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a b s t r a c t

We present a discontinuous Galerkin finite element method for a depth-averaged two-phase flow model.
This model contains nonconservative products for which we developed a discontinuous Galerkin finite
element formulation in Rhebergen et al. [S. Rhebergen, O. Bokhove, J.J.W. van der Vegt, Discontinuous
Galerkin finite element methods for hyperbolic nonconservative partial differential equations, J. Comput.
Phys. 227 (2008) 1887]. The goal is to qualitatively validate the model against a laboratory experiment
and to show the abilities of the model to capture physical phenomena. To be able to perform these test
cases, a WENO slope limiter is investigated in conjunction with a discontinuity detector to detect regions
where spurious oscillations appear.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction In many flows the height H of the flow is much smaller than the
Debris flows are flows of water-saturated slurry mixtures
[14,22,25]. Examples are mud slides initiated by heavy rainfall on
eroded mountain sides consisting of mixtures of rock, sand and
mud; and volcanic debris flows in which the flow may be a mixture
of volcanic debris and water (see Fig. 1a). These flows often cause
major destruction to buildings and infrastructure, with accompa-
nying loss of human lives.

In industrial applications, dense liquid–solid flows, such as slur-
ry flows, are used in pipeline transportation (see Fig. 1b). This form
of transportation has relatively low operation and maintenance
costs, and is friendly to the environment [20]. Other applications
occur in liquid fluidized beds [15].
ll rights reserved.
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length L of the flow, H=L� 1. For these flows, depth-averaging
techniques are commonly used to simplify the three dimensional
equations. Examples include the shallow water equations derived
from the incompressible Navier–Stokes equations or the Savage–
Hutter equations for dry granular flow [28]. Recently, Pitman and
Le [25] and Le [18] derived a depth-averaged model for two-phase
flows based on a three dimensional continuum model for two-
phase flows as derived by Jackson [15] (see Appendix A for the
three dimensional continuum model). We remark, however, that
with the assumptions made in the depth-averaging process by Le
[18], the same depth-averaged model can be derived from the
three dimensional model of Drew and Lahey [10]. We have slightly
extended the depth-averaged model by also including extra fric-
tion terms to simulate turbulent friction.

For the depth-averaged two-phase flow model, we present a
discontinuous Galerkin finite element method (DGFEM).
Among other advantages, DGFEM is a very local scheme, i.e., the
solution on an element depends only on the data of its immediate
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Fig. 1. Examples of two-phase flows. (a) The Lahar developed on the slopes of Santiaguito volcano [37]. Photograph courtesy of US Geological Survey. (b) Slurry and sediment
transport in pipelines. Photograph courtesy of LIC engineering [36].
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neighboring elements, it is therefore very suitable to use for com-
plicated geometries and mesh adaptation. Furthermore, the
DGFEM easily deals with shocks and other discontinuities in the
solution. The difficulty in the depth-averaged two-phase flow
model is the presence of nonconservative products so that this
model cannot be written in flux conservative form. This causes
problems once the solution becomes discontinuous, because the
weak solution in the classical sense of distributions then does
not exist. Consequently, no classical Rankine–Hugoniot shock con-
ditions can be defined. We overcame these problems in Rhebergen
et al. [27], where we introduced a discontinuous Galerkin finite
element method and a new numerical flux, the NCP flux, for hyper-
bolic partial differential equations containing nonconservative
products which is based on the theory by Dal Maso, LeFloch and
Murat (DLM) [8], which we also apply here.

The DGFEM does not guarantee monotone solutions around dis-
continuities and sharp gradients and thus spurious numerical oscil-
lations develop. To prevent these numerical oscillations we
Fig. 2. When water flow enters a contraction at a certain speed, a steady state in the c
perturbed by an upstream avalanche of polystyrene beads (just inserted in the top middl
frames in which one second elapses between each frame. A second steady state, an ups
investigate and clarify the WENO slope limiter given in [21] in
combination with Krivodonova’s discontinuity detector [17].

Much of the research conducted with depth averaged models
for liquid–solid flows focuses on correctly predicting the final
depositions of debris avalanches and their behavior over natural
terrains [9,23,24,26,29,34]. In Chiou et al. [6] and Gray et al. [11]
the influence of obstacles on granular flows is investigated. We
are, however, interested in the behavior of debris flows through
contractions and in this article we will perturb a steady-state
two-phase flow with a low particle volume fraction by introducing
an upstream avalanche of particles for a short period, thus tempo-
rarily increasing the particle volume fraction. This experiment was
done by Akers and Bokhove [1] (see Fig. 2) and we use this exper-
iment to qualitatively validate the depth-averaged two-phase flow
model. Experimental data are also available for dry granular flow
through a contraction [33]. We are planning to conduct new exper-
iments to obtain data for liquid–solid flows through a contraction
with which the numerical data may be compared in the future.
ontraction is reached with oblique hydraulic jumps (top left). This steady-state is
e frame). There is a transition period in the top right, bottom left and bottom middle
tream steady shock, is reached (bottom right) [1].
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The novelties in this article are the following:

(1) Application of the discontinuous Galerkin finite element
method using the theory of nonconservative products devel-
oped in [27] to the two-dimensional depth-averaged two-
phase flow model of Le [18] with extra friction terms.

(2) Investigation of the WENO slope limiter [21] with Krivodo-
nova’s discontinuity detector [17] in a discontinuous Galer-
kin finite element discretization for two-phase flows.

(3) Qualitative validation of the depth-averaged two-phase flow
model with laboratory data.

The outline of this article is as follows: In Section 2, we present
the depth-averaged model as derived by Pitman and Le [25] and Le
[18]. We continue in Section 3 to introduce the discontinuous
Galerkin finite element method for the model; numerical verifica-
tion and validation is provided in Sections 4 and 5. Conclusions are
drawn in Section 6.

2. Depth-averaged two-phase flows

In shallow flows, the characteristic height H of the flow is typ-
ically much smaller than its characteristic length L, H=L ¼ e� 1.
Variations in the vertical are small and we can simplify the gov-
erning equations by averaging the flow over the depth. In doing
so, depth-averaged quantities are assumed to be independent of
the vertical coordinate, at leading order in e. In this section we
introduce the depth-averaged two-phase flow equations derived
by Le [18]. Note that the depth-averaged two-phase flow equa-
tions derived by Le [18] are slightly different from the depth-aver-
aged two-phase flow equations derived by Pitman and Le [25].
The difference is that the momentum of the mixture of the Le
model can be written in flux conservative form, while this is not
the case for the momentum of the mixture of the Pitman and Le
model.

Le [18] derived a depth-averaged flow model by depth-averag-
ing the three dimensional continuum model for two-phase flows as
derived by Jackson [15] (see Appendix A for the three dimensional
model). Using the summation convention on repeated indices and
the comma notation to denote partial differentiation, the scaled
non-dimensional depth-averaged flow model is

Ui;t þ Fik;k þ GikrVr;k ¼ Si; i; r ¼ 1; . . . ;6; k ¼ 1;2: ð1Þ

Note that GikrVr;k is a nonconservative product. In (1) U ¼ ½hð1� aÞ;
ha;hav i;hð1� aÞui�T , V ¼ ½h;a; v i;ui�T and
Fk ¼

hð1� aÞuk

havk

hav ivk þ eð1� qÞuika 1
2 g3h2

hð1� aÞuiuk

26664
37775; Gk ¼

0 0 0 0
0 0 0 0

eqag3h 0 0 0
eð1� aÞg3h 0 0 0

26664
37775;

S ¼

0
0

ð1� qÞð�euikokbþui3Þag3hþ hFD
i þ giha� qaCDjujui=e� eqhag3oib

�eð1� aÞg3hoib� hFD
i =qþ hð1� aÞgi � ð1� aÞCDjujui=e

26664
37775:
Note that compared with the model by Le [18], we have added extra
friction terms with the drag coefficient CD as a leading order turbu-
lence parameterization.

The orientation of the Cartesian coordinate system is shown in
Fig. 3 in which h is the angle of the x1 � x2 plane with the horizon-
tal. The depth-averaged quantities in the above model are constant
in the x3 direction and are the particle volume fraction a, the fluid
velocity vector u and the solids velocity vector v. The flow depth is
given by h and the bottom topography by b. The constants e ¼ H=L
and q ¼ qf =qs represent the height to length ratio of the flow and
the ratio between the fluid density qf and the solids density qs,
respectively. The gravity vector is given by ~g ¼ ½g1; g2;�g3�

T in
which g3 is the vertical component of the gravity (see Fig. 3) and
CD is a drag coefficient. The above quantities are all scaled and
dimensionless. To obtain the variables in dimensional form, de-
noted by ð�Þ�, we have used the following scalings: ½x�; y�� ¼
L½x; y�, t� ¼

ffiffiffiffiffiffiffiffiffiffi
L=g�

p
t, ½u�1;u�2� ¼

ffiffiffiffiffiffiffi
g�L

p
½u1;u2�, ½v�1;v�2� ¼

ffiffiffiffiffiffiffi
g�L

p
½v1;v2�,

v�T ¼
ffiffiffiffiffiffiffi
g�L

p
vT , ½g�1; g�2; g�3�

T ¼ g�g½sinðhÞ;0; cosðhÞ�T with g the gravity
constant.

A closure needs to be given for the drag function FD and we fol-
low Pitman and Le [25] by taking FD

i ¼ bðui � v iÞ in which b is given
by

b ¼ ð1� qÞa
vTð1� aÞn

; n ¼

3:65 for Ret < 0:2;
4:35Re�0:03

t � 1 for 0:2 < Ret < 1;

4:45Re�0:1
t � 1 for 1 < Ret < 500;

1:39 for 500 < Ret ;

8>>><>>>:
where Ret ¼ dqf vT=lf , in which d is the particle diameter, qf the
fluid density, lf the fluid viscosity and vT the terminal velocity of
an isolated particle falling in the fluid. We remark that as 1� q in-
creases, the drag function FD makes the system (1) increasingly stif-
fer. We are, however, interested in the case where q is
approximately 0.9. In this situation, the model does not have stiff
source terms and no special algorithms are needed to deal with
stiffness.

The functions u were introduced by Pitman and Le [25] to relate
basal and diagonal shear stresses to the normal stress in the solids
phase stress tensor in the three-dimensional two-phase model be-
fore depth-averaging. The functions u are given by:

ui3 ¼ �
v i

kvk tanð/bedÞ; i ¼ 1;2; uii ¼ k�; i ¼ 1;2

u12 ¼ �signðo2v1Þ sinð/intÞk
�
; u21 ¼ �signðo1v2Þ sinð/intÞk

�
;

k� ¼ 2
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos2ð/intÞð1þ tan2ð/bedÞÞ

q
cos2ð/intÞ

� 1;

in which the ‘‘�” in the ‘‘�” applies when okvk > 0 and the ‘‘+”
applies when okvk < 0. Furthermore, k � k is the Euclidean norm,
/int is the internal angle of friction, which measures how layers of
solid particles slide over one another and /bed is the basal angle of
friction, indicating how easily solid particles slide over the bottom
[13].

To determine whether the depth averaged model is hyperbolic,
we need to determine their eigenvalues. If all eigenvalues are real



Fig. 4. Regimes of hyperbolicity for the depth-averaged model. For the values of a
and ju� v j in the shaded area the model is elliptic.

Fig. 3. Orientation of the coordinate system and the gravity vector.

822 S. Rhebergen et al. / Comput. Methods Appl. Mech. Engrg. 198 (2009) 819–830
and distinct, the model is hyperbolic. Deriving the eigenvalues for
the depth-averaged model is not trivial, so eigenvalues are com-
puted numerically for a number of given parameters. Consider
the case in which the topography is flat, b ¼ 0. We take h ¼ 1,
q ¼ 0:9, g3 ¼ 1 and we assume k� ¼ k�. Furthermore, we take
/bed ¼ 14:75� and /int ¼ 24:5� which hold for fine glass particles
[4]. For different height to length ratios, ranging from e ¼ 0:001
to e ¼ 1, we determine the eigenvalues as a function of the particle
volume fraction a and the absolute difference between the phase
velocities ju� v j. In Fig. 4 we show for which values of a and
ju� vj the depth-averaged model is not hyperbolic (in the shaded
areas some of the eigenvalues are not real). We see that the region
for which the model is not hyperbolic decreases as e decreases. In
this article, we are only interested in cases where the model is
hyperbolic. When the model is not hyperbolic, a different numeri-
cal approach needs to be introduced which is not treated in this
article.

3. The DGFEM discretization

In this section, we present a space-time DGFEM formulation for
the depth-averaged two-phase flow model. We remark, however,
that the space DGFEM formulation is very similar and for some
of the numerical test cases we will apply space DGFEM. For more
on space DGFEM we refer to Rhebergen et al. [27] and Cockburn
and Shu [7].

We start by introducing space-time elements, function spaces,
trace operators and basis functions after which we present the
space-time DGFEM formulation for the depth-averaged two-phase
flow model.

3.1. Space-time elements

In the space-time DGFEM method, the space and time variables
are treated together. A point at time t ¼ x0 with position vector
�x ¼ ðx1; x2Þ has Cartesian coordinates ðx0; �xÞ in the open domain
E 	 R3. At time t, the flow domain XðtÞ is defined as

XðtÞ :¼ f�x 2 R2 : ðt; �xÞ 2 Eg:

By taking t0 and T as the initial and final time of the evolution of the
space-time flow domain, the space-time domain boundary oE con-
sists of the hyper-surfaces

Xðt0Þ :¼ fx 2 oE : x0 ¼ t0g;

XðTÞ :¼ fx 2 oE : x0 ¼ Tg;

Q :¼ fx 2 oE : t0 < x0 < Tg:

The time interval ½t0; T� is partitioned using the time levels
t0 < t1 < � � � < T , where the n-th time interval is defined as
In ¼ ðtn; tnþ1Þ with length Dtn ¼ tnþ1 � tn. The space-time domain E

is then divided into Nt space-time slabs En ¼ E \ In. Each space-
time slab En is bounded by XðtnÞ, Xðtnþ1Þ and Qn ¼ oEn=ðXðtnÞ[
Xðtnþ1ÞÞ.

The flow domain XðtnÞ is approximated by XhðtnÞ, where
XhðtÞ ! XðtÞ as h! 0, with h the radius of the smallest sphere
completely containing the largest space-time element. The domain
XhðtnÞ is divided into Nn non-overlapping spatial elements KjðtnÞ.
Similarly, Xðtnþ1Þ is approximated by Xhðtnþ1Þ. We can relate each
element Kn

j ¼ KjðtnÞ to a master element bK 	 R2 through the map-
ping Fn

K :

Fn
K : bK ! Kn

j : �n#�x ¼
X

i

xiðKn
j Þvið�nÞ;

with xi the spatial coordinates of the vertices of the spatial element
Kn

j and vi the standard Lagrangian shape functions defined on ele-
ment bK . The space-time elements Kn

j are constructed by connect-
ing Kn

j with Knþ1
j using linear interpolation in time, resulting in

the mapping Gn
K from the master element cK 	 R3 to the space-

time element Kn:

Gn
K : cK !Kn : n ¼ ðn0; �nÞ# ðt; �xÞ

¼ 1
2
ðtnþ1 þ tnÞ þ

1
2
ðtnþ1 � tnÞn0;

1
2
ð1� n0ÞFn

Kð�nÞ
�
þ1

2
ð1þ n0ÞFnþ1

K ð�nÞ
�
;

with n0 2 ½�1;1� and �n 2 bK . The tessellation Tn
h of the space-time

slab En
h consists of all space-time elements Kn

j ; thus the tessellation
Th of the discrete flow domain Eh :¼ [Nt�1

n¼0 En
h then is defined as

Th :¼ [Nt�1
n¼0 Tn

h.
The element boundary oKn

j , the union of open faces of Kn
j , con-

sists of three parts: Kjðtþn Þ ¼ lim�#0Kjðtn þ �Þ, Kjðt�nþ1Þ ¼ lim�#0Kj

ðtnþ1 � �Þ and Qn
j ¼ oKn

j =ðKjðtþn Þ [ Kjðt�nþ1ÞÞ. The outward space-
time normal vector on oKn

j is given by

n ¼
ð1; �0Þ at Kjðt�nþ1Þ;
ð�1; �0Þ at Kjðtþn Þ;
ð0; �nÞ at Qn

j ;

8><>: ð2Þ
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where �0 2 R2. It is convenient to split the element boundaries into
separate faces. In addition to faces Kjðtþn Þ and Kjðt�nþ1Þ, we also de-
fine, therefore, interior and boundary faces. An interior face is
shared by two neighboring elements Kn

i and Kn
j , such that

Sn
ij ¼ Qn

i \ Qn
j ; a boundary face is defined as Sn

Bj ¼ oEn \ Qn
j . The

set of interior faces in a space-time slab En is denoted by Sn
I and

the set of all boundary faces by Sn
B; the total set is denoted by

Sn
I;B ¼ Sn

I [Sn
B.

3.2. Function spaces and trace operators

We consider approximations of Uðx; tÞ and functions Wðx; tÞ in
the finite element space Wh defined as

Wh ¼ fW 2 ðL2ðEhÞÞm : WjK � GK 2 ðPpðcKÞÞm; 8K 2Thg;

where L2ðEhÞ is the space of square integrable functions on Eh and
PpðcKÞ the space of polynomials of degree at most p on reference
element cK. Here m denotes the dimension of U. In our case,
m ¼ 6 and we use linear approximations with p ¼ 1.

We now introduce some operators as defined in Klaij et al. [16].
The trace of a function f 2 Vh at the element boundary oKL is de-
fined as

f L ¼ lim
�#0

f ðx� �nLÞ;

with nL the unit outward space-time normal at oKL. When only the
space components of the outward normal vector are considered we
will use the notation �nL. A function f 2Wh has a double valued trace
at element boundaries oK. The traces of a function f at an internal
face S ¼ �KL \ �KR are denoted by f L and f R. The jump of f at an
internal face S 2Sn

I in the direction k of a Cartesian coordinate sys-
tem is defined as

sf tk ¼ f L�nL
k þ f R�nR

k ;

with �nR
k ¼ ��nL

k. The average of f at S 2Sn
I is defined as

fffgg ¼ 1
2
ðf L þ f RÞ:

The jump operator satisfies the following product rule at S 2Sn
I for

8l 2Wh and 8fk 2Wh, which can be proven by direct verification:

slifiktk ¼ ffliggsfiktk þ slitkfffikgg: ð3Þ

Consequently, we can relate element boundary integrals to face
integralsX
K2Tn

h

Z
Q

lL
i f L

ik
�nL

kdQ ¼
X
S2Sn

I

Z
S

slifiktkdSþ
X
S2Sn

B

Z
S

lL
i f L

ik
�nL

kdS: ð4Þ
3.3. Basis functions

Polynomial approximations for the trial function U and the test
functions W in each element K 2Tn

h are introduced as

Uðt; �xÞjK ¼ bUmwmðt; �xÞ and Wðt; �xÞjK ¼ cW lwlðt; �xÞ; ð5Þ

with wm the basis functions, �x 2 R2, and expansion coefficients bUm

and cW l, respectively, for m; l ¼ 0;1;2;3. The basis functions wm

are given by w0 ¼ 1 and wm ¼ umðt; �xÞ for m ¼ 1;2;3 where the
functions umðxÞ in element K are related to the basis functions
ûmðnÞ, with ûmðnÞ 2 P1ðcKÞ and n the local coordinates in the master
element cK, through the mapping GK: um ¼ ûm � G�1

K .

3.4. The weak formulation

Due to the nonconservative products (1) cannot be transformed
into divergence form. This causes problems once the solution be-
comes discontinuous, because the weak solution in the classical
sense of distributions then does not exist. Consequently, standard
space-time DGFEM discretizations cannot be applied. In Rheber-
gen et al. [27] we derived a discontinuous Galerkin finite element
weak formulation for general hyperbolic equations with noncon-
servative products and we apply this weak formulation here as
well.

We refer to Rhebergen et al. [27] for the derivation of the weak
formulation for (1). The main criterium posed on the weak formu-
lation is that the formulation must reduce to that for the conserva-
tive system if the system of nonconservative partial differential
equations can be transformed into conservative form. The weak
formulation for (1) is given by

Find a U 2Wh such that for all W 2Wh:

0 ¼
X

K2Tn
h

Z
K

ð�Wi;0Ui �Wi;kFik þWiGikrVr;k �WiSiÞdK

þ
X

K2Tn
h

Z
Kðt�nþ1Þ

WL
i UL

i dK �
Z

Kðtþn Þ
WL

i UR
i dK

 !

þ
X
S2Sn

Z
S

ðWL
i �WR

i ÞbPnc
i dS

þ
X
S2Sn

Z
S

ffWigg
Z 1

0
Gikrð/ðs; UL;URÞÞ o/r

os
ðs; UL;URÞds�nL

k

� �
dS:

ð6Þ

The last term makes it different from standard discontinuous Galer-
kin finite element formulations. It is needed to introduce a measure
for the nonconservative product where U is discontinuous. Note
that an extra function, /ðs; UL;URÞ, has been introduced to deal
with the regularization of U across the discontinuity. In Rhebergen
et al. [27] the effect of the choice of /ðs; UL;URÞ on the numerical
solution was investigated. We concluded that the numerical diffu-
sion has a regularizing effect across discontinuities, which signifi-
cantly reduces the dependence of the solution on /ðs; UL;URÞ, so
that often it does not matter in practice how /ðs; UL;URÞ is chosen.
We adopt a linear path: /ðs; UL;URÞ ¼ UL þ sðUR � ULÞ. Further-
more, we use here the NCP numerical flux bPncðUL;UR;v ; �nLÞ de-
signed in [27] for systems containing nonconservative products
as a generalization of the HLL flux [31]. The NCP numerical fluxbPncðUL;UR;v ; �nLÞ reads:

bPnc
i ðUL;UR;v ; �nLÞ

¼

FL
ik

�nL
k � 1

2

R 1
0 Gikrð�/ðs; UL;URÞÞ o�/r

os ðs; UL;URÞds�nL
k

if SL > v;
ffFikgg�nL

k þ 1
2 ððSR � vÞU�i þ ðSL � vÞU�i � SLUL

i � SRUR
i Þ

if SL < v < SR;

FR
ik

�nL
k þ 1

2

R 1
0 Gikrð�/ðs; UL;URÞÞ o�/r

os ðs; UL;URÞds�nL
k

if SR < v;

8>>>>>>>>><>>>>>>>>>:
ð7Þ

with U� given by

U�i ¼
SRUR

i � SLUL
i þ ðF

L
ik � FR

ikÞ�nL
k

SR � SL
� 1

SR � SL

Z 1

0
Gikrð/ðs; UL;URÞÞ


 o/r

os
ðs; UL;URÞds�nL

k: ð8Þ

Note that the first terms on the right hand side of (7) are in each
case the upwind or unstable numerical fluxes. The wave speeds SL

and SR in the numerical flux are usually approximated by the min-
imum and maximum eigenvalues of the Jacobian matrix. The char-
acteristic polynomial of the Jacobian matrix of the depth-averaged
model, oF=oU þ G is cðkÞ ¼ ðk� qvÞðk� quÞpðkÞ in which
pðkÞ ¼ k4 þ a1k

3 þ a2k
2 þ a3kþ a4, where
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a1 ¼ �2ðqu þ qvÞ;
a2 ¼ q2

u þ q2
v þ 4quqv � eg3hð1� aþ qaÞ;

� 1
2
eg3hð1� qÞð1þ aÞðu11n2

1 þu22n2
2 þu12n1n2 þu21n1n2Þ

a3 ¼ �2quqvðqu þ qvÞ þ 2qveg3hð1� aÞ þ 2eqg3ahqu

þ 2qu
1
2
eg3hð1þ aÞð1� qÞðu11n2

1 þu22n2
2

�
þu12n1n2 þu21n1n2Þ

�
;

a4 ¼ q2
uq2

v � q2
u

1
2

heg3ð1� qÞð1þ aÞðu11n2
1 þu22n2

2 þu12n1n2

�
þu21n1n2ÞÞ þ

1
2
e2g2

3h2ð1� qÞð1� aÞðu11n2
1 þu22n2

2

þu12n1n2 þu21n1n2Þ � q2
veg3hð1� aÞ � q2

ueqg3ah:

ð9Þ
Two eigenvalues are k1 ¼ qv and k2 ¼ qu. Since explicitly solving the
quartic polynomial pðkÞ ¼ 0 yields rather unwieldy relations, we
approximate the remaining four eigenvalues.

We approximate pðkÞ by ~pðkÞ ¼ ðk� qu �AÞðk� qu þAÞ
ðk� qv �BÞðk� qv þBÞ and expand ~p as ~p ¼ k4 þ a1k

3 þ b2k
2þ

b3kþ b4 with coefficients:

b2 ¼ q2
u þ q2

v þ 4quqv � ðA2 þB2Þ;
b3 ¼ 2qvA

2 þ 2quB
2 � 2qvquðqu þ qvÞ;

b4 ¼ q2
vq2

u � q2
uB

2 � q2
vA

2 þA2B2:

ð10Þ

Note that by choosing

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eg3hð1� aÞ

q
;

B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

heg3ð1� qÞð1þ aÞðu11n2
1 þu22n2

2 þu12n1n2 þu21n1n2Þ
r

;

ð11Þ

the coefficients ai and bi almost match. We approximate the solu-
tions to pðkÞ now as k3;4 ¼ qu �A and k5;6 ¼ qv �B. The error in
the approximation of the roots is then proportional to
pðk3;4Þ ¼ Oðe2Þ and pðk5;6Þ ¼ OðeÞ.

As mentioned above, /ðs; UL;URÞ had to be chosen and we
adopted /ðs; UL;URÞ ¼ UL þ sðUR � ULÞ. This choice of the path pre-
sents us the opportunity to exactly determine the integral due to
the nonconservative product in (6):

Z 1

0
Gkrð/ðs; UL;URÞÞ

o/r

os
ðs; UL;URÞds�nL

k ¼

0
0

�eqg3sht
R 1

0 ahds

�eqg3sht
R 1

0 ahds

�eg3sht
R 1

0 ð1� aÞhds

�eg3sht
R 1

0 ð1� aÞhds

266666666664

377777777775
;

ð12Þ

in whichZ 1

0
ahds ¼ 1

3
aLhL þ

1
2
ðaRhL þ aLhRÞ þ aRhR

� �
;Z 1

0
ð1� aÞhds ¼ ffhgg � 1

3
aLhL þ

1
2
ðaRhL þ aLhRÞ þ aRhR

� �
:

Fig. 5. Slope limiter in 2D.
3.5. Pseudo-time stepping

By replacing U and W in the weak formulation (6) by their poly-
nomial expansions (5), a system of algebraic equations for the
expansion coefficients of U is obtained. For each physical time step,
the system can be written as
LðbUn; bUn�1Þ ¼ 0: ð13Þ

This system of coupled non-linear equations is solved by adding a
pseudo-time derivative of the primitive variables V ¼ ½h;a; v i;ui�T ,
hence (13) becomes

M
obV n

os
¼ �LðbV n; bV n�1Þ; M ¼

Z
K

/
oU
oV

dK; ð14Þ

which is integrated to steady-state in pseudo-time. Following Van
der Vegt and Van der Ven [32], we use the explicit Runge–Kutta
method for inviscid flow with Melson correction given by

Algorithm 1 Five-stage explicit Runge–Kutta scheme:

(1) Initialize bY 0 ¼ bV .
(2) For all stages s ¼ 1 to 5:
ðI þ askIÞbY s ¼ bY 0 þ askðbY s�1 �M�1LðbY s�1; bV n�1ÞÞ:
(3) Update bV ¼ bY 5.

The coefficient k is defined as k ¼ Ds=Dt, with Ds the pseudo-
time step and Dt the physical time step. The Runge–Kutta coeffi-
cients as use are [32]: a1 ¼ 0:0797151, a2 ¼ 0:163551, a3 ¼
0:283663, a4 ¼ 0:5 and a5 ¼ 1:0.

3.6. Slope limiter and discontinuity detector

In numerical discretizations of the weak formulation (6), spuri-
ous oscillations generally appear near discontinuities. Using the
Krivodonova discontinuity detector [17], we apply a slope limiter
only near discontinuities to deal with these spurious oscillations.
We use the slope limiter given in [21] which we describe briefly
here for reasons of clarity.

The idea of the slope limiter is to replace the original polyno-
mial P0 by a new polynomial P that uses the data um of the mid-
points of the original element in element Kk and its neighboring
elements ua, ub, uc and ud. Eight polynomials are constructed, 4 La-
grange polynomials, Pi, i ¼ 1;2;3;4 and 4 Hermite polynomials Pi,
i ¼ 5;6;7;8. For the Hermite polynomials we also need the physi-
cal gradient of the data in the neighboring elements at the points
~x, i.e., rua, rub, ruc and rud (see Fig. 5).

To construct the Lagrange polynomials consider the surface
through xm, xa and xb. Name the polynomial through this surface
P1 with P1 ¼ bPa

1 þ bPb
1xþ bPc

1y. The coefficients bPa
1, bPb

1 and bPc
1 are

found by solving:
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1 xm ym

1 xa ya

1 xb yb

264
375
bPa

1bPb
1bPc
1

2664
3775 ¼ um

ua

ub

264
375:

In the same way, polynomials P2, P3 and P4 are constructed by con-
sidering the remaining three surfaces.

Each of the four Hermite polynomials are determined by look-
ing at the current element and one of the neighbors, e.g., the first
Hermite polynomial, P5, is found by looking at the neighboring ele-
ment sharing face S0. In the midpoint xb, the gradient of the solu-
tion is rub, while the solution in the midpoint of the current
element is um. The first Hermite polynomial is given by:
P5 ¼ bPa

5 þ bPb
5xþ bPc

5y wherebPa
5 ¼ um � xb � rub;bPb
5 ¼ oxub in xb;bPc
5 ¼ oyub in xb:

In the same way, polynomials P6, P7 and P8 are constructed by con-
sidering the remaining three surfaces.

The linear approximation of the original polynomial is deter-
mined just like the Hermite polynomials. In the midpoint xm, the
solution is um and the gradient is rum. The linear approximation
is: P0 ¼ bPa

0 þ bPb
0xþ bPc

0y where:bPa
0 ¼ um � xm � rum;bPb
0 ¼ oxum inxm;bPc
0 ¼ oyum inxm:

Now project Pj, j ¼ 0; . . . ;8, onto the DG space and solve for ðû0Þj,
ðû1Þj and ðû2Þj:R

Kk
w0w0dK

R
Kk

w0w1dK
R

Kk
w0w2dKR

Kk
w1w0dK

R
Kk

w1w1dK
R

Kk
w1w2dKR

Kk
w2w0dK

R
Kk

w2w1dK
R

Kk
w2w2dK

2664
3775
ðû0Þj
ðû1Þj
ðû2Þj

264
375 ¼

R
Kk

w0PjdKR
Kk

w1PjdKR
Kk

w2PjdK

2664
3775:

After the polynomial reconstruction is performed, an oscillation
indicator is used to assess the smoothness of Pi. The oscillation indi-
cator for the polynomial Pi, i ¼ 0; . . . ;8, is defined as oi ¼ krPik,
with k � k the Euclidian norm. The coefficients of the new solution
u in element Kk are constructed as the sum of all the polynomials
multiplied by a weight, ûq ¼

P8
i¼0wiðûqÞi, q ¼ 0;1;2, in which the

weights are computed as

wi ¼
ð�þ oiðPiÞÞ�cP8
j¼0ð�þ oiðPjÞÞ�c ; ð15Þ

where c is a positive number and � a small number to avoid division
by 0. Take for example � ¼ 10�12. The effect of c and the combina-
tion of polynomials (Lagrange and original or Lagrange, original
and Hermite) is tested in Section 4.2.

The discontinuity detector introduced in Krivodonova et al. [17]
defines for each element Kn

k a measure of the discontinuity Ik.
This will indicate regions where the gradient of a variable V is
large. For the depth-averaged two-phase flow equations, depend-
ing on the situation, we choose either V ¼ h and V ¼ a. The dis-
continuity detector is given by

In
k ¼ maxðIn

kðhÞ;In
kðaÞÞ; In

kðVÞ ¼
P

Sm2oKn
k

R
Sm
jVR �VLjdS

hðpþ1Þ=2
K joKn

k jkVk1
;

ð16Þ

where hK is the cell measure defined as the radius of the largest cir-
cumscribed circle in the element Kn

k , p the polynomial order, joKn
k j

the surface area of the element and k � k1 the maximum norm. The
solution is estimated [17] to be smooth when Ik < 1 and non-
smooth when Ik > 1.

4. Verification

4.1. Sub- and super-critical flow over a bump

We consider the 1D steady-state solution of sub- and super-crit-
ical flow over a bump [27]. This is a popular test case to verify shal-
low water codes [5,12,19,35,30] and we extend the test case to the
depth-averaged two-phase flow model. For this test case we
consider:

hð1� aÞ
ha

hav
hð1� aÞu

b

26666664

37777775
t

þ

hð1� aÞu
hav

hav2 þ 1
2 eð1� qÞu11g3h2a
hð1� aÞu2

0

26666664

37777775
x

þ

0 0 0 0 0
0 0 0 0 0

G31 0 0 0 G35

G41 0 0 0 G45

0 0 0 0 0

26666664

37777775
h

a
v
u
b

26666664

37777775
x

¼

0
0
S3

S4

0

26666664

37777775;
ð17Þ

where

G31 ¼ eqag3h; G35 ¼ eð1� qÞu11g3haþ eqhag3;

G41 ¼ eð1� aÞg3h; G45 ¼ eð1� aÞg3h;

S3 ¼ hFD
; S4 ¼ �hFD

=q:

Note that we take the given topography to be formally unknown in
the system. This leads to a well-balanced scheme [27]. Let the up-
stream variables be denoted as h0;a0;u0 and v0. For both the sub-
critical and super-critical test case we take h0 ¼ 1, u0 ¼ 1, v0 ¼ 1,
and a ¼ 0:3.

We consider the solution on a domain x 2 ½0;1� in which the
topography is given by [35]:

bðxÞ ¼ 0:2� 20ðx� 0:5Þ2 if 0:4 6 x 6 0:6;
0 otherwise:

(
As initial condition we take hþ b ¼ 1, u ¼ u0, v ¼ v0 and a ¼ a0. At
the boundaries we define the exterior trace to be the same as the
initial condition. For the sub-critical test case we take g3 ¼ 108

while for the super-critical test case g3 ¼ 25. Other parameters in
the model are chosen as e ¼ 0:01, q ¼ 0:9, h ¼ 0�, u11 ¼
2 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos2ð/intÞð1þ tan2ð/bedÞÞ

q� �
= cos2ð/intÞ � 1, /int ¼ 24:5�

and /bed ¼ 14:75�. In FD, the parameters are qf ¼ 1000 kg m�3,
vT ¼ 0:143 m s�1, d ¼ 10�3 m and lf ¼ 10�3 kg ðmsÞ�1.

We compute the order of convergence by comparing the space-
time discontinuous Galerkin finite element solution of (17) to an ‘‘ex-
act”solutionof(17).This ‘‘exact”solutionisfoundbysettingthetime-
derivative terms in (17) to zero and then solving the system of ODE’s
with a RK45 method on a grid with 10,000 points.

In Fig. 6, we plot the numerical solutions of the total flow height
hþ b, topography b, flow depth h, particle volume fraction a and
the velocities u and v for sub- and super-critical flow. The order
of convergence is given for the mixture momentum havþ
qhð1� aÞu as well as the topography b in Table 1 for sub- and
super-critical flow. The reason why we also show the order of con-
vergence for the topography b is because it is taken formally as an
unknown in the system (as in [27]) and we show that the topogra-
phy converges at the same rate as the other unknowns. For a linear
polynomial approximation we obtain as expected second order
convergence.
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Fig. 6. Steady-state solution on a grid with 80 elements. (a) Sub-critical flow: flow depth h. (b) Super-critical flow: flow height hþ b and topography b. (c) Sub-critical flow:
particle volume fraction a. (d) Super-critical flow: particle volume fraction a. (e) Sub-critical flow: velocities u and v. (f) Super-critical flow: velocities u and v.

Table 1
Sub- and super-critical flow: L2 error for the topography b and the total momentum hðav þ qð1� aÞuÞ and the convergence rate p.

Ncells Sub-critical flow Super-critical flow

b p hðav þ qð1� aÞuÞ p b p hðav þ qð1� aÞuÞ p

10 1:5171
 10�2 – 4:2299
 10�3 – 1:2910
 10�2 – 4:0446
 10�4 –
20 3:7397
 10�3 2.0 1:0484
 10�3 2.0 3:4861
 10�3 1.9 1:4343
 10�4 1.5
40 9:3222
 10�4 2.0 2:9977
 10�4 1.8 9:0211
 10�4 2.0 3:7399
 10�5 1.9
80 2:3296
 10�4 2.0 8:1480
 10�5 1.9 2:2925
 10�4 2.0 9:4394
 10�6 2.0
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4.2. The slope limiter

We consider a Riemann problem to test the effect of the
polynomials (Lagrange, original and/or Hermite) in the slope
limiter and the parameter c (see (15)) in the space-time
DGFEM discretization. For this test case we neglect the source
terms. Furthermore, we simplify the expressions for u11, u22,
u12 and u21 by taking u11 ¼ u22 ¼ 1 and u12 ¼ u21 ¼ 0. Other
parameters in the model are chosen as q ¼ 1, g ¼ 1, e ¼ 1
and h ¼ 0�. We consider the solution on a domain ½0;1� 
 ½0;1�
divided into 32
 32 elements. A physical time step of
Dt ¼ 0:005 is used and we consider the solution at final time
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ig. 8. Solution of the flow height h at T ¼ 0:37. Too much numerical dissipation is
troduced in (b) since there is a wave crest in (a) which is not captured in (b). (a)

he flow height h as calculated using Lagrange and the original polynomials in the
lope limiter. Furthermore, c ¼ 1 in (15). (b) The flow height h as calculated using
agrange, Hermite and the original polynomials in the slope limiter. Furthermore,
¼ 10 in (15).
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T ¼ 0:37. We consider the following two-dimensional Riemann
problem:

Vðt ¼ 0Þ ¼ VL for x < 0:5 and y < 0:5;
VR otherwise;

(
in which V is the vector of primitive variables and VL ¼
1; 0:4; 0; 0; 0; 0½ �T and VR ¼ 0:5; 0:2; 0; 0; 0; 0½ �T .

At the boundaries we set u1 ¼ u2 ¼ v1 ¼ v2 ¼ 0.
The slope limiter is used in element Kn

k only when the discon-
tinuity detector In

k > ekriv . In this test case, we take ekriv ¼ 1.
In Fig. 7, we compare the solution of the volume fraction a along

the diagonal x ¼ y as computed using a slope limiter with the com-
bination Lagrange and original polynomials; and, the combination
Lagrange, Hermite and original polynomials. For each combination
we furthermore compare the solution using c ¼ 1 and c ¼ 10 in
(15). We see that the least numerical dissipation is introduced
using the combination Lagrange and original polynomials while
c ¼ 1. Increasing c to c ¼ 10 introduces more smoothing to the
solution. Also adding the Hermite polynomials to the combination
Lagrange and original polynomials increases the amount of numer-
ical dissipation. This can also be seen in Fig. 8 where we compare
the flow height h calculated using the combination Lagrange and
original polynomials with c ¼ 1; and, the combination Lagrange,
Hermite and original polynomials with c ¼ 10. We plot the results
per element to show the discontinuities at the element faces which
would not be visible with post-processing. We remark that without
the slope limiter it was not possible to do this test case because a
became less than zero in regions around large discontinuities due
to undershoots. In Fig. 9, we indicate the areas where the disconti-
nuity detector detects large discontinuities. In these regions the
slope limiter is used. The scheme is robust for a wide range of c val-
ues, but for accuracy reasons c should be chosen as small as possi-
ble, because this minimizes the numerical dissipation. For the
Riemann problem presented here, the best combination would be
the Lagrange and original polynomials with c ¼ 1. As can be seen
in Figs. 7 and 8 there is a wave crest which can be captured using
the combination Lagrange and original polynomials with c ¼ 1
which is not captured using the combination Lagrange, Hermite
and original polynomials with c ¼ 10 since this combination intro-
duces too much numerical dissipation. For other applications
though, more numerical dissipation may be desirable to avoid
large over – and undershoots which can be achieved by slightly
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Fig. 7. Solution of the volume fraction a at T ¼ 0:37 along the diagonal x ¼ y as
computed using the combination of Lagrange and original polynomials (LO) in the
slope limiter or the combination of Lagrange, Hermite and original polynomials
(LHO) with c ¼ 1 or c ¼ 10.
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increasing the value for c and/or using a different combination of
polynomials.

5. Validation

In Bokhove et al. [1,2,30] laboratory experiments of shallow
water and in [33] laboratory experiments of shallow granular flow
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Fig. 9. The shaded area indicates where the discontinuity detector has large values
and where the slope limiter is used; situation at T ¼ 0:37.
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through a contraction were compared to numerical results. We will
simulate a two-phase flow mixture consisting of solid particles in
water in which the density of the solid particles is slightly higher
than that of water. We will simulate the flow of this mixture as
it enters a contraction. Initially we start with a flow with very
low particle volume fraction (5%) and the flow reaches a steady-
state with oblique jumps. We then perturb this steady-state by
increasing the particle volume fraction at the inlet to 30% for a
short period. This perturbation was sufficient to perturb the flow
with oblique jumps to one with an upstream moving shock as
was observed by Akers and Bokhove [1] (see Fig. 2). We now de-
scribe the numerical setup.
3
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0.2

0.4
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Fig. 11. Oblique jump solution at t ¼ 22. (a) Side view of h. (b) S
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Fig. 10. Geometry and mesh of the chute with a contraction.
In our numerical calculations we consider a channel in the
Cartesian coordinate system ðx; yÞ 2 ½0;10� 
 ½�0:5;0:5�. The chan-
nel converges from x ¼ 4 to x ¼ 4:7228 so that y 2 ½�0:3;0:3� and
diverges from x ¼ 4:7228 to x ¼ 6:1685 (see Fig. 10).

As initial condition we take h ¼ 0:2, a ¼ 0:05, v1 ¼ u1 ¼ 0:5 and
v2 ¼ u2 ¼ 0. Define hw ¼ hð1� aÞ. At the inflow boundary we spec-
ify hw ¼ 0:19, the x-components of the velocities, u1 ¼ 0:5 and
v1 ¼ 0:5, the y-components of the velocities, u2 ¼ 0 and v2 ¼ 0,
and the particle volume fraction a. Initially, the inflow condition
for the particle volume fraction is a ¼ 0:05. For time 20 < t < 35
we change the inflow condition by increasing the particle volume
fraction to a ¼ 0:3 after which we decrease the particle volume
fraction again to a ¼ 0:05. At the walls we follow Ambati and
Bokhove [3] and impose:

vb � �n ¼ �vL � �n; vb � �t ¼ vL � �t;
ub � �n ¼ �uL � �n; ub � �t ¼ uL � �t;

ð18Þ

where �t is the unit tangential vector orthogonal to the normal vec-
tor �n. Furthermore, we extrapolate the void fraction, aR ¼ aL and the
flow height hR ¼ hL. At the outflow boundary, all variables are
extrapolated, UR ¼ UL.
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There are a number of constants in the depth-averaged flow
model. We will consider shallow liquid–solid flows with a height
to length ratio of e ¼ 0:2 as a feasible approximation and for which
the liquid to solid density ratio is q ¼ 0:9. The gravity constant is
g ¼ 1:5 so that the gravity components are g1 ¼ sinðhÞg, g2 ¼ 0
and g3 ¼ cosðhÞg in which h is the angle of the contraction with re-
spect to the horizontal (see also Fig. 3). We take h ¼ 0:625� for
0 6 x 6 7 and h ¼ 10� for x > 7 so that the outflow boundary has
no effect on the solution in the contraction. To be able to calculate
the drag function FD, we use the following constants: qf ¼
1000 kg m�3 and lf ¼ 10�3 kg ðm sÞ�1 while the solid particles
are assumed to have a diameter of d ¼ 10�3 m and
vT ¼ 0:143 m s�1 [15]. The internal angle of friction is taken to be
/int ¼ 24:5� and the bed friction angle is /bed ¼ 14:75� [4]. The bot-
tom topography is taken constant bðx; yÞ ¼ 0 and the drag coeffi-
cient is CD ¼ 10�4.

We compute the solution for the depth-averaged model using
space DGFEM until t ¼ 100 using a CFL number of CFL ¼ 0:8 on a
grid with 400 elements in the x-direction and 40 elements in the
y-direction. In the slope limiter, a combination of Lagrange, Her-
mite and original polynomials was used with c ¼ 10 to avoid se-
vere over- and undershoots. In Figs. 11–13 we show the
transition of the flow height h from oblique jumps to an upstream
steady shock (for a comparison, see also Fig. 2). We see the same as
observed by Akers and Bokhove [1]. In Fig. 11a, b and c we see that
the first steady-state solution is captured very well. After increas-
ing the particle volume fraction at the inlet, the steady-state is per-
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Fig. 12. Transition phase at t ¼ 39. (a) Side view. (b) Snapshot from the laboratory
experiment.

Fig. 13. Upstream moving shock at t ¼ 100. (a) Side view. (b) Snapshot from the
laboratory experiment.
turbed. The transitional phase in Fig. 12a and b show the numerical
and laboratory results, respectively, and we see different behaviour
between the results. The second steady-state, an upstream steady
shock, however is captured again very well (see Fig. 13a and b).
We remark that if CD ¼ 0, we do not get an upstream steady shock.
As expected, an upstream moving shock appears.

6. Conclusions

Recently, a depth-averaged two-phase flow model was intro-
duced by Pitman and Le [25,18] to model shallow debris flows.
We slightly extended this model by including extra friction terms
to simulate turbulent friction. The depth-averaged model contains
non-conservative products which makes it numerically challeng-
ing to solve. In Rhebergen et al. [27] we developed a discontinuous
Galerkin finite element method to deal with non-conservative
products which we applied in this article to solve the depth-aver-
aged two-phase flow model of Le [18].

The DGFEM discretizations for the depth-averaged model was
verified against steady-state flow solutions over a bump and we
obtained second order convergence when using linear polynomial
approximations. To prevent numerical oscillations, the WENO
slope limiter [21] in combination with Krivodonova’s discontinuity
detector [17] was successfully applied. A Riemann problem solu-
tion was shown which could not be solved without the slope lim-
iter due to severe undershoots.

Furthermore, the effect of the choice of the polynomials and the
parameter c in the slope limiter were shown. The scheme is robust
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for a wide range of c values, but for accuracy reasons c should be
chosen as small as possible, because this minimizes the numerical
dissipation. Also adding the Hermite polynomials to the combina-
tion Lagrange and original polynomials increases the amount of
numerical dissipation. This could be seen in the Riemann problem
we investigated where there was a wave crest that could only be
captured using the Lagrange and original polynomials and setting
c ¼ 1. Certain applications with strong gradients however need
more numerical dissipation to avoid over– and undershoots so that
c may need to be slightly increased. This was necessary e.g. in the
validation test case where we used the combination of Lagrange,
Hermite and original polynomials with c ¼ 10.

Finally, we qualitatively validated the model by showing the
ability of the model to capture the phenomenon in which a steady
state solution with oblique jumps is perturbed, by an increase of
particles for a short period in time, so that an upstream steady
shock appeared, as was observed by Akers and Bokhove [1].
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Appendix A. The three-dimensional two-phase flow model

In this section, we present the three-dimensional two-phase
flow model as derived by Jackson [15]. By depth-averaging this
model, Pitman and Le [25,18] derived a depth-averaged two-phase
flow model for shallow two-phase flows.

Assume that the only fluid’s stress is the fluid’s pressure. Fur-
thermore, the densities qf and qs of both phases are assumed to
be constant. The three-dimensional model consists of two continu-
ity equations and two momentum equations. To write the equa-
tions in compact form, we use the summation convention on
repeated indices. The continuity equations are given by

otðð1� aÞÞ þ okðð1� aÞukÞ ¼ 0;
otðaÞ þ okðavkÞ ¼ 0;

ðA:1Þ

and the momentum equations as

otðð1� aÞqf uiÞ þ okðð1� aÞqf uiukÞ
¼ �ð1� aÞokðdikpf Þ � FD

i þ ð1� aÞqf gi;

otðaqsv iÞ þ okðaqsv ivk þ Ts
ikÞ ¼ �aokðdikpf Þ þ FD

i þ aqsgi:

ðA:2Þ

Here, i; k ¼ 1;2;3. The Cartesian coordinate system we consider is at
an angle h with respect to the horizontal (see Fig. 3). In these equa-
tions a is the particle volume fraction, u the fluid velocity vector, v
the solids velocity vector, ~g the gravity vector, Ts the solids stress
tensor, pf is the fluid pressure, FD the generalized drag force and d
represents the Kronecker delta function.

References

[1] B. Akers, O. Bokhove, Hydraulic flow through a channel contraction: multiple
steady states, Phys. Fluids 20 (2008) 056601.

[2] V.R. Ambati, O. Bokhove, Space-time discontinuous Galerkin finite element
method for shallow water flows, J. Comput. Appl. Math. 204 (2007) 452.

[3] V.R. Ambati, O. Bokhove, Space-time discontinuous Galerkin discretization of
rotating shallow water equations, J. Comput. Phys. 225 (2007) 1233.

[4] N.J. Balmforth, R.R. Kerswell, Granular collapse in two dimensions, J. Fluid
Mech. 538 (2005) 399.
[5] M. Castro, J.M. Gallardo, C. Parés, High order finite volume schemes based on
reconstruction of states for solving hyperbolic systems with nonconservative
products. Application to shallow-water systems, Math. Comput. 75 (2006)
1103.

[6] M.-C. Chiou, Y. Wang, K. Hutter, Influence of obstacles on rapid granular flows,
Acta Mech. 175 (2005) 105.

[7] B. Cockburn, C.W. Shu, The Runge–Kutta discontinuous Galerkin method for
conservation laws V, J. Comput. Phys. 141 (1998) 199.

[8] G. Dal Maso, P.G. LeFloch, F. Murat, Definition and weak stability of
nonconservative products, J. Math. Pure Appl. 74 (1995) 483.

[9] R.P. Denlinger, R.M. Iverson, Flow of variably fluidized granular masses across
three-dimensional terrain 2. Numerical predictions and experimental tests, J.
Geophys. Res. 106 (2001) 553.

[10] D.A. Drew, R.T. Lahey, Analytical modeling of multiphase flow, in: M.C. Roco
(Ed.), Particulate Two-Phase Flows, Butterworth-Heinemann, Boston, 1993.

[11] J.M.N.T. Gray, Y.-C. Tai, S. Noelle, Shock waves, dead zones and particle-free
regions in rapid granular free-surface flows, J. Fluid Mech. 491 (2003) 161.

[12] D.D. Houghton, A. Kasahara, Nonlinear shallow fluid flow over an isolated
ridge, Comm. Pure Appl. Math. 21 (1968) 1.

[13] K. Hutter, K.R. Rajagopal, On flows of granular materials, Continuum Mech.
Thermodyn. 6 (1994) 81.

[14] R.M. Iverson, R.P. Denlinger, Flow of variably fluidized granular masses across
three-dimensional terrain 1. Coulomb mixture theory, J. Geophys. Res. 106
(2001) 537.

[15] R. Jackson, The Dynamics of Fluidized Particles, Cambridge University Press,
2000.

[16] C.M. Klaij, J.J.W. van der Vegt, H. van der Ven, Space-time discontinuous
Galerkin method for the compressible Navier–Stokes equations, J. Comput.
Phys. 217 (2006) 589.

[17] L. Krivodonova, J. Xin, J.F. Remacle, N. Chevaugeon, J.E. Flaherty, Shock
detection and limiting with discontinuous Galerkin methods for hyperbolic
conservation laws, Appl. Numer. Math. 48 (2004) 323.

[18] L.H. Le, New Models for Geophysical Flows, Ph.D. dissertation, State University
of New York at Buffalo, 2006.

[19] R.J. LeVeque, Balancing source terms and flux gradients in high-resolution
Godunov methods: the quasi-steady wave-propagation algorithm, J. Comput.
Phys. 146 (1998) 346.

[20] J. Ling, P.V. Skudarnov, C.X. Lin, M.A. Ebadian, Numerical investigations of
liquid–solid slurry flows in a fully developed turbulent flow region, Int. J. Heat
Fluid Flow 24 (2003) 389.

[21] H. Luo, J.D. Baum, R. Löhner, A Hermite WENO-based limiter for
discontinuous Galerkin method on unstructured grids, J. Comput. Phys. 225
(2007) 686.

[22] J.J. Major, R.M. Iverson, Debris-flow deposition: effects of pore-fluid pressure
and friction concentrated at flow margins, GSA Bull. 111 (1999) 1424.

[23] A.K. Patra, C.C. Nichita, A.C. Bauer, E.B. Pitman, M. Bursik, M.F. Sheridan,
Parallel adaptive discontinuous Galerkin approximation for thin layer
avalanche modeling, Computat. Geosci. 32 (2006) 912.

[24] A.K. Patra, A.C. Bauer, C.C. Nichita, E.B. Pitman, M.F. Sheridan, M. Bursik, B.
Rupp, A. Webber, A.J. Stinton, L.M. Namikawa, C.S. Renschler, Parallel adaptive
numerical simulation of dry avalanches over natural terrain, J. Volcanol.
Geotherm. Res. 139 (2005) 1.

[25] E.B. Pitman, L. Le, A two-fluid model for avalanche and debris flows, Phi. Trans.
R. Soc. A 363 (2005) 1573.

[26] O. Pouliquen, Y. Forterre, Friction law for dense granular flows: application to
the motion of a mass down a rough inclined plane, J. Fluid Mech. 453 (2002)
133.

[27] S. Rhebergen, O. Bokhove, J.J.W. van der Vegt, Discontinuous Galerkin finite
element methods for hyperbolic nonconservative partial differential
equations, J. Comput. Phys. 227 (2008) 1887.

[28] S.B. Savage, K. Hutter, The dynamics of avalanches of granular materials down
a rough incline, J. Fluid Mech. 199 (1989) 177.

[29] Y.C. Tai, S. Noelle, J.M.N.T. Gray, K. Hutter, Shock-capturing and front-tracking
methods for granular avalanches, J. Comput. Phys. 175 (2002) 269.

[30] P.A. Tassi, O. Bokhove, C.A. Vionnet, Space discontinuous Galerkin method for
shallow water flows – kinetic and HLLC flux, and potential vorticity
generation, Adv. Water Res. 30 (2007) 998.

[31] E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics,
Springer-Verlag, 1997.

[32] J.J.W. van der Vegt, H. van der Ven, Space-time discontinuous Galerkin finite
element method with dynamic grid motion for inviscid compressible flows I.
General formulation, J. Comput. Phys. 182 (2002) 546.

[33] A.W. Vreman, M. Al-Tarazi, J.A.M. Kuipers, M. van Sint Annaland, O. Bokhove,
Supercritical shallow granular flow through a contraction, experiment, theory
and simulation, J. Fluid Mech. 578 (2007) 233.

[34] Y. Wang, K. Hutter, S.P. Pudasaini, The Savage–Hutter theory: a system of
partial differential equations for avalanche flows of snow, debris and mud, Z.
Angew. Math. Mech. 84 (2004) 507.

[35] Y. Xing, C.W. Shu, High order well-balanced finite volume WENO schemes and
discontinuous Galerkin methods for a class of hyperbolic systems with source
terms, J. Comput. Phys. 214 (2006) 567.

[36] <http://www.liceng.dk/LIC/Services/SlurryAndSediment/index.shtml>.
[37] <http://volcanoes.usgs.gov/images/pglossary/lahar.php>.

http://www.bsik-bricks.nl
http://www.liceng.dk/LIC/Services/SlurryAndSediment/index.shtml
http://volcanoes.usgs.gov/images/pglossary/lahar.php

	Discontinuous Galerkin finite element method for shallow two-phase flows
	Introduction
	Depth-averaged two-phase flows
	The DGFEM discretization
	Space-time elements
	Function spaces and trace operators
	Basis functions
	The weak formulation
	Pseudo-time stepping
	Slope limiter and discontinuity detector

	Verification
	Sub- and supercritical super-critical flow over a bump
	The slope limiter

	Validation
	Conclusions
	AcknowledgementAcknowledgements
	The three-dimensional two-phase flow model
	References


