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We here consider

� Model: a multiscale linear kinetic transport model

� Numerical methods: asymptotic preserving (AP) methods based on
I discontinuous Galerkin (DG) spatial discretizations
I implicit-explicit Runge-Kutta time discretizations

For AP methods solving other models or based on other discretizations, see
review papers, Pareschi-Russo 2011, Jin 2012, Degond 2013
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Problem Setup

Consider the dynamics of some particles (e.g. neutron or photon) in one
dimension.

I Free-streaming, with v0 > 0

∂tα + v0∂xα = 0

∂t β − v0∂x β = 0

I Also, the interaction with the medium (σ > 0: scattering constant)

∂tα + v0∂xα =
σ

2
(β − α) (1a)

∂t β − v0∂x β =
σ

2
(α − β)︸      ︷︷      ︸

=σ ( α+β2 −β)

(1b)
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Introduce a new function f (x, v, t), with v ∈ {v0,−v0}, satisfying

f (x, v = v0, t) := α(x, t), f (x, v = −v0, t) := β(x, t),

and define 〈 f 〉 = 〈 f 〉(x, t) as

〈 f 〉 =
1
2

(
α(x, t) + β(x, t)

)
=

1
2

(
f (x, v = v0, t) + f (x, v = −v0, t)

)
.

Then the system for the particle dynamics1 can be rewritten as

∂t f + v∂x f︸        ︷︷        ︸
transpor t

=σ
(
〈 f 〉 − f

)
.︸         ︷︷         ︸

scat ter ing

(2)

1Stochastically, the scattering process can be described by a 2-state continuous
time Markov chain.



Dimensionless Form

∂t f + v∂x f = σ
(
〈 f 〉 − f

)
I Non-dimensional variables: with

- 1/σ: mean free time
- v0: the typical velocity
- 1/σ · v0: mean free path

we set
t̃ =

t
1/σ

, ṽ =
v

v0
, x̃ =

x
1/σ · v0



Diffusive Scaling

I Define the dimensionless Knudsen number

ε =
mean-free path

characteristic length of the problem
=

1/σ · v0
L

,

where the spatial domain is [0, L].

When ε � 1, the problem is diffusive over long time. To see this,
we apply a diffusive scaling:

x̂ =
x̃

1/ε
, t̂ =

t̃
1/ε2

,

and this leads to

ε∂t f + v∂x f =
1
ε

(〈 f 〉 − f ) , x ∈ [0, 1], v ∈ {−1, 1}. (3)
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Diffusive Behavior as ε � 1

To check the diffusive behavior, let

ρ =
α + β

2
= 〈 f 〉, J =

α − β

2ε
=

1
ε
〈v f 〉, (4)

the equation under the diffusive scaling becomes

∂t ρ + ∂x J = 0, (5a)

ε2∂t J + ∂x ρ = −J . (5b)

When ε � 1,

(5b)⇒ J = −∂x ρ +O(ε2)

⇒ ∂t ρ = ∂xx ρ +O(ε2)



Model: a more general form
Linear kinetic transport equation under the diffusive scaling:

ε∂t f + v∂x f =
σ(x)
ε
L( f )

I f = f (x, v, t): the density distribution function of particles, depending
on position x ∈ Ωx , velocity v ∈ Ωv , time t, with both Ωx,Ωv being
bounded

I σ(x): the scaled scattering function

I L( f ) = 〈 f 〉 − f : the normalized scattering operator, where
〈 f 〉 =

∫
Ωv

f dµ, with µ being a measure associated with Ωv , satisfying∫
Ωv

1dµ=1.

I The operator L acts only on v, and Null(L) = { f : f = 〈 f 〉}=Span{1}.

I ε > 0: the Knudsen number, defined as the ratio of the mean free path
and the characteristic length



Example 1 (Telegraph or Goldstein-Taylor equation). Ωv = {−1, 1}. µ is a
discrete measure, with 〈 f 〉 = 1

2

(
f (x, v = 1, t) + f (x, v = −1, t)

)
, and

σ(x) = 1
Example 2 (One-group transport equation in slab geometry Ωv = [−1, 1],
and dµ = 1

2dv, with dv being Lebesgue measure.

A more general form of Example 2 is2

ε∂t f + v∂x f =
σS (x)
ε
L( f ) − εσa (x) f + εS(x) (6)

2 The one-dimensional problem (6) is a simplified model for physically more
relevant kinetic transport models in neutron transport theory, radiative transfer
theory etc.



I Diffusive behavior as ε � 1: As ε → 0, the limiting equation3 is

∂t ρ = κ∂x (σ−1(x)∂x ρ). (7)

Here ρ = 〈 f 〉, with κ = 〈v2〉: κ = 1 (example 1), κ = 1/3 (example 2)

I Initial and boundary layers: non well-prepared initial, anisotropic
boundary data

3by perturbation method; Kurtz 1973, Bensoussan-Lions-Papanicolaou 1979



Asymptotic Preserving (AP) Method
� On the continuous level:

F ε : ε∂t f + v∂x f =
1
ε
L( f ); F 0 : ∂t ρ = κ∂xx ρ

� On the discrete level: let F ε
δ be a numerical method for F ε , with δ being

some discretization parameters such as ∆x, ∆t.

F ε ε→0
−−−−→ F 0

(δ → 0) ↑ ↑ (δ → 0)

F ε
δ

ε→0
−−−−→ F 0

δ

The method F ε
δ is said to be asymptotic preserving if it preserves the

asymptotic limit at the discrete level. That is, as ε → 0, the scheme F ε
δ

becomes a consistent and stable numerical method F 0
δ for the limiting

equation F 0 on under-resolved meshes, with δ � ε.

⇒ Uniform convergence in ε in the diffusive regime as δ → 0 (Golse-Jin-Levermore
1999)
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Why AP?
Marvin L. Adams, Discontinuous Finite Element Transport Solutions in
Thick Diffusive Problems, Nucl. Sci. Eng., 137 (2001)

"Regions that are extremely optically thick and diffusive often appear in
radiative-transfer problems of practical interest. Computational limitations
force the use of spatial grids whose cells are often quite thick compared to a
mean-free-path, especially in low-energy groups. ...

An obvious question is why the community does not simply solve the diffusion
equation in thick diffusive regions. There are several reasons. First, a typical
radiative transfer problem has a wide range of material properties. In a
given energy group, some spatial regions may be quite thick and others quite
thin. Further, in a given spatial region, the material may be quite thick and
diffusive to photons in some energy groups but thin to photons in other
groups."



"Second, if part of the problem is to be solved with diffusion theory and part
with transport, then the problem must be so divided. If the division is made
such that diffusion theory is applied to regions that are not very thick and
diffusive, then errors will result. If, on the other hand, the division leaves
some relatively thick and diffusive regions for the transport equation, then
the transport solution cannot be trusted unless it is known to behave well in
the thick diffusive limit."



Objective: Design and mathematically understand AP methods,
particularly within the discontinuous Galerkin (DG) framework

I AP: As ε → 0, the scheme in the limit is consistent and stable for the
limiting equation on fixed meshes.

I Uniformly stable with respect to ε ranging from O(1) to 0

I High order in space and time: ε = O(1), ε � 1

I Easy to solve numerically



Review of Discontinuous Galerkin (DG) Method4
Model equation:

∂tu + ∂x (cu) = 0, x ∈ (0, 1), t > 0
Weak form:∑

j

( ∫
I j

(
∂tuw − cu∂xw

)
dx + cu(x j+ 1

2
)w(x j+ 1

2
) − cu(x j− 1

2
)w(x j− 1

2
)
)
= 0 (8)

Semi-discrete DG method: look for uh ∈ Uh , such that ∀w ∈ Uh∑
j

( ∫
I j

(
∂tuhw − cuh∂xw

)
dx + E(cuh ) j+ 1

2
w−
j+ 1

2
− E(cuh ) j− 1

2
w+
j− 1

2

)
= 0 (9)

- Mesh: I j = [x j− 1
2
, x j+ 1

2
], j = 1, 2, · · · ; Define h = max j |I j |

- Discrete space: Uh = Uk
h
= {w : w ∈ Pk (I j ), ∀ j}, with Pk (I j ) consisting of

polynomials of degree up to k;
- Numerical flux: ĉuh

4Reed-Hill 1973, Cockburn, Shu et al 1989-1998
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Numerical flux ĉuh: Its choice may affect numerical stability, accuracy, and
some implementation aspects of the method.

- Upwind flux

ĉuh :=
{

cu−
h
, c > 0

cu+
h
, c < 0

Stability:
∫ 1
0 |uh (x, t)) |2dx + |c |

∑
j (u+

h, j+ 1
2
− u−

h, j+ 1
2

)2 =
∫ 1
0 |uh (x, 0)) |2dx

Accuracy: O(hk+1)

- Central flux:

ĉuh :=
cu−

h
+ cu+

h

2

Stability:
∫ 1
0 |uh (x, t)) |2dx =

∫ 1
0 |uh (x, 0)) |2dx

Accuracy: O(hk+1) (for even k), O(hk ) (for odd k)



A viewpoint of DG discretization: discrete derivative

� Continuous problem: ∑
j

∫
I j

(
∂tu + ∂x (cu)

)
wdx = 0 (10)

� Semi-discrete DG method: (with the upwind flux ĉu = cu−, c > 0)∑
j

( ∫
I j

∂tuhwdx −
∫
I j

cuh∂xwdx + E(cuh ) j+ 1
2
w−
j+ 1

2
− E(cuh ) j− 1

2
w+
j− 1

2

)
= 0

⇔
∑
j

∫
I j

(∂tuh + ∂x (cuh ))wdx +
∑
j

c
(
(u+h − u−h )w+

)
j− 1

2︸                          ︷︷                          ︸
=
∑

j

∫
I j
DB

h
(uh ;c)wdx (lifting operator)

= 0

⇔
∑
j

∫
I j

(
∂tuh +Dh (uh ; c)

)
wdx = 0 (11)

Dh (uh ; c) = ∂x (cuh ) +DB
h

(uh ; c) ∈ Uh : discrete spatial derivative of cu,
depending on the discrete space Uh and the numerical flux ĉu



AP Property of Upwind DG Method: an example

I Model: telegraph equation, with Ωv = {−1, 1} and Ωx = [−π, π]

ε∂t f + v∂x f =
1
ε

(〈 f 〉 − f )

I Exact solution: r = −2
1+
√
1−4ε2

f (x, v, t) =
1
r

er t sin x + εver t cos x

with the periodic boundary condition.

I Method: P0 upwind DG in space + backward Euler in time5, with N
uniform elements of size ∆x in the x direction, and ∆t = ∆x

5If forward Euler method is applied in time, numerical stability requires
∆t = O(εh).
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f (x, v = 1, t) at the time T = 1 with N = 80, ε = 0.5

-4 -3 -2 -1 0 1 2 3 4

X

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

computed

exact



f (x, v = 1, t) at the time T = 1 with N = 80, ε = 10−6
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X
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To understand the observation

I The scheme, rewritten in α(x, t) = f (x, v = 1, t) and
β(x, t) = f (x, v = −1, t), is

αn+1
j
− αn

j

∆t
+
αn+1
j
− αn+1

j−1

∆x
=
βn+1
j
− αn+1

j

2ε
(12)

βn+1
j
− βn

j

∆t
−
βn+1
j+1 − β

n+1
j

∆x
=
αn+1
j
− βn+1

j

2ε
(13)

Here αn
j ≈ α(x j, tn ), βnj ≈ β(x j, tn )

I Recall the model in ρ = 〈 f 〉 = α+β
2 , J = 〈v f 〉ε =

α−β
2ε is

∂t ρ + ∂x J = 0, ε2∂t J + ∂x ρ = −J

When ε � 1, it becomes ∂t ρ = ∂xx ρ +O(ε2).
I The scheme, rewritten in ρ and J, is

ρn+1
j
− ρn

j

∆t
+

Jn+1
j+1 − Jn+1

j−1

2∆x
−
∆x
2ε

ρn+1
j+1 − 2ρ

n+1
j
+ ρn+1

j−1

∆x2
= 0 (14a)

ε2
Jn+1
j
− Jn

j

∆t
+
ρn+1
j+1 − ρ

n+1
j−1

2∆x
−
ε∆x
2

Jn+1
j+1 − 2Jn+1

j
+ Jn+1

j−1

∆x2
= −Jn+1j (14b)
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To understand the observation
(cont’d)

I The scheme, rewritten in ρ and J, is

ρn+1
j
− ρn

j

∆t
+

Jn+1
j+1 − Jn+1

j−1

2∆x
−
∆x
2ε

ρn+1
j+1 − 2ρ

n+1
j
+ ρn+1

j−1

∆x2
= 0

ε2
Jn+1
j
− Jn

j

∆t
+
ρn+1
j+1 − ρ

n+1
j−1

2∆x
−
ε∆x
2

Jn+1
j+1 − 2Jn+1

j
+ Jn+1

j−1

∆x2
= −Jn+1j

I Formally when ε � 1,

ρn+1
j
− ρn

j

∆t
=
ρn+1
j+2 − 2ρ

n+1
j
+ ρn+1

j−2

(2∆x)2
+
∆x
2ε

ρn+1
j+1 − 2ρ

n+1
j
+ ρn+1

j−1

∆x2
+O(ε)

(15)

On a fixed mesh, and let ε → 0, the limiting scheme is inconsistent to the
limiting heat equation. ⇒ The scheme is not AP.



Remedy

I either using Pk upwind DG methods in space with k ≥ 1,
I or applying a scale-dependent numerical flux instead of the pure
upwind flux

upwind flux : v̂ f =
{

v f −, if v > 0
v f +, if v < 0 =

v

2
( f + + f −) −

|v |

2
( f + − f −) (16)

scale-dependent flux : v̂ f =
v

2
( f + + f −) −

|v |λ(ε)
2

( f + − f −) (17)

where λ(ε) ≥ 0, satisfying
I λ(ε) = O(1) for ε = O(1)
I limε→0 λ(ε) = 0



Revisit the example

I use the scale-dependent numerical flux with λ(ε) = ε
I T = 1 and ∆t = ∆x = 2π/N

Table: L1 errors and orders in f (x, v = 1, t)

ε = 0.5 ε = 10−6

N error order error order
40 3.41E-02 - 2.10E-01 -
80 1.83E-02 0.90 1.13E-01 0.89
160 7.90E-03 1.21 5.67E-02 1.00
320 4.03E-03 0.97 2.89E-02 0.97
640 1.94E-03 1.05 1.44E-02 1.00



Upwind DG methods and their AP property have been extensively studied for
stationary neutron transport or radiative transfer equations. 6

� Reed-Hill 1973: neutron transport equation

� Larsen 1983: With the upwind flux, the P1 DG method possesses the
‘thick’ diffusion limit, yet the P0 DG method doesn’t. (1d)
Larsen-Morel 1989: asymptotic analysis of the P1 upwind DG method
in the presence of boundary layer (1d)

� Adams 2001: linear P1 or bilinear Q1 DG methods with the upwind
flux on general meshes in multi-dimensions, with the methods on
certain meshes not possessing the diffusion limit
Guermond-Kanschat 2010: mathematics analysis for upwind DG
methods with general discrete spaces

� Ragusa-Guermond-Kanschat 2012: DG methods with AP property
using reduced upwind stabilization

6Solvers: Adams-Larsen 2002 (transport sweep + (accelerated) source iteration)



DG based AP Methods
following a different framework

Main ingredients

� Reformulation(s): micro-macro decomposition

� Temporal discretization: globally stiffly accurate implicit-explicit
(IMEX) Runge-Kutta (RK) methods; implicit-explicit strategies

� Spatial discretization: DG methods



1. Reformulation
I Consider L2(Ωv ; dµ) with the inner product 〈·, ·〉: 〈 f1, f2〉 =

∫
Ωv

f1 f2dµ.
I Let Π be an orthogonal projection onto Null(L) = { f : f = 〈 f 〉}

Π f = 〈 f 〉 (18)

And let I be the identify operator.
I Then we have f = ρ + εg, where ρ = Π f and g = 1

ε (I − Π) f . The model
equation

ε∂t f + v∂x f =
1
ε

(〈 f 〉 − f )

is reformulated into

Micro-macro decomposition (Liu-Yu 2004)

∂t ρ + ∂x 〈vg〉 = 0 (19a)

∂tg +
1
ε
{I − Π}∂x (vg) +

1
ε2

v∂x ρ = −
1
ε2

g (19b)

I As ε → 0,

⇒ g = −v∂x ρ (local equilibrium) (20a)

⇒ ∂t ρ = 〈v
2〉∂xx ρ (20b)
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f1 f2dµ.
I Let Π be an orthogonal projection onto Null(L) = { f : f = 〈 f 〉}

Π f = 〈 f 〉 (18)

And let I be the identify operator.
I Then we have f = ρ + εg, where ρ = Π f and g = 1

ε (I − Π) f . The model
equation

ε∂t f + v∂x f =
1
ε

(〈 f 〉 − f )

is reformulated into

Micro-macro decomposition (Liu-Yu 2004)

∂t ρ + ∂x 〈vg〉 = 0 (19a)

∂tg +
1
ε
{I − Π}∂x (vg) +

1
ε2

v∂x ρ = −
1
ε2

g (19b)

I As ε → 0,

⇒ g = −v∂x ρ (local equilibrium) (20a)

⇒ ∂t ρ = 〈v
2〉∂xx ρ (20b)



Assumptions:
- The initial data is well-prepared: that is, at t = 0

g + v∂x ρ→ 0, as ε → 0.

In this case, the problem is free of initial layers in leading terms.
- Boundary conditions in x are periodic7.

7General isotropic boundary conditions are considered numerically.



2. Temporal Discretization: first order implicit-explicit
(IMEX) method (ρn ≈ ρ(·, tn ), gn ≈ g(·, ·, tn ) )

Implicit-explicit strategy

ρn+1 − ρn

∆t
+ ∂x〈vg

n〉 = 0 (21a)

gn+1 − gn

∆t
+
1
ε
{I − Π}∂x (vgn ) +

1
ε2

v∂x ρ
n+1 = −

1
ε2

gn+1 (21b)

Formally as ε � 1

ρn+1 − ρn

∆t
+ ∂x〈vg

n〉 = 0 (22a)

gn+1= −v∂x ρ
n+1 +O(ε) (22b)

⇒
ρn+1 − ρn

∆t
− ∂x (〈v2〉∂x ρn ) = O(ε) (22c)
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∆t
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3. Spatial Discretization: DG method

ρn+1 − ρn

∆t
+ ∂x〈vg

n〉 = 0

gn+1 − gn

∆t
+
1
ε
{I − Π}∂x (vgn ) +

1
ε2

v∂x ρ
n+1 = −

1
ε2

gn+1

Discrete space and numerical fluxes
I Uh = Uk

h
: piecewise polynomials of degree up to k

I vg: upwind flux
I 〈vg〉 and ρ: alternating flux

〈v̂g〉 = 〈vg〉−, ρ̂ = ρ+; or 〈v̂g〉 = 〈vg〉+, ρ̂ = ρ−



Fully-discrete method: look for ρn+1
h

(·), gn+1
h

(·, v) ∈ Uh

DG-IMEX1 method

ρn+1
h
− ρn

h

∆t
+D

(g)
h
〈vgnh 〉 = 0 (23a)

gn+1
h
− gn

h

∆t
+

1
ε
{I − Π}D (up)

h,v
gnh +

v

ε2
D

(ρ)
h

ρn+1h = −
1
ε2

gn+1h (23b)

I ρn
h

(x) ≈ ρ(x, tn ), gn
h

(x, v) ≈ g(x, v, tn )

I Computational complexity: to implement, one first solves ρn+1
h

in (23a),
and then gn+1

h
in (23b), by solving (block-)diagonal linear systems.



Theoretical Results

Continuous level: (periodic in x)

ε∂t f + v∂x f =
1
ε

(〈 f 〉 − f )

⇒
ε

2
d
dt

∫
Ωx×Ωv

f 2dxdv = −
1
ε

∫
Ωx×Ωv

( f − 〈 f 〉)2dxdv

⇔
1
2

d
dt

(
| |ρ| |2(t) + ε2 | | |g | | |2(t)

)
= −|| |g | | |(t)2 ≤ 0 (24)

� ||φ| | = (
∫
Ωx

φ2(x)dx)1/2

� || |ψ | | | = (
∫
Ωx×Ωv

ψ2(x, v)dxdv)1/2



Theorem (numerical stability for DG-IMEX1 method)

With periodic boundary condition, the following holds for the
DG-IMEX1 method with the discrete space Uh = Uk

h
:

| |ρn+1h | |2 + ε2 | | |gnh | | |
2 ≤ ||ρnh | |

2 + ε2 | | |gn−1h | | |2, ∀n (25)

under the time step condition

∆t ≤ ∆tstab =



2h
α2α3

(h + α3ε)= c1εh + c2h2, for k = 0
h

α1+α2α3
(h +min(ε, α2h

α1
)α3)≤ c3h2, for k ≥ 1

(26)

� Uniform stability in ε
� Here αi, i = 1, 2, 3 are computable constants, dependent of Ωv and k.



Stability mechanisms:
I Implicit part in time discretization:(

φn+1 − φn

∆t
, φn+1

)
=

1
2∆t

(
| |φn+1 | |2 − ||φn | |2 + | |φn+1 − φn | |2

)
(27)

I Upwind stabilization

I Damping due to the scattering process



Theorem (error estimates for DG-IMEX1 method)

With periodic boundary condition, the following error estimates
hold for the DG-IMEX1 method with the discrete space Uh =

Uk
h
and sufficiently smooth exact solutions:

| |ρn − ρnh | |
2 + ε2 | | |gn−1 − gn−1h | | |2

≤ C∗
(
(1 + ε2)h2k+2 + εh2k+1 + (1 + ε4)∆t2

)
for n : n∆t ≤ T under the condition ∆t < min(∆tstab, 12 ). And
C∗ depends on the exact solution, T , k, and Ωv .

� Proof: Stability + approximation property of the space + local
truncation error in time
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F ε ε→0
−−−−→ F 0

(δ → 0) ↑ ↑ (δ → 0)

F ε
δ

ε→0
−−−−→ F 0

δ

What about the asymptotic behavior on under-resolved meshes?



Formal asymptotic analysis:

- (F ε) The equation in its micro-macro formulation:

∂t ρ + ∂x〈vg〉= 0 (28a)

∂tg +
1
ε
{I − Π}(v∂xg) +

1
ε2

v∂x ρ = −
1
ε2

g (28b)

- (F ε
δ ) DG-IMEX1 scheme:

ρn+1
h
− ρn

h

∆t
+D

(g)
h
〈vgnh 〉= 0 (29a)

gn+1
h
− gn

h

∆t
+
1
ε
{I − Π}D (up)

h,v
gnh +

1
ε2

vD
(ρ)
h

ρn+1h = −
1
ε2

gn+1h (29b)



With fixed ∆t and h, κ = 〈v2〉, when ε → 0,

- (F 0) The limiting equations: with q = 〈vg〉,

∂t ρ + ∂xq = 0 (30a)
−κ∂x ρ = q (30b)

- (F 0
δ ) DG-IMEX1 scheme in the limit: with qh = 〈vgh〉,

ρn+1
h
− ρn

h

∆t
+D

(g)
h

qnh = 0

−κD
(ρ)
h

ρn+1h = qn+1h

Remarks:
(1) In the limit of ε → 0, with the well-prepared initial data (i.e. 〈vg〉 = −κ∂x ρ at
t = 0), the proposed scheme becomes a consistent and stable discretization for the
limiting heat equation on fixed mesh.
(2) The limiting scheme combines a local DG method with the alternating flux in
space and (essentially) the forward Euler method in time. It is stable.



Theorem (AP property)
(1) Under the assumptions on the initial data regarding the weak
convergence, well-preparedness, boundedness

(A1) ρε ⇀ ρ0, 〈wgε〉⇀ 〈wg0〉 in L2(Ωx ) with ∀w ∈ L2(Ωv ), as ε → 0,

(A2) 〈v(gε + v∂x ρε )〉⇀ 0 in L2(Ω), as ε → 0,
(A3) sup

ε
( | |ρε | |) |t=0 < ∞, sup

ε
(| | |gε | | |) |t=0 < ∞,

(2) and under the condition ∆t < ∆tstab ,

I there exist ρn
∆t,h

, qn
∆t,h
∈ Uh , such that

lim
ε→0

ρnε,∆t,h = ρ
n
∆t,h, lim

ε→0
qn
ε,∆t,h = qn

∆t,h ∀n ≥ 0,

I and the limits satisfy the limiting scheme on the previous slide, with the
initial data

ρ0
∆t,h = πh ρ0, q0

∆t,h = −κπh∂x ρ0.

Here πh is the L2 projection onto Uh .

� Proof: uniform boundedness + compactness argument
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High Order Accuracy in Time
An s-stage implicit-explicit (IMEX) Runge-Kutta (RK) scheme:

c̃ Ã

b̃T
c A

bT
(31)

I Ã = (ãi j ),A = (ai j ) ∈ Rs×s , c̃ = (c̃j ), c = (cj ) ∈ Rs ,
b̃ = (b̃j ), b = (bj ) ∈ Rs ; c̃i =

∑i−1
j=1 ãi j , ci =

∑i
j=1 ai j

I Ã: lower triangular with zero diagonal entries; A: lower
triangular;

Globally stiffly accurate (Boscarino-Pareschi-Russo 2013)

cs = c̃s = 1, and as j = bj, ãs j = b̃j,∀ j = 1, · · · , s. (32)



In time, we apply high order globally stiffly accurate IMEX-RK
methods of type ARS.

I Globally stiffly accurate: to ensure the numerical solutions from
both inner and full RK stages to stay close to the local
equilibrium g + v∂x ρ = 0 for the well-prepared initial data

1st order: IMEX1 /ARS(1, 1, 1)

0 0 0
1 1 0

1 0

0 0 0
1 0 1
1 0 1

3rd order: ARS(4, 4, 3)

0 0 0 0 0 0
1/2 1/2 0 0 0 0
2/3 11/18 1/18 0 0 0
1/2 5/6 −5/6 1/2 0 0
1 1/4 7/4 3/4 −7/4 0

1/4 7/4 3/4 −7/4 0

0 0 0 0 0 0
1/2 0 1/2 0 0 0
2/3 0 1/6 1/2 0 0
1/2 0 −1/2 1/2 1/2 0
1 0 3/2 −3/2 1/2 1/2

0 3/2 −3/2 1/2 1/2



I Methods: Pk−1 DG-IMEXk, also denoted as DGk-IMEXk
I Formal asymptotic analysis is carried out. Under the assumption
that initial data is well-prepared, the limiting scheme is the
explicit part of the IMEX scheme in time, combined with an
local DG method in space.



Numerical stability based on Fourier analysis: consider the telegraph
equation with Ωv = {−1, 1}, the mesh is uniform with periodic boundary
conditions.
I Let the numerical solution

ρnh (x) =
k−1∑
l=0

ρnmlφ
l (

x − xm
hm/2

) = ρnm · Φ(
x − xm
hm/2

),∀x ∈ Im

Here φl being the l-th Legendre polynomial on [−1, 1].

I Take the ansatz ρn
m = ρ̂n exp(Iµxm ), with µ as the wavenumber and

I2 = −1.

I Similar steps are taken to gn
h
, and one further reduces the variables

based on 〈gn
h
〉 = 0.

I With ξ = µh ∈ [−π, π],(
ρ̂n+1

ĝn+1

)
= G(ε, h,∆t; ξ)

(
ρ̂n

ĝn

)
(33)

G(ε, h,∆t; ξ): amplification matrix



Theorem (invariant property of G)

G(ε, h,∆t; ξ) is similar to Ĝ( εh ,
ε2

∆t ; ξ), and equivalently, it is
similar to G̃( εh ,

∆t
εh ; ξ), given ε2

∆t =
ε/h
∆t/(εh) .

Principle for Numerical Stability: For any given ε, h,∆t, let the
eigenvalues of G be λi (ξ), i = 1, . . . , 2k. Our scheme is “stable”, if for all
ξ ∈ [−π, π], it satisfies either

(∗) max
i=1, ...,2k

{|λi (ξ) |} < 1, or (34)

(∗) max
i=1, ...,2k

{|λi (ξ) |} = 1 and G is diagonalizable. (35)

Implication: numerical stability will depend on ε, h,∆t only in terms of ε/h
and ∆tεh .
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Figure: Stability regions of the DG1-IMEX1 method. White: stable.

I σ = log10( εh ), η = log10( ∆tεh ), and scheme is stable when η ≤ F (σ)
for some function F .

I Kinetic / transport regime: when ε = O(1) (with relatively large σ),
the scheme is stable if F (σ) ≈ O(1), that is

η < O(1) ⇒ ∆t = O(εh)

I Diffusive regime: when ε/h � 1 (with relatively small σ), the scheme is stable
if F (σ) ≈ −σ + C, that is,

log10(
∆t
εh

) < − log10(
ε

h
) + C ⇒ ∆t = O(h2).

I Recall the analytical form (by energy stability analysis): ∆t ≤ 1
4 h2 + 1

2εh
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(b) DG3-IMEX3

Figure: Stability regions of the DGk-IMEXk methods, k = 2, 3. White: stable.

Fourier analysis shows similar stability behavior of the second and third
order methods, DGk-IMEXk (k = 2, 3)

∆t =
{

O(εh) for ε = O(1), (hyperbolic type)
O(h2) for ε/h � 1, (parabolic type) (36)



Numerical Examples

Example 1 (one-group transport in slab geometry)
I Domain: Ωx = [−π, π], Ωv = [−1, 1]
I Initial condition:




ρ(x, 0) = 2 + sin(x)
g(x, v, 0) = −v cos(x)

I Periodic boundary condition
I Final time: T = 0.1
I v-direction: 16 Gaussian points
I x-direction: uniform mesh with N elements



L2 errors and orders of ρ and q = 〈vg〉 by P2 DG - IMEX3 method

N error in ρ order error in q order

ε = 0.5

10 6.21E-04 – 3.79E-04 –
20 9.14E-05 2.76 3.80E-05 3.32
40 1.30E-05 2.82 4.49E-06 3.08
80 1.64E-06 2.98 5.48E-07 3.03

ε = 10−2
10 7.79E-04 – 2.82E-04 –
20 1.02E-04 2.94 3.39E-05 3.06
40 1.27E-05 3.00 4.24E-06 3.00
80 1.59E-06 3.00 5.30E-07 3.00

ε = 10−6
10 7.81E-04 – 2.80E-04 –
20 1.02E-04 2.94 3.39E-05 3.04
40 1.27E-05 3.00 4.24E-06 3.00
80 1.59E-06 3.00 5.30E-07 3.00



Example 2 (one-group transport in slab geometry): two-material
problem at stationary state

∂t f + v · ∇x f = σS (x)(〈 f 〉 − f ) − σA(x) f (37)

I Domain: Ωx = [0, 11], Ωv = [−1, 1]

I Initial condition: f (x, v, t = 0) = 0

I Boundary condition:
f (x = 0, v, t) = 5, v ≥ 0, f (x = 11, v, t) = 0, v ≤ 0

I Parameters:
σS (x) = 0, σA(x) = 1, for x ∈ [0, 1]
σS (x) = 100, σA(x) = 0, for x ∈ [1, 11]
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Figure: The computed ρ by Pk−1 DG-IMEXk, k = 1, 2, 3 at t = 20000.
∆x = h = 0.025 in [0, 1] and ∆x = h = 0.5 in [1, 11].



Example 3 (telegraph equation): Riemann problem

I Domain: Ωx = [−1, 1], Ωv = {−1, 1}
I Initial condition: ρ = 〈 f 〉, J = 1

ε 〈v f 〉

(ρ, J) =



(2.0, 1.0), −1 < x < 0
(1.0, 0.0), 0 < x < 1

I P2 DG-IMEX3, with ∆x = h = 0.02
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Figure: Left: ε = 0.7 at t = 0.25; Right: ε = 10−6 at t = 0.04. Top: ρ;
Bottom: J. No limiter.



What if there is initial layer as ε � 1?
I Recall f = ρ + εg, and g can be of O( 1ε ) at t = 0. Away from the

O(ε2)-width initial layer, both ρ and g should be of O(1).
I The proposed methods may suffer from order reduction or poor

accuracy.

Implicit-explicit strategy (original)

ρn+1 − ρn

∆t
+ ∂x〈vg

n〉 = 0 (38)

gn+1 − gn

∆t
+
1
ε
{I − Π}∂x (vgn ) +

1
ε2

v∂x ρ
n+1 = −

1
ε2

gn+1

Modified implicit-explicit strategy (used in the first step)

ρn+1 − ρn

∆t
+ ∂x〈vg

n+1〉 = 0 (39)

gn+1 − gn

∆t
+
1
ε
{I − Π}∂x (vgn ) +

1
ε2

v∂x ρ
n = −

1
ε2

gn+1
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O(ε2)-width initial layer, both ρ and g should be of O(1).
I The proposed methods may suffer from order reduction or poor

accuracy.

Implicit-explicit strategy (original)

ρn+1 − ρn

∆t
+ ∂x〈vg

n〉 = 0 (38)

gn+1 − gn

∆t
+
1
ε
{I − Π}∂x (vgn ) +

1
ε2

v∂x ρ
n+1 = −

1
ε2

gn+1

Modified implicit-explicit strategy (used in the first step)

ρn+1 − ρn

∆t
+ ∂x〈vg

n+1〉 = 0 (39)

gn+1 − gn

∆t
+
1
ε
{I − Π}∂x (vgn ) +

1
ε2

v∂x ρ
n = −

1
ε2

gn+1



An example
I Setting: Ωx = [0, 2π], Ωv = [−1, 1] and σ(x) = 1; periodic boundary

condition and T = 1; ε = 10−6; N = 320

I Initial data: f (x, v, 0) = (1 + (v − 0.5)2)(1 + 0.05 cos x)
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L1 errors and orders in ρ and j = 〈vg〉 at T = 1 by Pk−1 DG-IMEXk method.
ε = 10−6 with an accuracy recovering fixing strategy.

N error of ρ order error of j order

k = 1

10 2.93E-03 - 5.71E-04 -
20 1.70E-03 0.78 2.69E-04 1.08
40 8.85E-04 0.95 1.34E-04 1.01
80 4.46E-04 0.99 6.69E-05 1.00
160 2.23E-04 1.00 3.34E-05 1.00

k = 2

10 1.04E-03 - 8.20E-05 -
20 2.68E-04 1.97 2.01E-05 2.03
40 6.68E-05 2.00 5.00E-06 2.01
80 1.67E-05 2.00 1.24E-06 2.00
160 4.71E-06 2.00 3.12E-07 2.00

k = 3

10 7.93E-05 - 6.01E-06 -
20 1.01E-05 2.96 7.60E-07 2.98
40 1.29E-06 2.98 9.66E-08 2.98
80 1.62E-07 2.99 1.21E-08 2.99
160 2.03E-08 3.00 1.52E-09 2.99



To overcome the parabolic time step condition ∆t = O(h2)
when ε � 1

One more reformulation: by adding/subtracting a weighted diffusive term8

∂t ρ + ∂x 〈vg〉 + ω〈v
2〉∂xx ρ = ω〈v

2〉∂xx ρ (40a)

∂tg +
1
ε
{I − Π}∂x (vg) +

1
ε2

v∂x ρ = −
1
ε2

g (40b)

implicit-explicit strategy

ρn+1 − ρn

∆t
+ ∂x 〈v(gn + ωv∂x ρn )〉 = ω〈v2〉∂xx ρn+1 (41)

gn+1 − gn

∆t
+

1
ε
{I − Π}∂x (vgn ) +

1
ε2

v∂x ρ
n+1 = −

1
ε2

gn+1 (42)

Formally as ε → 0, we obtain an IMPLICIT scheme,

ρn+1 − ρn

∆t
= 〈v2〉∂xx ρ

n+1, gn+1 = −v∂x ρ
n+1 (43)

8Boscarino-Pareschi-Russo 2013, Weight function ω: non-negative, independent
of x, satisfying

ω → 1 as ε → 0



To overcome the parabolic time step condition ∆t = O(h2)
when ε � 1

One more reformulation: by adding/subtracting a weighted diffusive term8

∂t ρ + ∂x 〈vg〉 + ω〈v
2〉∂xx ρ = ω〈v

2〉∂xx ρ (40a)

∂tg +
1
ε
{I − Π}∂x (vg) +

1
ε2

v∂x ρ = −
1
ε2

g (40b)

implicit-explicit strategy

ρn+1 − ρn

∆t
+ ∂x 〈v(gn + ωv∂x ρn )〉 = ω〈v2〉∂xx ρn+1 (41)

gn+1 − gn

∆t
+

1
ε
{I − Π}∂x (vgn ) +

1
ε2

v∂x ρ
n+1 = −

1
ε2

gn+1 (42)

Formally as ε → 0, we obtain an IMPLICIT scheme,

ρn+1 − ρn

∆t
= 〈v2〉∂xx ρ

n+1, gn+1 = −v∂x ρ
n+1 (43)

8Boscarino-Pareschi-Russo 2013, Weight function ω: non-negative, independent
of x, satisfying

ω → 1 as ε → 0



I More about discretizations
I Local DG methods in space
I High order globally stiffly accurate IMEX-RK methods in time
I Weight function: ω = ω(ε/h,∆t/(εh))

I Energy stability for IMEX1-LDG methods
I Fourier type stability analysis: with ω = exp(−ε/h), the time
step condition for the stability of the IMEXp-LDGp scheme
(p = 1, 2, 3) is

∆t ≤
{

O(εh) for ε = O(1), (hyperbolic type)
∞ for εh � 1, (unconditionally stable)



(a) IMEX1-LDG1 (b) IMEX2-LDG2

(c) IMEX3-LDG3

Figure: Stability regions of the IMEXk-LDGk methods with the weight
function ω = exp(−ε/h). σ = log10( εh ) and η = log10( ∆tεh ). White: stable



How about the computational cost?

I a discrete Poisson to solve for each inner stage of one RK step



Another idea: to overcome the parabolic time step condition
when ε � 1

implicit-explicit strategy

ρn+1 − ρn

∆t
+ ∂x〈vg

n+1〉 = 0 (44)

gn+1 − gn

∆t
+
1
ε
{I − Π}∂x (vgn ) +

1
ε2

v∂x ρ
n+1 = −

1
ε2

gn+1

I Different implicit-explicit strategy
I Weight-free
I Schur complement at the algebraic level: a discrete Poisson to
solve for each inner stage of one RK step



Concluding Remarks

I A linear kinetic transport equation model is considered under the
diffusive scaling.

I High order asymptotic preserving discontinuous Galerkin
methods are designed based on reformulation(s).

- Uniform numerical stability
- The methods can be extended to more general model: σs (x),
σa (x).

- Reasonable computational complexity
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