16], we will use the Bassi
and Rebay and Brezzi approach for the DG discretization of the viscous contribution since this method results in a
very compact stencil. The local discontinuous Galerkin method provides, however, also a very useful discretization
technique and many of the results in this article also apply to this method.

The second issue is the pressure stabilization. The analysis presented in [17,18] shows the importance of the pres-
sure stabilization operator for the choice of the polynomial degrees in the approximation of the velocity and pressure
in a DG discretization. Without a stabilization term, the DG method can only be proven stable when the polynomial
degree used in the approximation of the pressure is one less than the polynomial degree for the approximation of the
velocity. By adding a stabilization term similar to the one used for elliptic equations, stability is proven when equal
polynomial degrees are used for the velocity and the pressure.

The organization of this article is as follows. First, the Oseen equations are written in the space–time formulation
in Section 2. After the introduction of the finite element spaces and trace operators in Section 3, we give a complete
derivation of the space–time DG formulation for the Oseen equations on time-dependent domains in Section 4. The
analysis of the stability and accuracy of the space–time DG discretization for the Oseen equations is presented in
Section 5. Numerical experiments on a model problem are given in Section 6. Finally, concluding remarks are drawn
in Section 7.

2. The Oseen equations

In this section we introduce the Oseen equations and set some notations. Let Ωt be an open, bounded, time-
dependent domain in R

d at time t , where d is the number of spatial dimensions. The closure of Ωt is Ω̄t and the
boundary of Ωt is denoted by ∂Ωt . Denoting x̄ = (x1, . . . , xd) as the spatial variables, we consider in Ωt the time-
dependent Oseen equations for the velocity field u ∈ R

d and the kinematic pressure p := p/ρ ∈ R:

∂u

∂t
+ ∇̄ · (u ⊗ w̄) − ν∇̄ · ∇̄u + ∇̄p = f, in Ωt, (1a)

∇̄ · u = 0, in Ωt, (1b)

with ρ the fluid density, ν ∈ R
+ the kinematic viscosity, w̄ ∈ R

d a given convective divergence free velocity field, and
f ∈ R

d the force vector. We introduce the product between two vectors a ∈ R
m,b ∈ R

n as a⊗b ∈ R
m×n with elements
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(a ⊗ b)ij = aibj . The notation ∇̄ is used for the spatial gradient operator in R
d , and defined as ∇̄ = ( ∂

∂x1
, . . . , ∂

∂xd
).

We also define the divergence of a tensor A ∈ R
m×n as: ∇̄ · A = ∑

j
∂

∂xj
Aij .

The first step to obtain a space–time discretization is to consider the Oseen equations directly in a domain in R
d+1.

A point x ∈ R
d+1 has coordinates (x0, x̄), with x0 = t representing time. We introduce the space–time domain

E ⊂ R
d+1. The boundary of the space–time domain ∂E consists of the hypersurfaces Ω0 := {x ∈ ∂E | x0 = 0},

ΩT := {x ∈ ∂E | x0 = T }, and Q := {x ∈ ∂E | 0 < x0 < T }. Introducing the gradient operator in R
d+1 as ∇ =

( ∂
∂x0

, ∂
∂x1

, . . . , ∂
∂xd

) and the vector w = (1, w̄), the Oseen equations (1) can be transformed into a space–time for-
mulation as:

∇ · (u ⊗ w) − ν∇̄ · ∇̄u + ∇̄ · (Idp) = f, in E ,

∇̄ · u = 0, in E ,

with Id the d × d identity matrix.
Since different boundary conditions are imposed on ∂E , we first discuss the subdivision of ∂E into different parts.

The boundary ∂E is divided into disjoint subsets Γm and Γp , with:

Γm := {x ∈ ∂E : w · n < 0}, Γp := {x ∈ ∂E : w · n � 0}.
The subscripts m and p denote the inflow and outflow boundaries, respectively, and n refers to the space–time normal
vector at ∂E . We subdivide Γm further into two sets: ΓDm and Ω0, with ΓDm the part of Γm with a Dirichlet boundary
condition and Ω0 the part of Γm with the initial condition. The part Γp is divided into three sets: ΩT , ΓDp and ΓN ,
with ΩT the part of ∂E at the final time T , ΓDp the part of Γp with a Dirichlet boundary condition and ΓN the part
of Γp with a Neumann boundary condition. Note that ΓD = ΓDm ∪ ΓDp is the part of the space–time boundary with
a Dirichlet boundary condition. The boundary conditions on different parts of ∂E are written as

u = u0 on Ω0, (3a)

u = gD on ΓD, (3b)

n̄ · ∇̄u = gN on ΓN, (3c)

p = pN on ΓN, (3d)

with u0 a given initial velocity field and gD,gN,pN given data defined on (part of) the boundary. There is no boundary
condition imposed on ΩT .

3. Space–time elements, finite element spaces and trace operators

3.1. Definition of space–time slabs, elements and faces

As already introduced in the previous section, we consider the Oseen equations in a space–time domain E . This
requires the definition of space–time slabs. For this purpose the time interval [0, T ] is partitioned into several parts.
The nth time interval is denoted by In, with its length defined as �nt = tn+1 − tn. A space–time slab is now defined
as the domain E n = E ∩ (In × R

d) with boundaries Ωtn , Ωtn+1 and Qn = ∂E n \ (Ωtn ∪ Ωtn+1).
Next, we construct the space–time elements K in the space–time slab E n. Let the domain Ωtn be divided into

Nn non-overlapping spatial elements Kn. At tn+1 the spatial elements Kn+1 are obtained by mapping the elements
Kn to their new position. Each space–time element K is then obtained by connecting elements Kn and Kn+1 using
linear interpolation in time. In case of curved domain boundaries, a higher order accurate interpolation is used for
elements connected to the domain boundary. We then denote by hK the radius of the smallest sphere containing each
element K. The element boundary ∂K is the union of open faces of K, which contains three parts Kn,Kn+1, and
Qn

K = ∂K \ (Kn ∪ Kn+1). We denote by nK the unit outward space–time normal vector on ∂K. The definition of the
space–time domain is completed with the tessellation T n

h in each space–time slab and Th = ⋃
n T n

h is the tessellation
in the space–time domain.

We consider several sets of faces in the tessellation. The set of all faces in E is denoted with F , the set of all interior
faces in E with Fint, and the set of all boundary faces on ∂E with Fbnd. In the space–time slab E n we denote the set of
all faces with F n and the set of all interior faces with S n. The faces separating two space–time slabs are denoted as S n.
I S
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Fig. 1. Construction of elements K via composition of affine maps and diffeomorphisms (for d = 2).

Several sets of boundary faces are defined as follows. The set of faces with a Dirichlet boundary condition is denoted
with S n

D . This set can be divided further into the sets S n
Dm and S n

Dp , which correspond to the faces with a Dirichlet
boundary condition on Γm and Γp , respectively. The set of faces with a Neumann boundary condition is denoted
with S n

N . Further, the sets S n
I and S n

D are grouped into S n
ID and the sets S n

I , S n
D and S n

N are grouped into S n
IDN .

3.2. Finite element spaces and trace operators

The space–time DG discretization requires the use of anisotropic Sobolev spaces on the domain D ⊂ R
d+1, see

for instance [11]. The definition of standard Sobolev spaces follows [5]. Here we restrict the anisotropy to the case
where the Sobolev index can be different for the temporal and spatial variables. All spatial variables have, however,
the same index. Let (st , ss) be a pair of non-negative integers, with st , ss corresponding to the temporal and spatial
Sobolev index, respectively. For γt , γs � 0, the anisotropic Sobolev space of order (st , ss) on D is defined by

H(st ,ss )(D) := {
v ∈ L2(D): ∂γt ∂γs v ∈ L2(D) for γt � st , |γs | � ss

}
,

with associated norm and semi-norm:

‖v‖st ,ss ,D :=
( ∑

γt�st|γs |�ss

‖∂γt ∂γs v‖2
0,D

) 1
2

, |v|st ,ss ,D :=
( ∑

γt=st|γs |=ss

‖∂γt ∂γs v‖2
0,D

) 1
2

.

Since the DG method is a non-conforming method, it is necessary to introduce the concept of a broken anisotropic
Sobolev space. To each element K we assign a pair of non-negative integers (st,K, ss,K) and collect them in the vectors
st = {st,K: K ∈ Th} and ss = {ss,K: K ∈ Th}. Then we assign to Th the broken Sobolev space H(st ,ss )(E , Th) := {v ∈
L2(E ): v|K ∈ H(st,K,ss,K)(K),∀K ∈ Th}, equipped with the broken Sobolev norm and corresponding semi-norm,
respectively,

‖v‖st ,ss ,Th
:=

( ∑
K∈Th

‖v‖2
st,K,ss,K,K

) 1
2

, |v|st ,ss ,Th
:=

( ∑
K∈Th

|v|2st,K,ss,K,K

) 1
2

.

For v ∈ H(1,1)(E , Th), we define the broken gradient ∇hv of v by (∇hv)|K := ∇(v|K),∀K ∈ Th and similarly for
v ∈ H(0,1)(E , Th) the broken spatial gradient ∇̄hv with (∇̄hv)|K := ∇̄(v|K),∀K ∈ Th.

We now discuss the finite element spaces associated with the tessellation Th that will be used in this article. First,
we introduce mappings of the space–time elements. Following the discussion in [11], we assume that each element
K ∈ Th is an image of a fixed master element K̂, with K̂ an open unit hypercube in R

d+1, constructed via two
mappings QK ◦FK , where FK : K̂ → K̃ is an affine mapping and QK : K̃ → K is a (regular enough) diffeomorphism
(see Fig. 1).

To each element K we assign a pair of non-negative integers (pt,K,ps,K) as local polynomial degrees, where
the subscripts t and s denote time and space, respectively, and collect them into vectors pt = {pt,K: K ∈ Th} and
ps = {ps,K: K ∈ Th}. We define Qpt,K,ps,K (K̂) as the set of all tensor-product polynomials on K̂ of degree pt,K in
the time direction and degree ps,K in each spatial coordinate direction. The finite element spaces of discontinuous
polynomial functions are defined as follows
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V
(pt ,ps)
h := {

v ∈ L2(E )d : v|K ◦ QK ◦ FK ∈ [Q(pt,K,ps,K)(K̂)]d ,∀K ∈ Th

}
,

Q(pt ,ps)
h := {

q ∈ L2(E ): q|K ◦ QK ◦ FK ∈ Q(pt,K,ps,K)(K̂),∀K ∈ Th

}
.

In the derivation and analysis of the numerical discretization we also make use of auxiliary spaces Σ
(pt ,ps)
h and

Σ̄
(pt ,ps)
h :

Σ
(pt ,ps)
h := {

τ ∈ L2(E )d×(d+1): τ |K ◦ QK ◦ FK ∈ [Q(pt,K,ps,K)(K̂)]d×(d+1),∀K ∈ Th

}
,

Σ̄
(pt ,ps)
h := {

τ̄ ∈ L2(E )d×d : τ̄ |K ◦ QK ◦ FK ∈ [Q(pt,K,ps,K)(K̂)]d×d ,∀K ∈ Th

}
.

The so called traces of v ∈ V
(pt ,ps)
h on ∂K are defined as: v±

K = limε↓0 v(x ± εnK). The traces of q ∈ Q(pt ,ps)
h ,

τ ∈ Σ
(pt ,ps)
h , and τ̄ ∈ Σ̄

(pt ,ps)
h are defined similarly.

Next, we define several trace operators for the sets Fint and Fbnd. Note that functions v ∈ V
(pt ,ps)
h , q ∈ Q(pt ,ps)

h ,

τ ∈ Σ
(pt ,ps)
h and τ̄ ∈ Σ̄

(pt ,ps)
h are in general multivalued on a face S ∈ Fint. Introducing the functions vi := v|Ki

, qi :=
q|Ki

, τi := τ |Ki
, τ̄i := τ̄ |Ki

, we define the average operator {{·}} on S ∈ Fint as:

{{v}} = (vi + vj )/2, {{q}} = (qi + qj )/2, {{τ }} = (τi + τj )/2, {{τ̄ }} = (τ̄i + τ̄j )/2,

while on S ∈ Fbnd, we set accordingly

{{v}} = v, {{q}} = q, {{τ }} = τ, {{τ̄ }} = τ̄ .

We also introduce the jump operators [[·]] and 〈〈·〉〉. For functions q ∈ Q(pt ,ps )
h , τ ∈ Σ

(pt ,ps)
h and τ̄ ∈ Σ̄

(pt ,ps)
h , the jump

operators are defined on S ∈ Fint as:

[[q]] = qini + qjnj , [[τ ]] = τi · ni + τj · nj ,

〈〈q〉〉 = qi n̄i + qj n̄j , 〈〈τ̄ 〉〉 = τ̄i · n̄i + τ̄j · n̄j ,

with ni, n̄i the outward normal vector on ∂Ki and its spatial part, respectively. For functions v ∈ V
(pt ,ps)
h , we define

the jump operators on S ∈ Fint as follows:

[[[v]]] = vi ⊗ ni + vj ⊗ nj , 〈〈〈v〉〉〉 = vi ⊗ n̄i + vj ⊗ n̄j , 〈〈v〉〉 = vi · n̄i + vj · n̄j .

By taking all functions from the neighboring element equal to zero, the definitions of jump operators are also
valid on boundary faces S ∈ Fbnd. Note that 〈〈v〉〉 is scalar, [[q]] ∈ R

d+1, 〈〈q〉〉 ∈ R
d are vectors, and [[[v]]] ∈ R

d×(d+1),
〈〈〈v〉〉〉 ∈ R

d×d are matrices. The jumps [[τ ]], 〈〈τ̄ 〉〉 ∈ R
d are vectors.

3.3. Lifting operators

The derivation of the space–time DG formulation requires several lifting operators. The main purpose of the lifting
operator is to eliminate the auxiliary variables σ , introduced in Section 4.1, by extending data defined at the element
faces into the whole space–time domain.

First, we introduce the local lifting operator LS : (L2(S))d×(d+1) → Σ
(pt ,ps)
h :∫

E

LS(ϑ) : τ dE =
∫
S

ϑ : {{τ }}dS, ∀τ ∈ Σ
(pt ,ps)
h , ∀S ∈

⋃
n

S n
ID, (4)

where the dyadic product between two matrices A,B ∈ R
m×n is defined as: A : B = ∑m

i=1
∑n

j=1 AijBij . Note, the
local lifting operator LS is only non-zero in the two elements connected to the face S. The global lifting operator
L : (L2(

⋃
n S n

ID))d×(d+1) → Σ
(pt ,ps)
h is now introduced as∫

L(ϑ) : τ dE =
∑

S∈⋃ S n

∫
LS(ϑ) : τ dE , ∀τ ∈ Σ

(pt ,ps)
h . (5)
E n ID E
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We also specify the above lifting operators for the Dirichlet boundary condition. On faces S ∈ ⋃
n S n

D we have∫
E

LS(P gD ⊗ n) : τ dE =
∫
S

gD ⊗ n : τ dS, ∀τ ∈ Σ
(pt ,ps)
h , ∀S ∈

⋃
n

S n
D,

with P the L2 projection on Σ
(pt ,ps)
h . For the global lifting operators, we proceed as follows. We replace ϑ by P gD ⊗n

in (4) and (5) to obtain the following global lifting operator for the Dirichlet boundary:∫
E

L(P gD ⊗ n) : τ dE =
∑

S∈⋃
n S n

D

∫
S

gD ⊗ n : τ dS, ∀τ ∈ Σ
(pt ,ps)
h . (6)

Using (5) and (6), we then introduce LID : (L2(
⋃

n S n
ID))d×(d+1) → Σ

(pt ,ps)
h as:

LID(ϑ) = −L(ϑ) + L(P gD ⊗ n). (7)

Later in this article, we will also use the spatial part of the lifting operators, denoted by L̄, L̄S , which are obtained by
eliminating the first component of L, LS , respectively.

4. Space–time DG discretization for the Oseen equations

In this section we give a derivation of the space–time DG formulation for the Oseen equations (2). Since the DG
basis functions are discontinuous at the element faces we cannot directly obtain a weak formulation for the Oseen
equations because this requires the trace of first order derivatives at the element faces, which are not uniquely defined
for discontinuous basis functions. For this purpose we transform the Oseen equations into a first order system by the
introduction of an auxiliary variable σ = ∇̄u:

σ = ∇̄u, in E , (8a)

∇ · (u ⊗ w) − ν∇̄ · σ + ∇̄ · (Idp) = f, in E , (8b)

∇̄ · u = 0, in E . (8c)

These equations are completed with the boundary conditions (3a)–(3d). In the next three sections we give the deriva-
tion of the space–time DG formulation for (8).

In the remainder of this article, we will assume that w ∈ H(div 0, E ) := {v ∈ (H (1,1)(E ))d+1: ∇ · v = 0}, f ∈
(L2(E ))d , gD ∈ (L2(

⋃
n Sn

D))d , gN,pN ∈ L2(
⋃

n Sn
N), u0 ∈ (L2(Ω0))

d .

4.1. Space–time DG formulation for the auxiliary variable

The space–time DG formulation for the auxiliary equation (8a) is obtained by multiplying (8a) with an arbitrary
test function τ̄ ∈ Σ̄

(pt ,ps)
h , substituting σ,u with the approximations σh ∈ Σ̄

(pt ,ps)
h , uh ∈ V

(pt ,ps)
h , and integration over

a space–time element K ∈ T n
h . Next, we perform integration by parts on the right hand side with respect to x1, . . . , xd

twice and, after summation over all elements K ∈ T n
h , we obtain for all τ̄ ∈ Σ̄

(pt ,ps)
h :∫

E n

σh : τ̄ dE =
∫

E n

∇̄huh : τ̄ dE +
∑

K∈T n
h

∫
Qn

K

(ûσ
h − uh) ⊗ n̄ : τ̄− d∂K. (9)

The variable ûσ
h is the numerical flux that must be defined to account for the multivalued trace at Qn

K . Note that since
we perform the integration by parts on the spatial variables, we only have to consider the weak formulation in the
space–time slab E n since there are no fluxes between the different space–time slabs.

We recall the following relation, which is an extension of the identity introduced in [3] to tensors τ̄ and vectors v,
piecewise smooth on Th:

∑
K∈T n

h

∫
Qn

v ⊗ n̄ : τ̄− d∂K =
∑

S∈S n
IDN

∫
S

〈〈〈v〉〉〉 : {{τ̄ }}dS +
∑
S∈S n

I

∫
S

{{v}} · 〈〈τ̄ 〉〉dS, (10)
K
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and can be proved by a straightforward calculation. When applied to the last term in (9), this results in

∑
K∈T n

h

∫
Qn

K

(ûσ
h − uh) ⊗ n̄ : τ̄− d∂K =

∑
S∈S n

IDN

∫
S

〈〈〈ûσ
h − uh〉〉〉 : {{τ̄ }}dS +

∑
S∈S n

I

∫
S

{{ûσ
h − uh}} · 〈〈τ̄ 〉〉dS. (11)

For the numerical flux ûσ
h , we make a similar choice as in [6,19], now applied to vector functions:

ûσ
h = {{uh}} on S n

I , ûσ
h = gD on S n

D, ûσ
h = uh on S n

N . (12)

Replacing ûσ
h in (11) with the numerical flux (12), the weak formulation (9) is now equal to:∫

E n

σh : τ̄ dE =
∫

E n

∇̄huh : τ̄ dE −
∑

S∈S n
ID

∫
S

〈〈〈uh〉〉〉 : {{τ̄ }}dS +
∑

S∈S n
D

∫
S

gD ⊗ n̄ : τ̄ dS. (13)

We sum (13) over all space–time slabs and the next step is to derive an equation for σh which can be used in the DG
formulation for (8b). The main benefit of the elimination of the auxiliary variables at the discrete level is a significant
reduction in the number of equations and variables in the DG discretization. For this purpose, the last two terms on
the right-hand side of (13) are replaced with the spatial part of the lifting operator LID , defined in (7), to obtain:∫

E

L̄ID

(〈〈〈uh〉〉〉
) : τ̄ dE = −

∑
S∈⋃

n S n
ID

∫
S

〈〈〈uh〉〉〉 : {{τ̄ }}dS +
∑

S∈⋃
n S n

D

∫
S

gD ⊗ n̄ : τ̄ dS. (14)

Introducing (14) into (13) and using the fact that this relation must be valid for arbitrary test functions τ̄ , we can
express σh ∈ Σ̄

(pt ,ps)
h as

σh = ∇̄huh + L̄ID

(〈〈〈uh〉〉〉
)
, a.e. ∀x ∈ E . (15)

4.2. Space–time DG formulation for the momentum equations

The space–time DG formulation for the momentum equations in the Oseen equations is obtained by multiplying
(8b) with arbitrary test functions v ∈ V

(pt ,ps )
h and integrating over an element K ∈ T n

h , such that for all v ∈ V
(pt ,ps)
h

the following relation is satisfied:∫
K

(∇ · (u ⊗ w)
) · v dK −

∫
K

(ν∇̄ · σ) · v dK +
∫

K

(∇̄ · Idp) · v dK =
∫

K

f · v dK. (16)

The functions u,σ,p are then replaced by their approximations uh ∈ V
(pt ,ps )
h , σh ∈ Σ̄

(pt ,ps)
h ,ph ∈ Q(pt ,ps)

h , respec-
tively. Next, we integrate by parts each term on the left hand side of (16). For the first term, integration by parts is
with respect to x0, . . . , xd , while for the second and third term the integration by parts is with respect to x1, . . . , xd .
After summation over all elements K ∈ Th, we have for all v ∈ V

(pt ,ps)
h :

Tc + Td + Tp =
∫

E

f · v dE , (17)

with

Tc := −
∫

E

uh ⊗ w : ∇hv dE +
∑

K∈Th

∫
∂K

ûc
h ⊗ w : v ⊗ nd∂K, (18a)

Td :=
∫

E

νσh : ∇̄hv dE −
∑

K∈Th

∫
Qn

K

νσ̂h : v ⊗ n̄d∂K, (18b)

Tp := −
∫

E

Idph : ∇̄hv dE +
∑

K∈Th

∫
Qn

Id p̂h : v ⊗ n̄d∂K, (18c)
K
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related, respectively, to the convective, diffusive, and pressure terms. Here we replaced uh,σh,ph at ∂K with the
numerical fluxes ûc

h, σ̂h, p̂h, to account for the multivalued traces at ∂K. The next step is to find appropriate choices
for the numerical fluxes and we discuss the derivation for each term separately.

First, we consider the convective term Tc (18a), which includes the convective flux ûc
h. The obvious choice is an

upwind flux, as in [9]. However, for simplicity of proving stability of the discretization, the upwind flux is written as
the sum of an average plus a jump penalty, as in [7,19]. Thus, we write the numerical flux ûc

h ⊗ w as:

ûc
h ⊗ w = {{uh}} ⊗ w + CS[[[uh]]]. (19)

The parameter CS is chosen as:

CS = 1

2
|w · n| on S ∈ Fint. (20)

For conciseness of the proof discussed later in Section 5, we extend the definition of CS to the boundary of the
space–time domain as:

CS =
{−w · n/2, on S ⊂ Γm,

+w · n/2, on S ⊂ Γp.
(21)

We recall identity (10), this time for tensors τ and vectors v, piecewise smooth on Th:
∑

K∈T n
h

∫
∂K

v ⊗ n : τ d∂K =
∑
S∈F

∫
S

[[[v]]] : {{τ }}dS +
∑

S∈Fint

∫
S

{{v}} · [[τ ]]dS. (22)

If we substitute τ in relation (22) with (19) and use the boundary conditions on ΓDm and Ω0, we obtain the final form
of Tc:

Tc = −
∫

E

uh ⊗ w : ∇hv dE +
∑

S∈Fint

∫
S

({{uh}} ⊗ w + CS[[[uh]]]
) : [[[v]]]dS

+
∑

S⊂Γp

∫
S

uh ⊗ w : v ⊗ ndS +
∑

S∈⋃
n S n

Dm

∫
S

gD ⊗ w : v ⊗ ndS −
∫
Ω0

u0 · v dS. (23)

Next, we consider the diffusive term Td (18b). We recall identity (10) again. When applied to the second term in (18b),
we obtain:

∑
K∈Th

∫
Qn

K

νσ̂h : v ⊗ n̄d∂K =
∑

S∈⋃
n S n

IDN

∫
S

ν{{σ̂h}} : 〈〈〈v〉〉〉dS +
∑

S∈⋃
n S n

I

∫
S

ν〈〈σ̂h〉〉 · {{v}}dS. (24)

For the numerical flux σ̂h, we make the same choice as in [6,19], now applied to tensor functions:

σ̂h = {{σh}} on S n
I , σ̂h = σh on S n

D ∪ S n
N , (25)

and substitute (25) into (24). Using the boundary condition (3c) on S ∈ ⋃
n S n

N and after replacement of σh with (15),
the term Td becomes:

Td =
∫

E

ν∇̄huh : ∇̄hv dE +
∫

E

νL̄ID

(〈〈〈uh〉〉〉
) : ∇̄hv dE −

∑
S∈⋃

n S n
N

∫
S

νgN · v dS

−
∑

S∈⋃
n S n

ID

∫
S

ν{{∇̄huh}} : 〈〈〈v〉〉〉dS −
∑

S∈⋃
n S n

ID

∫
S

ν
{{

L̄ID

(〈〈〈uh〉〉〉
)}} : 〈〈〈v〉〉〉dS. (26)

We can further evaluate the second and fourth term in (26). Using the lifting operator L̄ID defined in (14) with
τ̄ = ∇̄hv we have the relation∫

νL̄ID

(〈〈〈uh〉〉〉
) : ∇̄hv dE = −

∑
S∈⋃ S n

∫
ν〈〈〈uh〉〉〉 : {{∇̄hv}}dS +

∑
S∈⋃ S n

∫
νgD ⊗ n̄ : ∇̄hv dS, (27)
E n ID S n D S
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and by considering only the spatial part of the lifting operators L, LID , defined in (5) and (7), we obtain

∑
S∈⋃

n S n
ID

∫
S

ν
{{

L̄ID

(〈〈〈uh〉〉〉
)}} : 〈〈〈v〉〉〉dS = −

∫
E

νL̄
(〈〈〈uh〉〉〉

) : L̄
(〈〈〈v〉〉〉)dE

+
∫

E

νL̄(P gD ⊗ n̄) : L̄
(〈〈〈v〉〉〉)dE . (28)

In order to ensure that only contributions from neighboring elements occur in the discretization, which improves both
the computational efficiency and memory use, the contributions from the global lifting operator L̄ in (28) are replaced
with the local lifting operator L̄S (defined in (4) and (5)), using the following simplifications∫

E

νL̄
(〈〈〈uh〉〉〉

) : L̄
(〈〈〈v〉〉〉)dE ∼=

∑
S∈⋃

n S n
ID

∑
K∈Th

ηu
K

∫
K

νL̄S

(〈〈〈uh〉〉〉
) : L̄S

(〈〈〈v〉〉〉)dK, (29a)

∫
E

νL̄(P gD ⊗ n̄) : L̄
(〈〈〈v〉〉〉)dE ∼=

∑
S∈⋃

n S n
D

∑
K∈Th

ηu
K

∫
K

νL̄S(P gD ⊗ n̄) : L̄S

(〈〈〈v〉〉〉)dK, (29b)

with the parameter ηu
K a positive constant. Later in Section 5 we discuss the minimum value for ηu

K in order to have a
stable method. Introducing the relations (27)–(29b) into (26), the term Td can be written in its final form

Td =
∫

E

ν∇̄huh : ∇̄hv dE −
∑

S∈⋃
n S n

N

νgN · vdS −
∑

S∈⋃
n S n

ID

∫
S

ν〈〈〈uh〉〉〉 : {{∇̄hv}}dS

−
∑

S∈⋃
n S n

ID

∫
S

ν{{∇̄huh}} : 〈〈〈v〉〉〉dS +
∑

S∈⋃
n S n

ID

∑
K∈Th

ηu
K

∫
K

νL̄S

(〈〈〈uh〉〉〉
) : L̄S

(〈〈〈v〉〉〉)dK

+
∑

S∈⋃
n S n

D

∫
S

νgD ⊗ n̄ : ∇̄hvdS −
∑

S∈⋃
n S n

D

∑
K∈Th

ηu
K

∫
K

νL̄S(P gD ⊗ n̄) : L̄S

(〈〈〈v〉〉〉)dK. (30)

Finally, we consider the last term Tp given by (18c). We use the relation (10), this time for vectors v and scalars q ,
and replace p̂h in (18c) with:

p̂h = {{ph}} on S n
I , p̂h = ph on S n

D, p̂h = pN on S n
N . (31)

Note that on faces S ∈ ⋃
n S n

ID , we follow a similar approach as described in [10,17]. The condition on S ∈ ⋃
n S n

N is
required to have a well-posed problem for certain flow conditions. We obtain then the following expression for Tp:

Tp = −
∫

E

ph∇̄h · v dE +
∑

S∈⋃
n S n

ID

∫
S

{{ph}}〈〈v〉〉dS +
∑

S∈⋃
n S n

N

∫
S

pNv · n̄dS. (32)

Introducing all terms in (23), (30) and (32) into (17), we obtain the space–time DG discretization for the momentum
equations (8b) in the Oseen equations:

Find (uh,ph) ∈ V
(pt ,ps)
h × Q(pt ,ps)

h /R such that ∀v ∈ V
(pt ,ps)
h :

Oh(uh, v;w) + Ah(uh, v) + Bh(ph, v) = Nh(v;w) + Fh(v) + Gh(v). (33)

Here, the forms Oh : V
(pt ,ps)
h × V

(pt ,ps )
h × H(div 0, E ) → R, Ah : V

(pt ,ps)
h × V

(pt ,ps)
h → R, and Bh : Q(pt ,ps)

h /R ×
V

(pt ,ps)
h → R are defined as:

Oh(uh, v;w) := −
∫

E

uh ⊗ w : ∇hv dE +
∑

S∈Fint

∫
S

({{uh}} ⊗ w + CS[[[uh]]]
) : [[[v]]]dS

+
∑

S⊂Γp

∫
uh ⊗ w : v ⊗ ndS, (34)
S



J.J.W. van der Vegt, J.J. Sudirham / Applied Numerical Mathematics 58 (2008) 1892–1917 1901
Ah(uh, v) :=
∫

E

ν∇̄huh : ∇̄hv dE −
∑

S∈⋃
n S n

ID

∫
S

ν〈〈〈uh〉〉〉 : {{∇̄hv}}dS −
∑

S∈⋃
n S n

ID

∫
S

ν{{∇̄huh}} : 〈〈〈v〉〉〉dS

+
∑

S∈⋃
n S n

ID

∑
K∈Th

ηu
K

∫
K

νL̄S

(〈〈〈uh〉〉〉
) : L̄S

(〈〈〈v〉〉〉)dK, (35)

Bh(ph, v) := −
∫

E

ph∇̄h · v dE +
∑

S∈⋃
n S n

ID

∫
S

{{ph}}〈〈v〉〉dS, (36)

and the linear forms Nh :V (pt ,ps)
h × H(div 0, E ) → R, Fh :V (pt ,ps)

h → R, Gh :V (pt ,ps)
h → R as:

Nh(v;w) := −
∑

S∈⋃
n S n

Dm

∫
S

gD ⊗ w : v ⊗ ndS +
∫
Ω0

u0 · v dS, (37)

Fh(v) := −
∑

S∈⋃
n S n

D

∫
S

νgD ⊗ n̄ : ∇̄hv dS +
∑

S∈⋃
n S n

N

∫
S

νgN · v dS

+
∑

S∈⋃
n S n

D

∑
K∈Th

ηu
K

∫
K

νL̄S(P gD ⊗ n̄) : L̄S

(〈〈〈v〉〉〉)dK, (38)

Gh(v) :=
∫

E

f · v dE −
∑

S∈⋃
n S n

N

∫
S

pNv · n̄dS. (39)

4.3. Space–time DG formulation for the continuity equation

The space–time DG formulation for the continuity equation is obtained by multiplying (8c) with arbitrary test
functions q ∈ Q(pt ,ps)

h , replacing u with uh ∈ V
(pt ,ps)
h and integrating over the element K ∈ T n

h . After integration by
parts twice with respect to x1, . . . , xd and summation over all elements K ∈ Th we obtain:∫

E

(∇̄h · uh)q dE +
∑

K∈Th

∫
Qn

K

(û
p
h − uh) · n̄q d∂K = 0, ∀q ∈ Q(pt ,ps )

h , (40)

with û
p
h the numerical flux that has to be introduced to account for the multivalued traces on Qn

K . Using (10), we can
write (40) as∫

E

(∇̄h · uh)q dE +
∑

S∈⋃
n S n

IDN

∫
S

{{ûp
h − uh}} · 〈〈q〉〉dS +

∑
S∈⋃

n S n
I

∫
S

〈〈ûp
h − uh〉〉{{q}}dS = 0. (41)

The next step is to find an appropriate numerical flux û
p
h . The following approach is considered for the numerical

flux û
p
h on S ∈ ⋃

n S n
I :

û
p
h = {{uh}} + γ 〈〈ph〉〉, (42)

with γ > 0. This approach is first introduced for a DG discretization in [9]. The term containing the pressure is called
the pressure stabilization. On boundary faces we choose:

û
p
h = gD on S n

D, û
p
h = uh on S n

N . (43)

Introducing the numerical fluxes (42)–(43) into (41), we obtain the final form of the weak formulation for the conti-
nuity equation (8c):

Find (uh,ph) ∈ V
(pt ,ps)
h × Q(pt ,ps)

h /R such that ∀q ∈ Q(pt ,ps)
h /R:

−Bh(q,uh) + Ch(ph, q) = Hh(q), (44)

with Bh defined in (36), while Ch : Q(pt ,ps)/R × Q(pt ,ps)/R → R and Hh : Q(pt ,ps)/R → R are defined as:
h h h
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Ch(ph, q) :=
∑

S∈⋃
n S n

I

∫
S

γ 〈〈ph〉〉 · 〈〈q〉〉dS, (45)

Hh(q) := −
∑

S∈⋃
n S n

D

∫
S

gD · n̄q dS. (46)

The space–time DG formulation for the Oseen equations (8) is now stated as:
Find (uh,ph) ∈ V

(pt ,ps)
h × Q(pt ,ps)

h /R such that ∀(v, q) ∈ V
(pt ,ps)
h × Q(pt ,ps )

h /R:

Oh(uh, v;w) + Ah(uh, v) + Bh(ph, v) = Nh(v;w) + F(v) + Gh(v), (47)

−Bh(q,uh) + Ch(ph, q) = Hh(q). (48)

5. Stability and error analysis

In this section we discuss the stability and error analysis for the space–time DG formulation for the Oseen equations
given by (47)–(48).

The first main result in this section is Theorem 5.9, stating that the space–time DG discretization for the Oseen
equations has a unique solution and is unconditionally stable, also when equal order polynomials are used for the
velocity and pressure. A central point in the stability analysis will be the derivation of an inf–sup condition and an
upper bound for the solution of the Oseen equations in terms of initial and boundary data and the source term.

The second main result is an a priori hp-error estimate, given in Theorem 5.13 and Corollary 5.14, which shows
the dependence of the error on the mesh size h and polynomial order p.

The analysis of the space–time DG formulation (47)–(48) is considerably simplified by the introduction of the
following DG norm and norm for vector functions.

Definition 5.1. The DG norm |‖ · ‖|DG, related to the bilinear form (35), is defined on H(0,1)(E ) + V
(pt ,ps)
h as:

|‖v‖|2DG =
∑

K∈Th

‖v‖2
0,0,K +

∑
K∈Th

‖∇̄hv‖2
0,0,K +

∑
S∈⋃

n S n
ID

∑
K∈Th

∥∥L̄S

(〈〈〈v〉〉〉)∥∥2
0,0,K,

with H(0,1)(E ) the anisotropic Sobolev space defined in Section 3.2. The seminorm | · |S , with S is a set of faces, is
defined on Q(pt ,ps)

h /R as:

|q|2S =
∑
S∈S

∫
S

∣∣〈〈q〉〉∣∣2 dS. (49)

5.1. Continuity, coercivity, and inf–sup condition

The first result in this section establishes the continuity property of the bilinear form Ah.

Lemma 5.2. Let νm = maxx∈E ν(x), ηu
m = maxK∈Th

ηu
K , and Nf be the number of faces of each element K ∈ Th. Then

there exists a constant αA = ηu
m + 2

√
Nf + 1 > 0, independent of the mesh size h = maxK∈Th

hK , such that
∣∣Ah(uh, v)

∣∣ � νmαA|‖uh‖|DG|‖v‖|DG, ∀uh, v ∈ V
(pt ,ps)
h .

Proof. We consider the bilinear form Ah in the form

Ah(uh, v) =
∑

K∈Th

∫
K

ν∇̄huh : ∇̄hv dK −
∑

K∈Th

∫
K

ν∇̄huh : L̄
(〈〈〈v〉〉〉)dK −

∑
K∈Th

∫
K

νL̄
(〈〈〈uh〉〉〉

) : ∇̄hv dK

+
∑

S∈⋃ S n

∑
K∈Th

ηu
K

∫
νL̄S

(〈〈〈uh〉〉〉
) : L̄S

(〈〈〈v〉〉〉)dK. (50)
n ID K
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As a consequence of (5), we have∥∥L̄
(〈〈〈v〉〉〉)∥∥2

0,0,K � Nf

∑
S∈⋃

n S n
ID

∥∥L̄S

(〈〈〈v〉〉〉)∥∥2
0,0,K, (51)

with Nf the number of faces of each element K ∈ Th. Application of Schwarz’ inequality and the use of inequality
(51) yields:∣∣Ah(uh, v)

∣∣ � νmαA|‖uh‖|DG|‖v‖|DG, (52)

with νm = maxx∈E ν(x), ηu
m = maxK∈Th

ηu
K , and αA = ηu

m + 2
√

Nf + 1. �
Next, we establish the coercivity of Ah.

Lemma 5.3. Let ν0 = minx∈E ν(x), ηu
0 = minK∈Th

ηu
K , and Nf be the number of faces of each element K ∈ Th. Then

there exists a constant β̄A > 0, independent of the mesh size h = maxK∈Th
hK , such that

Ah(v, v) � ν0β̄A|‖v‖|2DG, ∀v ∈ V
(pt ,ps)
h ,

with β̄A = βA
2 min(1,1/C2

p), where βA = min(1 − ε, ηu
0 − Nf

ε
) for ε ∈ (

Nf

ηu
0
,1), and C2

p the coefficient in the discrete

Poincaré inequality ([2], Lemma 2.1).

Proof. We start with replacing uh in (50) with v:

Ah(v, v) =
∑

K∈Th

∫
K

ν∇̄hv : ∇̄hv dK − 2
∑

K∈Th

∫
K

ν∇̄hv : L̄
(〈〈〈v〉〉〉)dK

+
∑

S∈⋃
n S n

ID

∑
K∈Th

ηu
K

∫
K

νL̄S

(〈〈〈v〉〉〉) : L̄S

(〈〈〈v〉〉〉)dK. (53)

Using the Schwarz and arithmetic-geometric mean inequalities we have the inequality:

2
∫

K

∇̄hv : L̄
(〈〈〈v〉〉〉)dK � ε‖∇̄hv‖2

0,0,K + 1

ε

∥∥L̄
(〈〈〈v〉〉〉)∥∥2

0,0,K, (54)

with ε > 0. Introducing inequalities (51) and (54) into (53), we deduce

Ah(v, v) � ν0(1 − ε)
∑

K∈Th

‖∇̄hv‖2
0,0,K + ν0

(
η0 − Nf

ε

) ∑
S∈⋃

n S n
ID

∑
K∈Th

∥∥L̄S

(〈〈〈v〉〉〉)∥∥2
0,0,K. (55)

If we take the parameters ηu
0 > Nf and ε ∈ (

Nf

ηu
0
,1), then for 0 < βA = min(1 − ε, ηu

0 − Nf

ε
), we obtain

Ah(v, v) � ν0βA
∑

K∈Th

‖∇̄hv‖2
0,0,K + ν0βA

∑
S∈⋃

n S n
ID

∑
K∈Th

∥∥L̄S

(〈〈〈v〉〉〉)∥∥2
0,0,K. (56)

Next, we recall the discrete inequality which is first discussed in [3], p. 1763, but now applied to vector functions
in the space–time discretization:

‖v‖0,0,E � Cp

( ∑
K∈Th

‖∇̄hv‖2
0,0,K +

∑
S∈⋃

n S n
ID

∑
K∈Th

∥∥L̄S

(〈〈〈v〉〉〉)∥∥2
0,0,K

)1/2

. (57)

Using (57) in (56), we then obtain:

Ah(v, v) � ν0

(
βA
2C2

p

∑
K∈Th

‖v‖2
0,0,K + βA

2

∑
K∈Th

‖∇̄hv‖2
0,0,K + βA

2

∑
S∈⋃

n S n
ID

∑
K∈Th

∥∥L̄S

(〈〈〈v〉〉〉)∥∥2
0,0,K

)
. (58)

Choosing β̄A = βA min(1,1/C2
p) completes the proof. �
2



1904 J.J.W. van der Vegt, J.J. Sudirham / Applied Numerical Mathematics 58 (2008) 1892–1917
For the analysis of the DG algorithm we also need that the bilinear form Bh (36) is continuous, which is stated in
the next lemma.

Lemma 5.4. Let Nf be the number of faces of each element K ∈ Th. Then there exists a constant αB = √
Nf + 1 > 0,

independent of the mesh size h = maxK∈Th
hK , such that∣∣Bh(q, v)

∣∣ � αB‖q‖0,0,E |‖v‖|DG, ∀(q, v) ∈ Q(pt ,ps)
h /R × V

(pt ,ps)
h .

Proof. First, we consider the bilinear form Bh(q, v) in the form

Bh(q, v) = −
∑

K∈Th

∫
K

Idq : ∇̄hv dK +
∑

K∈Th

∫
K

Idq : L̄
(〈〈〈v〉〉〉)dK. (59)

Application of Schwarz’ inequality and inequality (51) yields:∣∣Bh(q, v)
∣∣ � ‖q‖0,0,E |‖v‖|DG + √

Nf ‖q‖0,0,E |‖v‖|DG. (60)

Choosing αB = √
Nf + 1 completes the proof. �

We also need to show that the bilinear form Bh satisfies the inf–sup condition. First, we introduce the inf–sup
condition for the Stokes equations in the domain Ωt as follows:

inf
0�=q∈L2(Ωt )/R

sup
0�=v∈(H 1

0 (Ωt ))d

− ∫
Ωt

q∇̄h · v dΩ

|v|1,Ωt ‖q‖0,Ωt

� CΩt > 0, (61)

with the constant CΩt depending only on Ωt . For a proof see [12]. If we fix now q ∈ Q(pt ,ps)
h /R, then the inf–sup

condition (61) guarantees that there exists a z(t) ∈ (H 1
0 (Ωt ))

d , with t ∈ [0, T ], such that:

−
∫
Ωt

q∇̄h · z(t)dΩ = ‖q‖2
0,Ωt

, with
∥∥z(t)

∥∥
1,Ωt

� C−1
Ωt

‖q‖0,Ωt , (62)

where we use the Poincaré inequality to change |z(t)|1,Ωt into ‖z(t)‖1,Ωt . Integrating in time from t = 0 to t = T ,
then results in the relation:

−
∫

E

q∇̄h · zdE = ‖q‖2
0,0,E , with ‖z‖0,1,E � C−1

E ‖q‖0,0,E . (63)

In the next lemma, we establish an inf–sup condition for the bilinear form Bh(·, ·), defined in (36).

Lemma 5.5. The following inf–sup condition holds for (q, v) ∈ Q(pt ,ps)
h /R × V

(pt ,ps)
h :

Bh(q, v) � Cinf‖q‖2
0,0,E

(
1 − |q|⋃

n S n
I

‖q‖0,0,E

)
, ∀q ∈ Q(pt ,ps)

h /R, (64)

with Cinf > 0 solely depending on C−1
E and the interpolation bounds.

Proof. To prove the inf–sup condition, we follow similar steps as in [18]. First, we fix q ∈ Q(pt ,ps)
h /R and define the

L2-projection PK(t) : (L2(K(t)))d → V
(0,ps)
h |K(t), with K(t) = K ∩ {t} the space–time element at time t , as:∫

K(t)

(PK(t)v) · φ dK =
∫

K(t)

v · φ dK, ∀φ ∈ V
(0,ps )
h |K(t). (65)

Next, for q ∈ Q(pt ,ps)
h /R, we consider the bilinear form Bh(q, z), for z ∈ L2([0, T ],H 1

0 (Ωt ))
d :

Bh(q, z) = −
∫

q∇̄h · zdE +
∑

S∈⋃ S n

∫
{{q}}〈〈z〉〉dS.
E n ID S
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Since 〈〈z〉〉 = 0 on S ∈ ⋃
n S n

ID , we can use (63) to obtain

Bh(q, z) = ‖q‖2
0,0,E . (66)

We consider now the bilinear form Bh(q, v), with v = PK(t)z:

Bh(q, v) = Bh(q, z) + Bh(q, PK(t)z − z),

= ‖q‖2
0,0,E −

∫
E

q∇̄h · (PK(t)z − z)dE +
∑

S∈⋃
n S n

ID

∫
S

{{q}}〈〈PK(t)z − z〉〉dS,

= ‖q‖2
0,0,E +

∫
E

∇̄hq · (PK(t)z − z)dE −
∑

K∈Th

∫
Qn

K

qn̄ · (PK(t)z − z)d∂K

+
∑

S∈⋃
n S n

ID

∫
S

{{q}}〈〈PK(t)z − z〉〉dS. (67)

The last equation is obtained using integration by parts with respect to x1, . . . , xd , and the fact that n̄ = 0 at Ω0
and ΩT . Applying identity (10) (for vectors) into (67), using the orthogonality property of the L2-projection PK(t)

and the fact that z = 0 at ∂Ωt , we then obtain:

Bh(q, v) = ‖q‖2
0,0,E −

∑
S∈⋃

n S n
I

∫
S

〈〈q〉〉 · {{PK(t)z − z}}dS, ∀q ∈ Q(pt ,ps)
h /R. (68)

We estimate the second term on the right-hand side in (68) as follows:
∣∣∣∣

∑
S∈⋃

n S n
I

∫
S

〈〈q〉〉 · {{PK(t)z − z}}dS

∣∣∣∣ �
( ∑

S∈⋃
n S n

I

∫
S

∣∣〈〈q〉〉∣∣2 dS

)1/2( ∑
S∈⋃

n S n
I

∫
S

∣∣{{PK(t)z − z}}∣∣2 dS

)1/2

,

� C|q|⋃
n S n

I

( ∑
K∈Th

‖∇̄hz‖2
0,0,K

)1/2

, (69)

using the seminorm defined in (49) for γ ≈ h and a standard interpolation estimate. Using (69), we obtain the follow-
ing inequality for Bh(q, v):

Bh(q, v) � ‖q‖2
0,0,E − C|q|⋃

n S n
I

( ∑
K∈Th

‖∇̄hz‖2
0,0,K

)1/2

= C‖q‖2
0,0,E

(
1 − |q|⋃

n S n
I
‖z‖0,1,E

‖q‖2
0,0,E

)
. (70)

Together with the fact that ‖z‖0,1,E � C−1
E ‖q‖0,0,E this completes the proof. �

We also show that for a divergence free convective velocity field w, the trilinear form Oh (34) satisfies a stability
relation.

Lemma 5.6. For w ∈ H(div 0, E ), the trilinear form Oh satisfies the following stability relation

Oh(v, v;w) =
∑
S∈F

∥∥C
1/2
S

∣∣[[[v]]]∣∣∥∥2
0,0,S

, ∀v ∈ V
(pt ,ps )
h .

Proof. First we replace uh in (34) with v:

Oh(v, v;w) = −
∫

E

v ⊗ w : ∇hv dE +
∑

S∈Fint

∫
S

({{v}} ⊗ w + CS[[[v]]]) : [[[v]]]dS

+
∑
S∈Γp

∫
v ⊗ w : v ⊗ ndS. (71)
S
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Using the following relation: v ⊗ w : ∇hv = 1
2 (∇h · w)(v · v) − 1

2∇h · ((v ⊗ w) · v) and applying the Gauss theorem,
we can write (71) as

Oh(v, v;w) = 1

2

∫
E

(∇h · w)(v · v)dE − 1

2

∑
K∈Th

∫
∂K

v ⊗ w : v ⊗ nd∂K +
∑

S∈Fint

∫
S

{{v}} ⊗ w : [[[v]]]dS

+
∑

S∈Fint

∫
S

CS[[[v]]] : [[[v]]]dS +
∑

S⊂Γp

∫
S

v ⊗ w : v ⊗ ndS. (72)

Using (22) and the fact that w is a continuous function, we then obtain:

Oh(v, v;w) = 1

2

∫
E

(∇h · w)(v · v)dE − 1

2

∑
S∈Fint

∫
S

w · [[v · v]]dS

+
∑

S∈Fint

∫
S

{{v}} ⊗ w : [[[v]]]dS +
∑

S∈Fint

∫
S

CS[[[v]]] : [[[v]]]dS

− 1

2

∑
S⊂Γm

∫
S

v ⊗ w : v ⊗ ndS + 1

2

∑
S⊂Γp

∫
S

v ⊗ w : v ⊗ ndS. (73)

Due to the continuity of w, on faces S ∈ Fint, we have:∫
S

{{v}} ⊗ w : [[[v]]]dS = 1

2

∫
S

w · [[v · v]]dS. (74)

Finally, as a consequence of (74), the fact that ∇h · w = 0, and using the definition of CS in (20)–(21), we obtain that
the trilinear form Oh satisfies the stability relation in Lemma 5.6. �
5.2. Global stability

In this section we discuss a global stability result. First, we define the product space Z (pt ,ps)
h = V

(pt ,ps)
h ×

Q(pt ,ps )
h /R, endowed with the norm:∣∣∣∣∣∣(v, q)

∣∣∣∣∣∣2
DG = |‖v‖|2DG + |q|2⋃

n S n
I

+
∑
S∈F

∥∥C
1/2
S

∣∣[[[v]]]∣∣∥∥2
0,0,S

. (75)

If we define the forms Ã : Z (pt ,ps)
h × Z (pt ,ps)

h → R and L̃ : Z (pt ,ps)
h → R as:

Ã(uh,ph;v, q) := Ah(uh, v) + Bh(ph, v) − Bh(q,uh) + Ch(ph, q) + Oh(uh, v;w), (76)

L̃(v, q) := Nh(v;w) + Fh(v) + Gh(v) + Hh(q), (77)

then (47)–(48) are equivalent with:
Find (uh,ph) ∈ Z (pt ,ps )

h , such that:

Ã(uh,ph;v, q) = L̃(v, q), ∀(v, q) ∈ Z (pt ,ps)
h . (78)

First, we discuss the consistency of the space–time DG method (47)–(48). The formulation is consistent when
(47)–(48) is also satisfied by (u,p) ∈ H(1,2)(E )d × H(0,1)(E )/R, the solution of (2)–(3):

Ã(u,p;v, q) = L̃(v, q), ∀(v, q) ∈ H(1,1)(E )d × L2(E )/R. (79)

The proof for consistency is straightforward. We replace (uh,ph) in (76) by (u,p). Since (u,p) solves (2)–(3), we
have [[[u]]] = 0, 〈〈〈u〉〉〉 = 0, 〈〈p〉〉 = 0, {{u}} = u, {{p}} = p on Fint. If we introduce these relations into (76), perform
integration by parts, and use the boundary conditions (3), we obtain L̃(v, q). Subtracting (79) from (78) yields the
Galerkin orthogonality property:

Ã(u − uh,p − ph;v, q) = 0, ∀(v, q) ∈ Z (pt ,ps)
h . (80)

Next, we show the coercivity of Ã.
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Lemma 5.7. Let ν0 = minx∈E ν(x) and assume that the constant β̄A satisfies the conditions given in Lemma 5.3. Then
there exists a constant CÃ > 0 such that

Ã(v, q;v, q) � CÃ
∣∣∣∣∣∣(v, q)

∣∣∣∣∣∣2
DG, ∀(v, q) ∈ Z (pt ,ps)

h , (81)

with CÃ = min(ν0β̄A, γ,1).

Proof. First we replace (uh,ph) in (76) with (v, q) to obtain:

Ã(v, q;v, q) = Ah(v, v) + Ch(q, q) + Oh(v, v;w).

Using Lemmas 5.3 and 5.6 and the norm | · |⋃
n S n

I
, we obtain:

Ã(v, q;v, q) � ν0β̄A|‖v‖|2DG + γ |q|2⋃
n S n

I
+

∑
S∈F

∥∥C
1/2
S

∣∣[[[v]]]∣∣∥∥2
0,0,S

.

Taking CÃ = min(ν0β̄A, γ,1) completes the proof. �
In the next lemma we show that the solution to (47)–(48) is bounded by known data. For this purpose we define

the L2-projection PS : (L2(S))d → γS(V
(pt ,ps)
h ), with γS the trace at S ∈ ⋃

n S n
D , as:∫

S

PSv · ψ dS =
∫
S

v · ψ dS, ∀ψ ∈ γS

(
V

(pt ,ps)
h

)
,

and we introduce the lifting operator L̂S(γS(V
(pt ,ps)
h )) → V

(pt ,ps )
h , which satisfies:

L̂S(PSgD) = PSgD at S ∈
⋃
n

S n
D.

In addition, we will need the face bubble functions ΨS , with S ⊂ ∂K, which are defined as ΨS = Ψ̂i ◦ F−1
K ◦ Q−1

K ,

with i the index of the face Ŝi ⊂ ∂K̂ which is connected to the face S ⊂ ∂K through the mapping QK ◦ FK . The face
bubble functions Ψ̂i satisfy the conditions

Ψ̂i(x̂) > 0, ∀x̂ ∈ K̂, (82)

Ψ̂i = 0, at Ŝj ,∀j ∈ {1, . . . ,Nf } and j �= i,

hence Ψ̂i = 0 at ∂Ŝi . For any qh ∈ Q(pt ,ps)
h , we then have the inequality

|qh|2S � Ci |ΨSqh|2S, ∀S ∈ F , (83)

with Ci > 0 a constant independent of the mesh size. The proof of this inequality follows directly from the fact that
all norms are equivalent in a finite dimensional space and condition (82). See for instance [1].

Lemma 5.8. Let CÃ satisfy the conditions given in Lemma 5.7, C̃Ã = CÃ
max(1,Ci )

, νm = maxx∈E ν(x), and ηu
m =

maxK∈Th
ηu

K . Then the solution to (47)–(48) satisfies the following upper bound:

C̃2
Ã

∣∣∣∣∣∣(uh,ph)
∣∣∣∣∣∣2

DG � 4
∑

K∈Th

‖f ‖2
0,0,K + 2ν2

m

(
Nf + (ηu

m)2) ∑
S∈⋃

n S n
D

∑
K∈Th

∥∥L̄S

(〈〈〈P gD〉〉〉)∥∥2
0,0,K

+ 24
∑

S∈⋃
n S n

D

‖C1/2
S gD‖2

0,0,S + 12‖C−1/2
S u0‖2

0,0,Ω0
+ 4ν2

m

∑
S∈⋃

n S n
N

‖C−1/2
S gN‖2

0,0,S

+ 4
∑

S∈⋃
n S n

N

‖C−1/2
S pN‖2

0,0,S +
∑

S∈⋃
n S n

D

∥∥ΨS L̂S(PSgD)
∥∥2

0,1,E

+ 2αBC̃Ã
Cinf

∑
S∈⋃ S n

∣∣∣∣∣∣ΨS L̂S(PSgD)
∣∣∣∣∣∣

DG

∑
S′∈⋃

Sn

∥∥ΨS′ L̂S′(PS′gD)
∥∥

0,1,E

n D n D
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+ 4
∑

S∈⋃
n S n

D

∑
K∈Th

∥∥∇h

(
ΨS L̂S(PSgD)

) · w∥∥2
0,0,K

+ 4
∑

S∈⋃
n S n

D

∥∥C
1/2
S

[[[
ΨS L̂S(PSgD)

]]]∥∥2
0,0,S

+ 2ν2
mα2

A
∑

S∈⋃
n S n

D

∣∣∣∣∣∣ΨS L̂S(PSgD)
∣∣∣∣∣∣

DG

+ 2C̃Ã
∑

S∈⋃
n S n

D

(∣∣Nh

(
ΨS L̂S(PSgD);w)∣∣ + ∣∣Fh

(
ΨS L̂S(PSgD)

)∣∣ + ∣∣Gh

(
ΨS L̂S(PSgD)

)∣∣).

Proof. We start with (83) with qh = ph, then the DG-norm (75) satisfies the inequality∣∣∣∣∣∣(uh,ph)
∣∣∣∣∣∣2

DG � max(1,Ci)
∣∣∣∣∣∣(uh,Ψph)

∣∣∣∣∣∣2
DG, (84)

with Ψph = ∑
S∈F ΨSph. Next, using (84), the coercivity estimate given by Lemma 5.7, with (v, q) = (uh,Ψph),

and (78) we obtain

CÃ
∣∣∣∣∣∣(uh,ph)

∣∣∣∣∣∣2
DG � max(1,Ci)Ã(uh,Ψph;uh,Ψph) = max(1,Ci)L̃(uh,Ψph),

where we used the fact that Ã(uh,Ψph;uh,Ψph) does not depend on Ψph. The final estimate is now obtained by
determining an upper bound for each term in L̃ separately.

First, we consider Nh given by (37):

Nh(uh;w) = −
∑

S∈⋃
n S n

Dm

∫
S

gD ⊗ w : uh ⊗ ndS +
∫
Ω0

u0 · uh dS,

= 2
∑

S∈⋃
n S n

Dm

∫
S

CS[[[gD]]] : [[[uh]]]dS +
∫
Ω0

[[[u0]]] : [[[uh]]]dS,

� 3

2
ε1

∑
S∈F

∥∥C
1/2
S

∣∣[[[uh]]]
∣∣∥∥2

0,0,S
+ 1

ε1

∑
S∈⋃

n S n
Dm

‖C1/2
S gD‖2

0,0,S + 1

2ε1
‖C−1/2

S u0‖2
0,0,Ω0

. (85)

Next, we find an upper bound for Fh given by (38). Using the lifting operators defined in Section 3.3 and inequal-
ity (51), we can write Fh as:

Fh(uh) = −
∑

K∈Th

∫
K

νL̄
(〈〈〈P gD〉〉〉) : ∇̄huh dE

+
∑

S∈⋃
n S n

D

∑
K∈Th

η
uh

K

∫
K

νL̄S

(〈〈〈P gD〉〉〉) : L̄S

(〈〈〈uh〉〉〉
)

dK +
∑

S∈⋃
n S n

N

∫
S

νgN · uh dS,

� νm

ε2

2

∑
K∈Th

‖∇̄huh‖2
0,0,K + νm

(
Nf

2ε2
+ ηu

m

2ε3

) ∑
S∈⋃

n S n
D

∑
K∈Th

∥∥L̄S

(〈〈〈P gD〉〉〉)∥∥2
0,0,K

+ νmηu
m

ε3

2

∑
S∈⋃

n S n
D

∑
K∈Th

∥∥L̄S

(〈〈〈uh〉〉〉
)∥∥2

0,0,K

+ νm

1

2ε4

∑
S∈⋃

n S n
N

‖C−1/2
S gN‖2

0,0,S + νm

ε4

2

∑
S∈F

∥∥C
1/2
S

∣∣[[[uh]]]
∣∣∥∥2

0,0,S
. (86)

An upper bound for Gh, given by (39), is obtained as follows:

Gh(uh) =
∫

E

f · uh dE −
∑

S∈⋃
n S n

N

∫
S

pNuh · n̄dS,

� ε5

2

∑
‖uh‖2

0,0,K + 1

2ε5

∑
‖f ‖2

0,0,K

K∈Th K∈Th
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+ ε6

2

∑
S∈⋃

n S n
N

∥∥C
1/2
S

∣∣[[[uh]]]
∣∣∥∥2

0,0,S
+ 1

2ε6

∑
S∈⋃

n S n
N

‖C−1/2
S pN‖2

0,0,S . (87)

Finally, for the estimation of Hh, given by (46), we first use the relation:

Hh(Ψph) = −
∑

S∈⋃
n S n

D

∫
S

ΨS PSgD · n̄ph dS. (88)

An estimate for Hh(Ψph) can now be obtained by choosing the test function v in the weak formulation (33) as
v = ΨS L̂S(PSgD) in the element K connected to the boundary face S ∈ ⋃

n S n
D and zero elsewhere:

∑
S∈⋃

n Sn
D

∫
S

ΨS PSgD · n̄ph dS =
∑

S∈⋃
n Sn

D

(∫
E

ph∇̄h · (ΨS L̂S(PSgD)
)

dE +
∫

E

uh ⊗ w : ∇h

(
ΨS L̂S(PSgD)

)
dE

−
∑

S′⊂Γp

∫
S′

uh ⊗ w : ΨS L̂S(PSgD) ⊗ ndS − Ah

(
uh,ΨS L̂S(PSgD)

)

+ Nh

(
ΨS L̂S(PSgD);w) + Fh

(
ΨS L̂S(PSgD)

) + Gh

(
ΨS L̂S(PSgD)

))
,

where we used the fact that ΨS L̂S(PSgD) = 0 at ∂K/S. We estimate now the individual terms on the right-hand side.
The first contribution has an upper bound:

∑
S∈⋃

n Sn
D

∫
E

ph∇̄h · (ΨS L̂S(PSgD)
)

dE � ‖ph‖0,0,E
∑

S∈⋃
n Sn

D

∥∥ΨS L̂S(PSgD)
∥∥

0,1,E

�
(

|ph|⋃
n S n

I
+ αB

Cinf

∑
S′∈⋃

n Sn
D

∣∣∣∣∣∣ΨS′ L̂S′(PS′gD)
∣∣∣∣∣∣

DG

) ∑
S∈⋃

n Sn
D

∥∥ΨS L̂S(PSgD)
∥∥

0,1,E

� 1

2
ε7|ph|2⋃

n S n
I

+ 1

2ε7

∑
S∈⋃

n Sn
D

∥∥ΨS L̂S(PSgD)
∥∥2

0,1,E

+ αB
Cinf

∑
S′∈⋃

n Sn
D

∣∣∣∣∣∣ΨS′ L̂S′(PS′gD)
∣∣∣∣∣∣

DG

∑
S∈⋃

n Sn
D

∥∥ΨS L̂S(PSgD)
∥∥

0,1,E ,

where we used in the second inequality the inf–sup condition, given by Lemma 5.5, and the boundedness of Bh, given
by Lemma 5.4. The second contribution has as upper bound:

∑
S∈⋃

n Sn
D

∫
E

uh ⊗ w : ∇h

(
ΨS L̂S(PSgD)

)
dE � 1

2
ε8‖uh‖2

0,0,E + 1

2ε8

∑
S∈⋃

n Sn
D

∑
K∈Th

∥∥∇h

(
ΨS L̂S(PSgD)

) · w∥∥2
0,0,K,

and the third contribution is bounded by:

∑
S∈⋃

n Sn
D

∑
S′⊂Γp

∫
S′

uh ⊗ w : ΨS L̂S(PSgD) ⊗ ndS

= 2
∑

S∈⋃
n Sn

D

∑
S′⊂Γp

∫
S′

CS′ [[[uh]]] : [[[ΨS L̂S(PSgD)
]]]

dS,

� 1

2
ε9

∑
S∈F

∥∥C
1/2
S

∣∣[[[uh]]]
∣∣∥∥2

0,0,S
+ 1

2ε9

∑
S∈⋃

n Sn
D

∥∥C
1/2
S

[[[
ΨS L̂S(PSgD)

]]]∥∥2
0,0,S

.

An upper bound for the remaining terms can be obtained directly using the boundedness for Ah, given by Lemma 5.2,
and using the estimates given by (85)–(87) with uh replaced with ΨS L̂S(PSgD).
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Collecting all terms, introducing the following coefficients: ε1 = C̃Ã
12 , ε2 = C̃Ã

2νm
, ε3 = C̃Ã

2νmηu
m
, ε4 = C̃Ã

4νm
, ε5 =

C̃Ã
4 , ε6 = C̃Ã

4 , ε7 = C̃Ã, ε8 = C̃Ã
4 , ε9 = C̃Ã

4 , ε10 = C̃Ã
2νmαA

, and finally multiplying the result with 2C̃Ã completes the
proof. �

The result of Lemmas 5.7 and 5.8 immediately imply the existence of a unique solution of (47)–(48) in Z (pt ,ps)
h .

Theorem 5.9. Let ν0 = minx∈E ν(x), ηu
0 = minK∈Th

ηu
K > Nf , with Nf the number of faces of each element K ∈ Th,

and the parameter CÃ satisfies the conditions given in Lemma 5.7. Then the space–time discontinuous Galerkin

discretization given by (47)–(48) is unconditionally stable and has a unique solution in V
(pt ,ps)
h × Q(pt ,ps)

h /R with
pt � 0 and ps � 1.

Corollary 5.10. The space–time DG discretization of the Oseen equations, given by (47)–(48), is unconditionally
stable.

Proof. This result is a direct consequence of Lemma 5.8, which is valid for any value of the spatial mesh size and
time step, and Theorem 5.9. �
5.3. hp-Error analysis

The results obtained in Sections 5.1 and 5.2 now make it possible to analyze the hp-error of the space–time dis-
cretization. Since the spatial mesh size h and time step �t are in general quite different we make the dependence of
the error on these parameters explicit. For the error analysis we define the projection Pu : L2(E ) → V

(pt ,ps)
h as:∑

K∈Th

(Puz, v)K =
∑

K∈Th

(z, v)K, ∀v ∈ V
(pt ,ps)
h , (89)

and the projection Pp : L2(E ) → Q(pt ,ps)
h as:∑

K∈Th

(Pp, q)K =
∑

K∈Th

(p, q)K, ∀q ∈ Q(pt ,ps)
h , (90)

which can be used to decompose the global error (u − uh,p − ph) as:

(u − uh,p − ph) = (u − Puu,p − Ppp) + (Puu − uh, Ppp − ph)

≡ (ρu,ρp) + (θu, θp), (91)

with (ρu,ρp) the interpolation error and (θu, θp) the discretization error.
In the next lemma we give an estimate for (θu, θp) in terms of (ρu,ρp).

Lemma 5.11. Let CÃ satisfy the conditions given in Lemma 5.7, αA, αB be defined in Lemmas 5.2 and 5.4, respec-
tively, w̄m = maxK∈Th

‖w̄‖L∞(K), νm = maxx∈E ν(x), CS given by (20) and the stabilization coefficient γ > 0. Then
the functions (θu, θp) satisfy the inequality:

1

4
C2

Ã
∣∣∣∣∣∣(θu, θp)

∣∣∣∣∣∣2
DG �

(
ν2
mα2

A + w̄2
m + (1 + CÃ/Cinf)α

2
B
)|‖ρu‖|2DG + α2

B‖ρp‖2
0,0,E + γ 2|ρp|2⋃

n S n
I

+
∑

S∈Fint

∥∥C
1/2
S

∣∣{{ρu}}
∣∣∥∥2

0,0,S
+

∑
S∈F

∥∥C
1/2
S

∣∣[[[ρu]]]
∣∣∥∥2

0,0,S
.

Proof. To prove this lemma, we use the orthogonality relation (80) to obtain:

Ã(ρu + θu,ρp + θp;v, q) = 0, ∀(v, q) ∈ Z (pt ,ps )
h . (92)

Taking (v, q) = (θu, θp), we then obtain: Ã(θu, θp; θu, θp) = −Ã(ρu,ρp; θu, θp).
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We continue with an estimate for |Ã(ρu,ρp; θu, θp)|:∣∣Ã(ρu,ρp; θu, θp)
∣∣ �

∣∣Ah(ρu, θu)
∣∣ + ∣∣Bh(ρp, θu)

∣∣ + ∣∣Bh(θp,ρu)
∣∣ + ∣∣Ch(ρp, θp)

∣∣ + ∣∣Oh(ρu, θu;w)
∣∣. (93)

The first term in (93) can be estimated using Lemma 5.2, while the second and the third term can be estimated using
Lemma 5.4. The fourth term can be estimated easily as follows:∣∣Ch(ρp, θp)

∣∣ � γ |ρp|⋃
n S n

I
|θp|⋃

n S n
I
. (94)

Next, we derive an estimate for the fifth term in (93):

∣∣Oh(ρu, θu;w)
∣∣ �

∣∣∣∣
∫

E

ρu · ∂θu

∂t
dE

∣∣∣∣ +
∣∣∣∣
∫

E

ρu ⊗ w̄ : ∇̄hθu dE
∣∣∣∣ +

∣∣∣∣
∑

S∈Fint

∫
S

{{ρu}} ⊗ w : [[[θu]]]dS

∣∣∣∣

+
∣∣∣∣

∑
S∈Fint

∫
S

CS[[[ρu]]] : [[[θu]]]dS

∣∣∣∣ +
∣∣∣∣
∑

S⊂Γp

∫
S

CSρu ⊗ w : θu ⊗ ndS

∣∣∣∣. (95)

Since θu ∈ V
(pt ,ps)
h , which is polynomial, hence ∂θu

∂t
∈ V

(pt ,ps)
h , we can use the orthogonality relation (89) to eliminate

the first term in (95). The remaining terms in (95) are estimated as follows:∣∣Oh(ρu, θu;w)
∣∣ �

∑
K∈Th

‖w̄‖L∞(K)‖ρu‖0,0,K‖∇̄hθu‖0,0,K +
∑

S∈Fint

∥∥C
1/2
S

∣∣{{ρu}}
∣∣∥∥

0,0,S

∥∥C
1/2
S

∣∣[[[θu]]]
∣∣∥∥

0,0,S

+
∑
S∈F

∥∥C
1/2
S

∣∣[[[ρu]]]
∣∣∥∥

0,0,S

∥∥C
1/2
S

∣∣[[[θu]]]
∣∣∥∥

0,0,S
,

� w̄m|‖ρu‖|DG|‖θu‖|DG +
( ∑

S∈Fint

∥∥C
1/2
S

∣∣{{ρu}}
∣∣∥∥2

0,0,S

)1/2(∑
S∈F

∥∥C
1/2
S

∣∣[[[θu]]]
∣∣∥∥2

0,0,S

)1/2

+
(∑

S∈F

∥∥C
1/2
S

∣∣[[[ρu]]]
∣∣∥∥2

0,0,S

)1/2(∑
S∈F

∥∥C
1/2
S

∣∣[[[θu]]]
∣∣∥∥2

0,0,S

)1/2

, (96)

with w̄m = maxK∈Th
‖w̄‖L∞(K). We also need an estimate for ‖θp‖0,0,E , which can be obtained directly using Lem-

mas 5.4 and 5.5:

‖θp‖0,0,E � |θp|⋃
n S n

I
+ (αB/Cinf)|‖ρu‖|DG. (97)

Collecting all terms we obtain the estimate:∣∣Ã(ρu,ρp; θu, θp)
∣∣ � νmαA|‖ρu‖|DG|‖θu‖|DG + αB‖ρp‖0,0,E |‖θu‖|DG

+ α2
B

Cinf
|‖ρu‖|2DG + αB|θp|⋃

n S n
I
|‖ρu‖|DG + γ |ρp|⋃

n S n
I
|θp|⋃

n S n
I

+ w̄m|‖ρu‖|DG|‖θu‖|DG

+
( ∑

S∈Fint

∥∥C
1/2
S

∣∣{{ρu}}
∣∣∥∥2

0,0,S

)1/2(∑
S∈F

∥∥C
1/2
S

∣∣[[[θu]]]
∣∣∥∥2

0,0,S

)1/2

+
(∑

S∈F

∥∥C
1/2
S

∣∣[[[ρu]]]
∣∣∥∥2

0,0,S

)1/2(∑
S∈F

∥∥C
1/2
S

∣∣[[[θu]]]
∣∣∥∥2

0,0,S

)1/2

. (98)

Applying the Schwarz’ inequality and the arithmetic-geometric mean inequality finally yields:

∣∣Ã(ρu,ρp; θu, θp)
∣∣ � 3

4
β|‖θu‖|2DG + 1

β
(ν2

mα2
A + w̄2

m)|‖ρu‖|2DG + 1

β
α2

B‖ρp‖2
0,0,E + α2

B
Cinf

|‖ρu‖|2DG

+ 1

β
α2

B|‖ρu‖|2DG + 2

4
β|θp|2⋃

n S n
I

+ 1

β
γ 2|ρp|2⋃

n S n
I

+ 2

4
β

∑
S∈F

∥∥C
1/2
S

∣∣[[[θu]]]
∣∣∥∥2

0,0,S

+ 1

β

∑ ∥∥C
1/2
S

∣∣{{ρu}}
∣∣∥∥2

0,0,S
+ 1

β

∑∥∥C
1/2
S

∣∣[[[ρu]]]
∣∣∥∥2

0,0,S
. (99)
S∈Fint S∈F
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Combining (99) with Lemma 5.7 for (v, q) = (θu, θp), taking β = CÃ, and multiplying the result with CÃ com-
pletes the proof. �

We now present upper bounds for the interpolation error (ρu,ρp), which are taken from [19].

Lemma 5.12. Assume that K is a space–time element in R
d+1 constructed via two mappings QK,FK , with

FK : K̂ → K̃ and QK : K̃ → K. Assume also that hi,K, i = 1, . . . , d is the edge length of K̃ in the xi direction, and

�nt the edge length in the x0 direction (see illustration in Fig. 1 for d = 2). Let u|K ∈ H
(ku

t,K+1,ku
s,K+1)

(K), with

ku
t,K, ku

s,K � 0, and p|K ∈ H
(k

p

t,K+1,k
p

s,K+1)
(K), with k

p

t,K, k
p

s,K � 0. Let Pu denote the L2 projection of u onto the fi-

nite element space V
(pt ,ps)
h , and Pp the L2 projection of p onto the finite element space Q(pt ,ps)

h . Then the projection
error ρu obeys the error bounds:

‖ρu‖2
0,0,K � CZu

K, ‖∇̄hρu‖2
0,0,K � CNu

K, ‖ρu‖2
0,0,∂K � C(Au

K + Bu
K),

where

Zu
K =

d∑
i=1

(
hi,K
pu

s,K

)2su
K ‖∂su

K
i u‖2

0,0,K̃ +
(

�nt

pu
t,K

)2su
0,K ‖∂su

0,K
0 u‖2

0,0,K̃,

Nu
K =

d∑
i=1

h
2tuK
i,K

(pu
s,K)2tuK−1

‖∂tuK+1
i u‖2

0,0,K̃ +
d∑

i=1

∑
j �=i

h
2tuK+2
j,K

(pu
s,K)2tuK

‖∂tuK+1
j ∂iu‖2

0,0,K̃

+
d∑

i=1

(�nt)
2tu0,K+2

(pu
t,K)

2tu0,K
‖∂tu0,K+1

0 ∂iu‖2
0,0,K̃,

Au
K =

d∑
i=1

(
hi,K
pu

s,K

)2tuK+1

‖∂tuK+1
i u‖2

0,0,K̃ +
d∑

i=1

∑
j �=i

1

hi,K

(
hj,K
pu

s,K

)2su
K ‖∂su

K
j u‖2

0,0,K̃

+
d∑

i=1

∑
j �=i

hi,K
pu

s,K

(
hj,K
pu

s,K

)2qu
K ‖∂qu

K
j ∂iu‖2

0,0,K̃,

Bu
K =

d∑
i=1

1

hi,K

(
�nt

pu
t,K

)2su
0,K ‖∂su

0,K
0 u‖2

0,0,K̃ +
d∑

i=1

hi,K
pu

s,K

(
�nt

pu
t,K

)2qu
0,K ‖∂qu

0,K
0 ∂iu‖2

0,0,K̃

+
(

�nt

pu
t,K

)2tu0,K+1

‖∂tu0,K+1
0 u‖2

0,0,K̃ + 1

�nt

d∑
i=1

(
hi,K
pu

s,K

)2su
K ‖∂su

K
i u‖2

0,0,K̃

+ �nt

pu
t,K

d∑
i=1

(
hi,K
pu

s,K

)2qu
K ‖∂qu

K
i ∂0u‖2

0,0,K̃,

with pu
t,K and pu

s,K the local polynomial degree in time and space for u, respectively, on element K, 0 < su
0,K �

min(pu
t,K + 1, ku

t,K + 1), 0 < su
K � min(pu

s,K + 1, ku
s,K + 1), 0 < qu

0,K � min(pu
t,K + 1, ku

t,K), 0 < qu
K � min(pu

s,K +
1, ku

s,K), 0 < tu0,K � min(pu
t,K, ku

t,K), and 0 < tuK � min(pu
s,K, ku

s,K). Further we have:
∑

S∈⋃
n S n

ID

∥∥L̄S

([[[ρu]]]
)∥∥2

0,0,E � C
∑

K∈Th

(Ru
K + T u

K),

where:

Ru
K =

d∑ (pu
s,K)2

hi,K

(
hi,K
pu

s,K

)2tuK+1

‖∂tuK+1
i u‖2

0,0,K̃ +
d∑∑(

pu
s,K

hi,K

)2(hj,K
pu

s,K

)2su
K ‖∂su

K
j u‖2

0,0,K̃

i=1 i=1 j �=i
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+
d∑

i=1

∑
j �=i

pu
s,K

(
hj,K
pu

s,K

)2qu
K ‖∂qu

K
j ∂iu‖2

0,0,K̃,

T u
K =

d∑
i=1

(pu
s,K)2

hi,K�nt

(
�nt

pu
t,K

)2su
0,K ‖∂su

0,K
0 u‖2

0,0,K̃ +
d∑

i=1

pu
s,K

(
�nt

pu
t,K

)2qu
0,K ‖∂qu

0,K
0 ∂iu‖2

0,0,K̃.

The projection error ρp obeys the error bounds:

‖ρp‖2
0,0,K � CZ

p

K, ‖ρp‖2
0,0,∂K � C(A

p

K + B
p

K),

where

Z
p

K =
d∑

i=1

(
hi,K
p

p

s,K

)2s
p

K ‖∂s
p

K
i p‖2

0,0,K̃ +
(

�nt

p
p

t,K

)2s
p

0,K ‖∂s
p

0,K
0 p‖2

0,0,K̃,

A
p

K =
d∑

i=1

(
hi,K
p

p

s,K

)2t
p

K+1

‖∂t
p

K+1
i p‖2

0,0,K̃ +
d∑

i=1

∑
j �=i

1

hi,K

(
hj,K
p

p

s,K

)2s
p

K ‖∂s
p

K
j p‖2

0,0,K̃

+
d∑

i=1

∑
j �=i

hi,K
p

p

s,K

(
hj,K
p

p

s,K

)2q
p

K ‖∂q
p

K
j ∂ip‖2

0,0,K̃,

B
p

K =
d∑

i=1

1

hi,K

(
�nt

p
p

t,K

)2s
p

0,K ‖∂s
p

0,K
0 p‖2

0,0,K̃ +
d∑

i=1

hi,K
p

p

s,K

(
�nt

p
p

t,K

)2q
p

0,K ‖∂q
p

0,K
0 ∂ip‖2

0,0,K̃

+
(

�nt

p
p

t,K

)2t
p

0,K+1

‖∂t
p

0,K+1
0 p‖2

0,0,K̃ + 1

�nt

d∑
i=1

(
hi,K
p

p

s,K

)2s
p

K ‖∂s
p

K
i p‖2

0,0,K̃

+ �nt

p
p

t,K

d∑
i=1

(
hi,K
p

p

s,K

)2q
p

K ‖∂q
p

K
i ∂0p‖2

0,0,K̃,

with p
p

t,K and p
p

s,K the local polynomial degree in time and space for p, respectively, on element K, 0 < s
p

0,K �
min(p

p

t,K + 1, k
p

t,K + 1), 0 < s
p

K � min(p
p

s,K + 1, k
p

s,K + 1), 0 < q
p

0,K � min(p
p

t,K + 1, k
p

t,K), 0 < q
p

K � min(p
p

s,K +
1, k

p

s,K), 0 < t
p

0,K � min(p
p

t,K, k
p

t,K), and 0 < t
p

K � min(p
p

s,K, k
p

s,K). The constant C has a positive value that depends
only on the spatial dimension d and the mapping QK .

Using Lemmas 5.11 and 5.12, we immediately obtain the following error estimates:

Theorem 5.13. Suppose K is a space–time element in R
d+1 constructed via two mappings QK,FK , with FK : K̂ → K̃

and QK : K̃ → K. Suppose also that hi,K, i = 1, . . . , d is the edge length of K̃ in the xi direction, and �nt the edge

length in the x0 direction. Let u|K ∈ H
(ku

t,K+1,ku
s,K+1)

(K), with ku
t,K, ku

s,K � 0, and p|K ∈ H
(k

p

t,K+1,k
p

s,K+1)
(K), with

k
p

t,K, k
p

s,K � 0. Let (uh,ph) ∈ V
(pt ,ps)
h × Q(pt ,ps)

h /R be the discontinuous Galerkin approximation to (u,p) in (47)–

(48). Then the following error bound holds:∣∣∣∣∣∣(u − uh,p − ph)
∣∣∣∣∣∣2

DG � 2C(1 + a1)
∑

K∈Th

(Zu
K + Nu

K + Ru
K + T u

K) + 2CC̄S(1 + a4)
∑

K∈Th

(Au
K + Bu

K)

+ 2Ca2

∑
K∈Th

Z
p

K + 2C(1 + a3)
∑

K∈Th

(A
p

K + B
p

K),

with C̄S = maxK∈Th
‖CS‖L∞(K) and

a1 = 4

C2
Ã

(
ν2
mα2

A + w̄2
m + (1 + CÃ/Cinf)α

2
B
)
, a2 = 4α2

B
C2

Ã
, a3 = 4γ 2

C2
Ã

, a4 = 8

C2
Ã

.
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Table 1
L2-norm of the error for u and p for different values of stabilization parameter γ

(pt ,ps) γ = 10 γ = 100 γ = 1000 γ = 10000

(1,2) u 8.7806E − 05 8.7833E − 05 8.7836E − 05 8.7836E − 05
p 5.2186E − 03 5.2162E − 03 5.2159E − 03 5.2159E − 03

(2,2) u 8.8268E − 05 8.8297E − 05 8.8300E − 05 8.8300E − 05
p 5.5157E − 03 5.5136E − 03 5.5133E − 03 5.5133E − 03

(1,3) u 1.6869E − 06 1.6869E − 06 1.6869E − 06 1.6869E − 06
p 1.6472E − 04 1.6471E − 04 1.6471E − 04 1.6471E − 04

(3,3) u 1.1899E − 06 1.1899E − 06 1.1899E − 06 1.1899E − 06
p 5.4106E − 05 5.4096E − 05 5.4095E − 05 5.4099E − 05

Proof. The estimate follows directly from taking the DG norm of both sides of (91) and using the triangle inequality
to express the error in terms of the interpolation error (ρu,ρp) and the discretization error (θu, θp). The final error
estimate is obtained using Lemma 5.11 and the interpolation estimates given by Lemma 5.12. �
Corollary 5.14. When u and p are sufficiently smooth, the spatial shapes of all elements K ∈ Th are regular: h =
maxK hK,∀K ∈ Th, and uniform polynomial degrees (pu

t ,pu
s ) and (p

p
t ,p

p
s ) are used for all elements K ∈ Th, then

we obtain the error bound:

∣∣∣∣∣∣(u − uh,p − ph)
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6. Numerical results

In this section we provide several numerical experiments in two spatial dimensions to investigate the order of accu-
racy of the space–time DG discretization given by (47)–(48). As exact solution in the tests, we choose the following
functions:

u1(t, x1, x2) = − exp(x1)
(
x2 cos(x2) + sin(x2)

)
exp(−t),

u2(t, x1, x2) = exp(x1)x2 sin(x2) exp(−t),

p(t, x1, x2) = 2 exp(x1) sin(x2) exp(−t),

which solve the Oseen equations (1) with w̄ = u, a suitably chosen source vector f and initial condition u0. The
computational domain is taken to be (−1,1)2 and Dirichlet boundary conditions are imposed on the boundary.

We first study the influence of the choice of the stabilization parameter γ in the bilinear form Ch, defined in (45),
on the accuracy of the DG solution. We conduct therefore simulations for different values of γ on a mesh with
8 × 8 elements and different polynomial degrees, both in space and time. The results are shown in Table 1. For
each simulation, the polynomial degrees for p are taken the same as for u. The results show that the choice of
the stabilization parameter γ does not influence the accuracy of u and p. The parameter γ does have, however, a
significant influence on the conditioning of the discretization matrix. Larger values of γ gives a better conditioning of
the matrix.

Next, we study the order of accuracy of the velocity field u and the pressure p on meshes with different mesh sizes
and increasing polynomial degrees. Here we use the stabilization term Ch with γ = 10 000. We first study the error
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Fig. 2. L2(E ) error for the velocity u in the space–time DG discretization of the Oseen equations under h-refinement and for different polynomial
degrees.

Fig. 3. L2(ΩT ) error for the pressure p in the space–time DG discretization of the Oseen equations under h-refinement and for different polynomial
degrees.

in the L2-norm in the whole space–time domain E for the velocity field u. The results are shown in Fig. 2. The plots
show that the rate of convergence of the space–time DG method for the velocity field is optimal in the L2-norm. Using
linear polynomials in time and higher polynomial degrees in space we observe that, as the mesh becomes finer, the
error is dominated by the error in time, but this only happens, however, when the spatial error is already very small.

We also consider the L2-norm of error for the pressure p in ΩT , the domain at the final time T of the simulation,
both when equal polynomial degrees for u and p are used and also for different polynomial degrees. The results are
shown in Fig. 3. We observe that when equal polynomial degrees are used for u and p then the L2-norm of the error in
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the pressure converges at the rate hps+0.5, with ps the polynomial degree of the pressure, while when the polynomial
degrees for p are one less than the polynomial degrees for u, then the pressure converges at the rate hps+1.

7. Concluding remarks

In this article we present a space–time DG discretization for the Oseen equations in time-dependent flow domains.
We prove the continuity, coercivity and stability of the method, which is shown to be unconditionally stable, and
investigate the effect of the pressure stabilization operator on the stability. In addition, a full hp-error analysis is
presented where the dependence of the error on mesh size, time step and polynomial order is made explicit.

The numerical experiments show that the convergence rate of the space–time DG solution for the velocity field
is optimal in the L2-norm, while the pressure converges at the rate hps+0.5, with ps the polynomial degree of the
pressure, when equal polynomial degrees of the velocity and pressure are used and hps+1 when the polynomial degree
of the velocity is larger than for the pressure. The simulations show that the algorithm also performs well for higher
polynomial degrees in time.

The extension of the space–time DG discretization discussed in this article to the incompressible Navier–Stokes
equations can be accomplished using a Picard iteration, in which the prescribed velocity field w in (1a) is replaced
by the computed velocity field u from the previous iteration. The only main addition to algorithm then is the use
of a projection operator which ensures that the discrete velocity field is divergence free. Also, the application of the
presented algorithm to free boundary problems is under investigation.
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