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Abstract

A space–time discontinuous Galerkin finite element method for the compressible Navier–Stokes equations is presented.
We explain the space–time setting, derive the weak formulation and discuss our choices for the numerical fluxes. The resulting
numerical method allows local grid adaptation as well as moving and deforming boundaries, which we illustrate by com-
puting the flow around a 3D delta wing on an adapted mesh and by simulating the dynamic stall phenomenon of a 2D
airfoil in rapid pitch-up maneuver.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Many applications in fluid dynamics require the solution of the compressible Navier–Stokes equations on a
domain with time dependent boundaries. Examples are aero-elastic problems such as helicopter rotors in for-
ward flight, flaps and slats on wings and piston engines. The accurate solution of these problems frequently
requires time-dependent moving and deforming meshes and it is non-trivial to maintain a conservative and
accurate scheme on this type of meshes [16,21]. Finite volume ALE methods, for example, do not automati-
cally satisfy the geometric conservation law on deformed and adapted meshes, which was proven to be essen-
tial [21] for the accuracy of the solution. These issues have been the main motivation in [26,29] to develop a
space–time discontinuous Galerkin (DG) finite element method for inviscid compressible flows. This algo-
rithm combines a fully conservative arbitrary Lagrangian Eulerian (ALE) approach to deal with deforming
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meshes with the well known benefits of the compact stencil of a DG method, such as optimal flexibility for
local mesh refinement, adjustment of the polynomial order in each element (hp-adaptation) and excellent
performance on parallel computers. The method has been demonstrated for a variety of aerodynamic appli-
cations, including rotorcraft [8,28] and deforming wings [30].

The space–time DG method discussed in [26,29] has been limited so far to inviscid compressible flows. In
this article we aim at extending the space–time DG formulation to the compressible Navier–Stokes equations,
which significantly extends its range of applications. The key feature of the space–time DG method discussed
in this article is that no distinction is made between space and time variables and the discretization is directly
performed in four dimensional space. This provides optimal flexibility to deal with time dependent boundaries
and deforming elements and naturally results in a conservative discretization, even on deforming, locally
refined meshes with hanging nodes. The space–time algorithm results in an implicit time-integration method
which is unconditionally stable and preserves accuracy also on non-smooth meshes. A complete hp-error and
stability analysis of the space–time DG discretization for the linear advection–diffusion equation is given in
[24].

Discontinuous Galerkin methods have recently received significant attention and are applied to a wide
range of hyperbolic and (incompletely) parabolic problems. For a survey, see [1,10–12,14]. An important
step towards a DG discretization for the compressible Navier–Stokes equations was made by the pioneer-
ing work of Bassi and Rebay [3] and in a different formulation by Baumann and Oden [7]. These algo-
rithms provide discretization techniques for the diffusion operator and extend the DG formulation for
hyperbolic equations developed by Cockburn and Shu (see [14] for a detailed survey) to incompletely par-
abolic equations. Improvements to the original formulation [3], which showed a weak instability, have
been provided in [5] and analyzed in [1,9]. Applications to the solution of the compressible Reynolds aver-
aged Navier–Stokes equations are discussed in [2,4,15,17]. A slightly different approach to deal with the
diffusion operator has been proposed by Cockburn and Shu [13] with the local discontinuous Galerkin
method. Although the various DG formulations for the diffusion operator are quite different, there are
no major differences in terms of accuracy, computational cost and complexity between the methods which
proved to be consistent, adjoint consistent and of optimal order in the analysis given in [1]. In this article
we follow the approach of Brezzi [9] for the diffusion operator and include this technique in the space–
time discretization for compressible flows which we presented in [26,29] and to which we refer for details
on the inviscid part of the algorithm.

The outline of this article is as follows. In Section 2, we first summarize the equations of gas dynamics.
Next, in Section 3, we discuss the space–time discontinuous Galerkin discretization of the compressible
Navier–Stokes equations. We start with the definition of the geometry of the space–time domain and dis-
cuss the necessary functional spaces and operators. This setting is used to define the weak formulation and a
crucial part is the discussion of the space–time numerical fluxes. The proper definition of these fluxes
allows the transformation of the space–time formulation into an arbitrary Lagrangian Eulerian
formulation which combines well with upwind schemes based on approximate Riemann solvers. In Section
4, we derive the non-linear algebraic equations for the expansion coefficients of the solution in each element.
In Section 5, we demonstrate the method with several test cases and concluding remarks are drawn in
Section 6.
2. The compressible Navier–Stokes equations

The equations of motion considered in this article are the Navier–Stokes equations describing viscous com-
pressible flows, which form a system of five coupled equations expressing conservation of mass, momentum
and energy. Using the summation convention on repeated indices and the comma notation to denote partial
differentiation the compressible Navier–Stokes equations can be written as
U ;t þ F e
kðUÞ;k � F v

kðU ;rUÞ;k ¼ 0 ð1Þ
with the vector of conservative variables U 2 R5, the inviscid flux F e 2 R5�3 and the viscous flux F v 2 R5�3

given by
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U ¼
q

quj

qE

264
375; F e

k ¼
quk

qujuk þ pdjk

ukðqE þ pÞ

264
375; F v

k ¼
0

sjk

skjuj � qk

264
375; ð2Þ
with j, k = 1,2,3. The conservative variables are the density q, the momentum density vector q~u and the total
energy density qE, with~u the velocity vector and E the total energy. The pressure is denoted by p and the sym-
bol d represents the Kronecker delta function. The total stress tensor s is defined as
sjk ¼ kui;idjk þ lðuj;k þ uk;jÞ

with i = 1,2,3 and the dynamic viscosity coefficient l given by Sutherland’s law
l
l1
¼ T1 þ T S

T þ T S

T
T1

� �3=2

;

where T is the temperature, TS a constant and (Æ)1 denotes free-stream values. The second viscosity coefficient
k is related to l following the Stokes hypothesis: 3k + 2l = 0. The heat flux vector ~q is defined as
qk ¼ �jT ;k
with j the thermal conductivity coefficient. For a calorically perfect gas, the pressure p and internal energy e

are given by the following equations of state:
p ¼ qRT ; e ¼ cvT ;
where R = cp � cv is the specific gas constant and cp and cv the specific heats at constant pressure and constant
volume, respectively. Since the total energy is the sum of the internal and kinetic energy
E ¼ eþ 1

2
uiui
the pressure and temperature can be expressed in terms of the conservative variables as
p ¼ ðc� 1Þ qE � 1

2
quiui

� �
; T ¼ 1

cv
E � 1

2
uiui

� �
;

where c = cp/cv is the ratio of specific heats. We are mainly interested in the flow around aircraft and therefore
use uniform flow as initial condition and far-field boundary condition
q ¼ q1; ~u ¼~u1; p ¼ p1.
At the solid surface we apply the isothermal no-slip boundary condition
~u ¼ 0; T ¼ T1.
We conclude this section by noticing that the viscous flux Fv is homogeneous with respect to the gradient of the
conservative variables $U
F v
ikðU ;rUÞ ¼ AikrsðUÞUr;s
with the homogeneity tensor A 2 R5�3�5�3 defined as
AikrsðUÞ :¼ oF v
ikðU ;rUÞ
oðUr;sÞ
with i, r = 1, . . . , 5 and k, s = 1,2,3, see Appendix A. This property plays a crucial role in the derivation of the
weak formulation of the compressible Navier–Stokes equations.

3. Space–time discontinuous Galerkin discretization

This section covers the space–time discontinuous Galerkin discretization of the compressible Navier–Stokes
equations. We first define the geometry of the space–time domain, then the necessary functional spaces and
operators and finish with the derivation of the primal formulation, while discussing our choices for the numer-
ical fluxes.
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3.1. Geometry of the space–time domain

The space–time discontinuous Galerkin finite element method does not distinguish between space and time
variables; instead the equations are considered in an open domain E � R4, where a point with position
�x ¼ ðx1; x2; x3Þ at time t = x0 has Cartesian coordinates ðx0;�xÞ. At time t, the flow domain X(t) is defined as
XðtÞ :¼ f�x 2 R3 : ðt;�xÞ 2 Eg. Let t0 and T be the initial and final time of the evolution of the flow domain,
then the space–time domain boundary oE consists of the hypersurfaces Xðt0Þ :¼ fx 2 E : x0 ¼ t0g, XðT Þ :¼
fx 2 E : x0 ¼ T g, and Q :¼ fx 2 oE : t0 < x0 < Tg.

First, consider the partitioning of the time interval [t0,T] by an ordered series of time levels t0 < t1 < � � � < T.
The space–time domain E is divided into Nt space–time slabs En ¼ E \ In, with In = (tn, tn+1) the nth time inter-
val. Each space–time slab En is bounded by X(tn), X(tn+1) and Qn ¼ oEn=ðXðtnÞ [ Xðtnþ1ÞÞ.

Second, consider an approximation Xh(tn) of X(tn) and divide Xh(tn) into Nn non-overlapping hexahedral
spatial elements Kj(tn), where Xh(t)! X(t) as h! 0, with h the radius of the smallest sphere completely con-
taining each element Kj(tn). Similarly, Xh(tn+1) approximates X(tn+1) (see Fig. 1). Each element Kn is related to
the master element bK ¼ ð�1; 1Þ3 through the mapping F n

K

Fig. 1.
time.

Fig. 2
F n
K : bK ! Kn : �n 7!�x ¼

X8

i¼1

xiðKnÞvið�nÞ
with xi the spatial coordinates of the vertices of the hexahedron Kn and vi the usual tri-linear finite element
shape functions for hexahedra (see Fig. 2). The space–time elements Kn

j of En are constructed by connecting
Kj(tn) with Kj(tn+1) using linear interpolation in time, which results in the mapping GK from the master
element cK ¼ ð�1; 1Þ4 to the space–time element Kn
Gn
K : cK !Kn : n 7!ðt;�xÞ ¼ 1

2
ðtnþ1 þ tnÞ þ

1

2
ðtnþ1 � tnÞn0;

1

2
ð1� n0ÞF n

Kð�nÞ þ
1

2
ð1þ n0ÞF nþ1

K ð�nÞ
� �

.

The tessellation Tn
h of the space–time slab En

h consists of all space–time elements Kn
j , thus the tessellation Th

of the discrete flow domain Eh is simply Th ¼ [Nt�1
n¼0 Tn

h.
The spatial element Kj(tn) moves and deforms into Kj(tn+1). The space–time element Kn
j is constructed by linear interpolation in

. Mapping GK between the master element cK and the space–time element Kn
j with boundaries oKn

j ¼ Kj tþn
� �
[ Kj t�nþ1

� �
[ Qn

j .
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Finally, consider the element boundary oK which is the union of open faces of Kn
j and consists of three

parts: Kjðtþn Þ ¼ lim�#0Kjðtn þ �Þ, Kjðt�nþ1Þ ¼ lim�#0Kjðtnþ1 � �Þ and Qn
j ¼ oKn

j=ðKjðtþn Þ [ Kjðt�nþ1ÞÞ. The space–
time normal vector at an element boundary point moving with velocity~v is given by
n ¼
ð1; 0; 0; 0Þ at Kðt�nþ1Þ;
ð�1; 0; 0; 0Þ at Kðtþn Þ;
ð�vk�nk; �nÞ at Qn.

8><>: ð3Þ
It is often convenient to consider the faces separately instead of the whole element boundary. Therefore, in
addition to the previously defined faces Kjðtþn Þ and Kjðt�nþ1Þ, we also define interior and boundary faces as fol-
lows. A face S is an interior face if it is shared by two neighboring elements Kn

i and Kn
j , such that

S ¼ Qn
i \ Qn

j , and a boundary face if S ¼ oEn \ Qn
j . The set of all interior faces in time slab In is denoted

by Sn
I , the set of all boundary faces by Sn

B, and the total set of faces by Sn
I ;B ¼Sn

I [Sn
B.

3.2. Functional spaces and operators

Each element K of the tessellation Th is an image of the master element cK: K ¼ GKðcKÞ, wherecK ¼ ð�1; 1Þ4 is the open unit hypercube in R4. The finite element space associated with the tessellation Th

is given by
W h ¼ fW 2 ðL2ðEhÞÞ5 : W jK � GK 2 ðP kðcKÞÞ5 8K 2Thg;

where L2ðEhÞ is the space of square integrable functions on Eh and P kðcKÞ denotes the space of polynomials of

degree at most k in element cK. We will also use the following space:
V h ¼ fV 2 ðL2ðEhÞÞ5�3 : V jK � GK 2 ðP kðcKÞÞ5�3 8K 2Thg.

Note that $hWh � Vh, where the broken gradient $h of Wh is defined as ðrhW hÞjK ¼ rðW hjKÞ. This relation
between the functional spaces is essential for the discretization.

The trace of a function f 2Wh at the element boundary oKL is defined as
f L ¼ lim
�#0

f ðx� �nLÞ;
with nL the unit outward space–time normal at oKL. We will also use the notation �nL when only the space
components of the outward normal vector are considered. Because of the discontinuous function approxima-
tion, a function f in Wh and Vh can have a double-valued trace at the element boundaries oK. The traces of
the function f at an internal face S ¼K

L \K
R

are denoted by fL and fR, respectively. The jump of f at an
internal face S 2 Sn

I in the space direction k of a Cartesian coordinate system is defined as
sf tk ¼ f L�nL
k þ f R�nR

k . ð4Þ

Furthermore, we define the average of f at S 2Sn

I as
f ¼ 1

2
ðf L þ f RÞ. ð5Þ
The jumps and averages are not needed at faces other than internal faces. Note that the jump operator satisfies
the following product rule at S 2Sn

I for f 2 Vh and g 2Wh
sgifiktk ¼ gi sfiktk þ sgitk fik , ð6Þ

which can be verified by straightforward substitution of (4) and (5) into (6). We will also use the following
relation for the element boundary integrals which occur in the weak formulation:
X

K2Tn
h

Z
Q

gL
i f L

ik �nL
k dQ ¼

X
S2Sn

I

Z
S

sgifiktk dSþ
X
S2Sn

B

Z
S

gL
i f L

ik �nL
k dS. ð7Þ
To verify this relation, note that in the sum over all element boundary integrals, the internal faces are counted
twice. Therefore, when summing over the internal faces, the contributions from the left and the right must be
counted, which is done by taking the jump.
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3.3. Flux formulation in arbitrary Lagrangian Eulerian context

Now that the space–time context is well defined, we proceed by expressing the compressible Navier–Stokes
equations in the domain E � R4 as
Ui;0 þ F e
ik;k � AikrsU r;sð Þ;k ¼ 0 on E;

U ¼ U 0 on Xðt0Þ;
U ¼ BðU ;UbÞ on Q;

8><>:

for i, r = 1, . . . , 5 and k, s = 1, . . . , 3. The initial flow field is denoted by U 0 : Xðt0Þ ! R5, with U0 derived from
the initial condition described in Section 2. The boundary operator is denoted by B : R5�5 ! R5 and is a func-
tion of the internal data U and the boundary data Ub derived from the boundary conditions in Section 2. At
the far-field boundary, suitable in- and out-flow conditions can be derived using local characteristics. The
main idea is that characteristic variables of incoming characteristics are set equal to their free-stream values,
while the other variables are extrapolated from within the flow domain, see for example [19]. At solid surfaces,
the isothermal no-slip boundary condition is applied.

Following the framework described in [1], we write the compressible Navier–Stokes equations as a first-
order system by introducing the auxiliary variable H(U)
U i;0 þ F e
ik;k �Hik;k ¼ 0; ð8aÞ

Hik � AikrsU r;s ¼ 0. ð8bÞ
The flux formulation of (8a) is obtained after multiplying by a test function W 2Wh, integrating by parts in
space–time over an element K 2Th and summing over all elements of the tessellation
�
X

K2Th

Z
K

W i;0U i þ W i;kðF e
ik �HikÞ

� �
dKþ

X
K2Th

Z
oK

W L
i
bU inL

0 þ ðbF e

ik � bHikÞ�nL
k

� �
dðoKÞ ¼ 0; ð9Þ
where nL is the outward normal vector at oK. At the element boundaries, U can be double-valued due to the
discontinuous function approximation in each element. Therefore, in order to uniquely define the element
boundary integrals and provide a coupling between neighboring elements, we introduce numerical fluxesdð � Þ which depend on both the left and right trace of U at the element boundary. The numerical fluxes will
be defined later on.

The auxiliary variable H is only needed as an intermediate step in the derivation of the discretization and
will be eliminated as we go from the flux formulation to the primal formulation, which is expressed solely in
terms of the primary unknowns U.

But first we turn to the arbitrary Lagrangian Eulerian (ALE) context in order to accommodate moving and
deforming meshes. The flux formulation in ALE context is obtained following the approach described in Van
der Vegt and Van der Ven [26]. Using the definition (3) of the space–time normal vector, the boundary integral
in (9) becomes
X

K2Th

Z
oK

W L
i
bU inL

0 þ ðbF e

ik � bHikÞ�nL
k

� �
dðoKÞ

¼
X

K2Th

Z
Kðt�

nþ1
Þ
W L

i
bU i dK �

Z
Kðtþn Þ

W L
i
bU i dK

 !
þ
X

K2Th

Z
Q

W L
i ðbF e

ik � bU ivk � bHikÞ�nL
k dQ.
The numerical flux bU at the faces Kðtþn Þ and Kðt�nþ1Þ is defined as an upwind flux to ensure causality in time
bU ¼ UL at Kðt�nþ1Þ;
UR at Kðtþn Þ.

(

With this numerical flux, the flux formulation in each space–time slab only depends on the previous space–
time slab, therefore the summation over the space–time slabs can be dropped and the ALE flux formulation
of (8a) becomes
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�
X

K2Tn
h

Z
K

W i;0Ui þ W i;k F e
ik �Hik

� �� �
dKþ

X
K2Tn

h

Z
Kðt�

nþ1
Þ
W L

i UL
i dK �

Z
Kðtþn Þ

W L
i U R

i dK

 !

þ
X

K2Tn
h

Z
Q

W L
i
bF e

ik � vk
bU i � bHik

� �
�nL

k dQ ¼ 0. ð10Þ
3.4. The auxiliary variable

The mixed formulation (8) has the disadvantage that both U and H have to be stored and solved during a
computation. Fortunately, it is possible to eliminate the auxiliary variable using a weak expression for H in
terms of the primary unknowns U, so only U has to be stored. To derive this expression, we multiply (8b)
by a test function V 2 Vh, integrate by parts in space (twice) over an element K 2Th and sum over all
elements of the tessellation
X

K2Tn
h

Z
K

V ikHik dK ¼
X

K2Tn
h

Z
K

V ikAikrsU r;s dKþ
X

K2Tn
h

Z
Q

V L
ikAL

ikrs
bU r � UL

r

� �
�nL

s dQ; ð11Þ
where we introduced the numerical flux bU after the first integration by parts. In this case, the numerical flux
does not have a time contribution because we only integrated in space. Instead of using integrals over the ele-
ment boundary Q, it is more convenient to use integrals over the element faces S. We therefore apply relation
(7) to the element boundary integral of Eq. (11):
X

K2Tn
h

Z
Q

V L
ikAL

ikrs
bU r � U L

r

� �
�nL

s dQ ¼
X
S2Sn

I

Z
S

sV ikAikrsð bU r � UrÞts dSþ
X
S2Sn

B

Z
S

V L
ikAL

ikrs
bU r � UL

r

� �
�nL

s dS.
Now that we explicitly distinguish between internal and boundary faces, we can follow the approach by Bassi
and Rebay [3–5] and define the numerical flux as
bU ¼ U at Sn
I ;

Ub at Sn
B.

�

With this choice for the numerical flux at the internal faces and using relation (6) we obtain:
sV ikAikrsð bU r � UrÞts ¼ � V ikAikrs sUrts, which leads to the following expression for the auxiliary variable:
X

K2Tn
h

Z
K

V ikHik dK ¼
X

K2Tn
h

Z
K

V ikAikrsU r;s dK�
X
S2Sn

I

Z
S

V ikAikrs sU rts dS

�
X
S2Sn

B

Z
S

V L
ikAL

ikrs UL
r � U b

r

� �
�nL

s dS.
In order to obtain an explicit expression for the auxiliary variable, we need to define a global lifting oper-
ator. The global lifting operator R 2 R5�3 is defined in a weak sense as: Find an R 2 V h, such that for all

V 2 Vh
X
K2Tn

h

Z
K

V ikRik dK ¼
X
S2Sn

I

Z
S

V ikAikrs sU rts dSþ
X
S2Sn

B

Z
S

V L
ikAL

ikrs UL
r � U b

r

� �
�nL

s dS. ð12Þ
More details on the lifting operator are given in Section 4. According to this definition, the face integrals in
the expression for H can now be written as element integrals, leading to the weak expression of the auxiliary
variable:
X

K2Tn
h

Z
K

V ikHik dK ¼
X

K2Tn
h

Z
K

V ikðAikrsU r;s �RikÞdK 8V 2 V h. ð13Þ
In other words, Hik ¼ AikrsU r;s �Rik almost everywhere in En
h. The lifting operator R effectively penalizes the

jumps at the faces. For smooth solutions R ¼ 0.
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3.5. Primal formulation

The primal formulation can be obtained using the expression (13) for the auxiliary variable H. Since
$hWh � Vh, the special case Vik = Wi,k can be considered in (13), and the auxiliary variable H can be replaced
in the element integral of (10)
X

K2Tn
h

Z
K

W i;kHik dK ¼
X

K2Tn
h

Z
K

W i;kðAikrsUr;s �RikÞdK.
Now, only the numerical fluxes bF e
and bH remain to be chosen. We therefore consider the element boundary

integrals of (10) and use relation (7) to get the element face integrals
X
K2Tn

h

Z
Q

W L
i ðbF e

ik � vk
bU i � bHikÞ�nL

k dQ ¼
X
S2Sn

I

Z
S

sW iðbF e
ik � vk

bU i � bHikÞtk dS

þ
X
S2Sn

B

Z
S

W L
i ðbF e

ik � vk
bU i � bHikÞ�nL

k dS.
The inviscid numerical flux bF e
is based on the HLLC approximate Riemann solver [6,25,26], because of its

computational efficiency, accuracy and straightforward implementation. The HLLC flux is consistent and
conservative and is obtained by interpreting the discontinuity between UL and UR at a face S as a local Rie-
mann problem, which is solved approximately while taking into account the grid velocity~v. Following [26] and
using the fact that nR = �nL, we have
sW iðbF e

ik � vk
bU iÞtk ¼ W L

i � W R
i

� �
H i
with H ¼ HðUL;U R; v; �nLÞ the HLLC flux. At a face moving with velocity v, the HLLC flux is given by
H i ¼
1

2
F e

ik

� �L
�nL

k � F e
ik

� �R
�nR

k

� �
þ 1

2
ðjSM � vj � jSL � vjÞU L

i� � ðv� jSL � vjÞUL
i

� �
þ 1

2
ðjSR � vj � jSM � vjÞUR

i� � ðvþ jSR � vjÞU R
i

� �
;

with (Fe)L,R = Fe(UL,R). The intermediate states U L
� and U R

� are given by
UL;R
� ¼ SL;R � qL;R

SL;R � SM U L;R þ 1

SL;R � SM

0

ðp� � pL;RÞ�nL
k

p�S
M � pL;RqL;R

264
375
with q ¼ �nL
k uk the normal velocity and p* the intermediate pressure
p� ¼ qLðSL � qLÞðSM � qLÞ þ pL ¼ qRðSR � qRÞðSM � qRÞ þ pR.
The middle wave speed is defined as
SM ¼ qRqRðSR � qRÞ � pR � qLqLðSL � qLÞ þ pL

qRðSR � qRÞ � qLðSL � qLÞ

and the left and right wave speeds as
SL ¼ minfqL � aL; qR � aRg; SR ¼ maxfqL þ aL; qR þ aRg

with a ¼

ffiffiffiffiffiffiffiffiffiffi
cp=q

p
the speed of sound. At the boundary faces, we use Hb ¼ HðU L;Ub; v; �nLÞ.

The numerical flux bH is defined following Brezzi [9] as a central flux bH ¼ H , using the weak expression
(13) for the auxiliary variable. This is a suitable choice as viscosity does not have a preferred direction. The
numerical flux can thus be written as
bHikðUL;U RÞ ¼
AikrsU r;s � gRS

ik for S 2Sn
I ;

Ab
ikrsU

b
r;s � gRS

ik for S 2Sn
B;

(
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where g is a stabilization constant and Ab = A(Ub) and U b
r;s denotes the derivatives of U at the boundary. The

local lifting operator RS is an approximation of the global lifting operator R and is preferable because it
reduces the width of the stencil to the minimum, see [9]. The local lifting operator RS 2 R5�3 is defined as
follows: Find an RS 2 V h, such that for all V 2 Vh
X

K2Tn
h

Z
K

V ikR
S
ik dK ¼

R
S

V ikAikrs sUrts dS for S 2SI ;R
S

V L
ikAL

ikrs UL
r � U b

r

� �
�ns dS for S 2SB.

(
ð14Þ
With these numerical fluxes the space–time weak formulation of the compressible Navier–Stokes equations in
terms of the primary unknown U can be written as follows: find a U 2Wh, such that for all W 2Wh
�
X

K2Tn
h

Z
K

W i;0Ui þ W i;k F e
ik � AikrsU r;s þRik

� �� �
dKþ

X
K2Tn

h

Z
Kðt�

nþ1
Þ
W L

i U L
i dK �

Z
K tþnð Þ

W L
i UR

i dK

 !

þ
X
S2Sn

I

Z
S

W L
i � W R

i

� �
Hi dSþ

X
S2Sn

B

Z
S

W L
i Hb

i dS�
X
S2Sn

I

Z
S

sW itk AikrsUr;s � gRS
ik dS

�
X
S2Sn

B

Z
S

W L
i Ab

ikrsU
b
r;s � gRS

ik

� �
�nL

k dS ¼ 0; ð15Þ
where we used the relation sW i
bHiktk ¼ sW itk

bHik, which follows from the viscous numerical flux being conser-
vative: bHðU L;URÞ ¼ bHðUR;U LÞ.

Discontinuous Galerkin methods are known to suffer from numerical oscillations around shocks and sharp
gradients. This problem can be overcome using a slope limiter (see for example [12]), but we prefer the artificial
dissipation proposed in [26] as it allows convergence to steady-state up to machine precision. We refer to [26]
for a detailed description of the artificial dissipation operator.

4. Algebraic system

In this section, the space–time discretization of the compressible Navier–Stokes equations is completed by
defining the basis functions, computing the local lifting operator and constructing the system of algebraic
equations.

4.1. Basis functions

We use polynomials of degree k to represent the trial function U and the test function W in each element
K 2Tn

h

Uðt;�xÞjK ¼ bU mwmðt;�xÞ;
W ðt;�xÞjK ¼ bW lwlðt;�xÞ;
with dð � Þ the expansion coefficients and w the basis functions. The basis functions are defined such that the test
and trial functions are split into an element mean at time tn+1 and a fluctuating part. This construction facil-
itates the definition of the artificial dissipation operator and of the multigrid convergence acceleration method
[26]. The basis functions w are given by
wm ¼
1 m ¼ 0;

/mðt;�xÞ � 1
jKjðt�nþ1

Þj
R

Kjðt�nþ1
Þ /mðt;�xÞdK; m ¼ 1; . . . ; 4;

(

where the functions / in an element K are related to the basis functions /̂ on the master element cK through
the mapping G
/m ¼ /̂m � G�1
K with /̂mðnÞ 2 P kðcKÞ;
where n are the local coordinates in the master element cK defined in Section 3.
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4.2. Lifting operators

The global and local lifting operators contained in the primal formulation (15) must be computed first in
order to obtain the system of algebraic equations for the expansion coefficients bU of the trial function U. The
volume integral containing the global lifting operator can simply be replaced by face integrals using its defi-
nition (12)
X

K2Tn
h

Z
K

W i;kRik dK ¼
X
S2Sn

I

Z
S

W i;kAikrs sUrts dSþ
X
S2Sn

B

Z
S

W L
i;kAL

ikrs U L
r � Ub

r

� �
�nL

s dS.
These face integrals can be directly computed by replacing the test and trial functions by their polynomial
expansions. The local lifting operator, however, cannot be computed directly. Like the test and trial functions,
it is represented by a linear polynomial
RSðt;�xÞjK ¼ bRjwjðt;�xÞ

and a small linear system must be solved for the expansion coefficients bRj. The linear system follows from the
definition of the local lifting operator (14). By this definition, the local lifting operator is only non-zero on the
two elements KL and KR connected to the face S 2Sn

I , hence
Z
KR

V ikR
S
ik dKþ

Z
KL

V ikR
S
ik dK ¼

Z
S

V ikAikrs sUrts dS.
Since V is an arbitrary test function, this is equivalent with the two following equations:
Z
KL;R

V ikR
S
ik dK ¼ 1

2

Z
S

V L;R
ik AL;R

ikrs sU rts dS;
where the superscript L, R refers to the traces from either the left or right element. Replacing RS by its poly-
nomial approximation leads to two systems of linear equations for the expansion coefficients bRikj of RS

ik on
S 2 SI
bRL;R

ikj

Z
KL;R

wlwj dK ¼ 1

2

Z
S

wL;R
l AL;R

ikrs sU rts dS.
The element mass matrices on the l.h.s. are denoted by ML;R
lj and can easily be inverted leading to following

expression for the expansion coefficients of the local lifting operator on S 2SI :
bRL;R

ikj ¼
1

2
ðM�1ÞL;Rjl

Z
S

wL;R
l AL;R

ikrs sU rts dS. ð16Þ
Similarly, the expression for the expansion coefficients of the local lifting operator for the faces S 2SB is
bRL

ikj ¼ ðM�1ÞLjl

Z
S

wL
l AL

ikrs UL
r � U b

r

� �
�nL

s dS. ð17Þ
Note that the mass matrices M only have to be inverted once per element in each space–time slab, after which
the local lifting operator can be computed as a small matrix–vector multiplication.

4.3. Equations for the expansion coefficients of the flow field

The system of algebraic equations for the expansion coefficients bU of the trial function U is obtained by
replacing U and the test function W in (15) by their polynomial expansions. We distinguish between the invis-
cid and viscous part
Leð bU n
; bU n�1Þ þLvð bU nÞ ¼ 0.
The term Le corresponds to the inviscid part of the residuals and is defined as
Le
il ¼ �

X
K2Tn

h

Ail þ Bilð Þ þ
X

K2Tn
h

Cil þ
X

S2Sn
I;B

Eil
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with i = 1, . . . , 5 the equation number, l = 0, . . . , 4, the index of the expansion coefficients and the terms A, B, C

and E defined as
Table
Relativ

Time fl

Euler fl

Viscou
Ail ¼
Z
K

wl;0Ui dK; ð18Þ

Bil ¼
Z
K

wl;kF e
ik dK; ð19Þ

Cil ¼
Z

K t�
nþ1ð Þ

wL
l U L

i dK �
Z

K tþnð Þ
wL

l U R
i dK; ð20Þ

Eil ¼
R
S
ðwL

l � wR
l ÞH i dS for S 2SI ;R

S
wL

l H b
i dS for S 2SB;

(
ð21Þ
with F e
ik ¼ F e

ikðUÞ the Euler flux and H i ¼ H iðU L;U R; v; �nLÞ the HLLC flux. The term Lv corresponds to the
viscous part of the residual and is defined as
Lv
il ¼

X
K2Tn

h

Dil þ
X

S2Sn
I;B

�F il � Gil þ Hilð Þ
with
Dil ¼
Z
K

wl;kAikrsUr;s dK; ð22Þ

F il ¼
R
S

wl;kAikrs sUrts dS for S 2SI ;R
S

wL
l;kAL

ikrs UL
r � U b

r

� �
�nL

s dS for S 2SB;

(
ð23Þ

Gil ¼

R
S

swltk AikrsU r;s dS for S 2SI ;R
S

wL
l Ab

ikrsU
b
r;s

� �
�nL

k dS for S 2SB;

8<: ð24Þ

Hil ¼
g
R
S

swltk RS
ik dS for S 2SI ;

g
R
S

wL
l R

S
ik �nL

k dS for S 2SB;

(
ð25Þ
with RS
ik ¼ RS

ik ðUÞ the local lifting operator and Aikrs = Aikrs(U) the homogeneity tensor.
Thus, the space–time discontinuous Galerkin discretization of the compressible Navier–Stokes equations

results in a system of coupled non-linear equations for the expansion coefficients, which is solved by adding
a pseudo-time derivative
o bU n

os
¼ � 1

Dt
Leð bU n

; bU n�1
Þ þLvð bU n

Þ
� �
and integrating to steady-state in pseudo-time. Different pseudo-time stepping methods suitable for this pur-
pose are presented in [18], where we analyze their stability in pseudo-time and compare their efficiency. Com-
puting the viscous part Lv of the residual takes roughly twice the CPU time needed for the inviscid part Le,
1
e computational effort

Equation Notation CPU time (%)

ux (18) Ail 1.7
(20) Cil 1.8

ux (19) Bil 4
(21) Eil 25

s flux (22) Dil 10
(23) Fil 10
(24) Gil 7
(25) Hil 40.5
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see Table 1. The stabilization term (25) is by far the most expensive as it requires the expansion coefficients of
the local lifting operator, which must be computed first using (16) and (17).

5. Numerical results

The space–time discontinuous Galerkin method for the compressible Navier–Stokes equations is imple-
mented in the NLR program HEXADAP and, in this section, numerical results are presented. We consider a model
problem of two-dimensional laminar dynamic stall and the three-dimensional vortex flow around a delta wing.

5.1. Laminar dynamic stall of NACA0012 airfoil

We consider the laminar flow over a NACA0012 airfoil in rapid pitch-up maneuver, comparable to the sit-
uation described in [22,31]. The flow is characterized by a complex interaction of an unsteady leading-edge
vortex, shear layer vortices and trailing edge vortex, resulting in the detachment of the leading edge vortex:
the dynamic stall phenomenon. The complexity of the unsteady flow and the significant grid movement make
this a challenging test case for the space–time discretization of the Navier–Stokes equations, where the
deforming elements in the neighborhood of the moving airfoil are accommodated with the deformation algo-
rithm proposed in [26].

In this case, the far-field Reynolds number is Re1 = 104 and the Mach number M1 = 0.2, based on a non-
dimensionalization with the reference length c of the airfoil, the free-stream speed of sound a1, density q1 and
temperature T1. The pitch axis is situated at 25% from the leading edge and the airfoil rotates in such a way
that the angle of attack a evolves as follows:
aðtÞ ¼ aþ bt � a expð�ctÞ. ð26Þ

The coefficients are a = � 1.2455604, b = 2.2918312, c = 1.84 and the time t ranges from 0 to 25. With these
coefficients, the movement of the airfoil is the same as the movement of the NACA0015 used in [31]. At time
t = 0, both a = 0 and da/dt = 0 and, after a short transition, the movement becomes mainly linear. The basis
functions in the discretization are linear and the stabilization constant is g = 5.

Remark 1. Although, in this paper, we limit ourselves to linear basis functions, the space–time method allows
higher-order basis functions to be used both in space and time. We refer to [24] for the detailed analysis of
high-order space–time approximations.
Fig. 3. Overview of the mesh deformation in the dynamic stall case (a = 50�).
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Since the flow is still laminar, the boundary layer thickness is estimated as b � 5=
ffiffiffiffiffiffi
Re
p

and the compu-
tational mesh should be fine enough to accurately represent this layer. In this case, b � 0.05 and we use a
C-type grid with 112 · 38 elements which results in 14 elements in this boundary layer. The dimensionless
physical time step is Dt = 0.005, based on the non-dimensionalization with the chord length L and the far-
field speed of sound a1. Each physical time step requires about 20 pseudo-time iterations to solve the alge-
braic system. At each step the mesh moves and deforms according to the motion of the airfoil prescribed by
(26), see Figs. 3–5 for the details of the mesh at a 50� angle of attack. At this point, the mesh lines are no
longer perpendicular to the airfoil geometry and are sharply bend near the trailing edge. Yet, even on this
mesh of reduced quality, the space–time discontinuous Galerkin method still performs well as can be seen in
Figs. 6–8 which show the streamlines at angles of attack a = 30�, 40� and 50�, respectively. The sudden drop
Fig. 4. Detail of the mesh deformation near the leading edge in the dynamic stall case (a = 50�).

Fig. 5. Detail of the mesh deformation near the trailing edge in the dynamic stall case (a = 50�).



Fig. 6. Streamlines in the dynamic stall case for a = 30�.

Fig. 7. Streamlines in the dynamic stall case when a = 40�.

Fig. 8. Streamlines in the dynamic stall case when a = 50�.
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Fig. 9. The lift and drag coefficients.

Fig. 10. The geometry of the delta wing (t/c = 0.024).

Fig. 11. Streamlines and vorticity in several cross-sections of the delta wing.
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Fig. 12. Streamlines around the delta wing (cross-section x/c = 0.6).

Fig. 13. Impression of the vorticity based mesh adaptation.
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in lift and increase in drag associated with the detachment of the leading edge vortex (between a = 40� and
50�) can clearly be seen in Fig. 9, where we show the lift and drag coefficients as a function of the angle of
attack.

We conclude therefore that the space–time discontinuous Galerkin method combined with grid movement
and deformation has significant potential to simulate the complex flow phenomenon which occur in dynamic
stall situations.

5.2. 3D Delta wing with mesh adaptation

To test the performance of the space–time method with local mesh adaptation in a 3D situation, we con-
sider the steady state flow around the 85� delta wing used in the experiments by Riley and Lowson [23], see
X
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Fig. 14. Pressure coefficient Cp at cross-section x/c = 0.3 of the delta wing.
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Fig. 15. Pressure coefficient Cp at cross-section x/c = 0.6 of the delta wing.
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Fig. 10 for details on the geometry. The flow is symmetric with, along both sides of the wing, a large steady
vortex and two secondary vortices, see for example the similar situation in [23].

We consider the case with far-field Reynolds number Re1 = 4 · 104, Mach number M1 = 0.3 and angle of
attack a = 12.5�. The non-dimensionalization is similar to the dynamic stall case. We compute the solution on
a coarse mesh with 208,896 elements and on a fine mesh with 1,671,168 elements. The basis functions are linear
and the stabilization constant is g = 7. Since this is a steady-state case, we take one huge physical time step
Dt = 1021 (non-dimensionalization with the chord length L and farfield speed of sound a1) and solve the alge-
braic system in about 1000 pseudo-time iterations on the coarse mesh and 5000 on the fine mesh. Fig. 11 shows
Fig. 16. Grid and helicity isolines at cross-section x/c = 0.9 for the coarse, adapted and fine mesh. The helicity ranges from �5 to 2 with
step size 0.2, the negative part being represented with solid lines, the positive part with dashed lines.
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the streamlines and the vorticity in several cross-sections of the flow field computed on the fine mesh. The two
main vortices are clearly visible as well as the secondary vortices near the edges of the wing, see also Fig. 12 for
the streamlines in cross-sections x/c = 0.6.

In the local mesh adaptation procedure, we start with the solution on the coarse mesh, then refine the mesh
in the regions with the highest vorticity, thereby increasing the number of elements by 10%. Then we compute
the solution on the adapted mesh and repeat the same procedure until the mesh has been adapted three times.
The final adapted mesh has 286,416 elements, see Fig. 13 for an impression of the 3D adaptation. Note that
the refinement mainly takes place in the stream-wise direction.
Fig. 17. Grid and helicity isolines at cross-section x/c = 1.1 for the coarse, adapted and fine mesh. The helicity ranges from �5 to 2 with
step size 0.2, the negative part being represented with solid lines, the positive part with dashed lines.



608 C.M. Klaij et al. / Journal of Computational Physics 217 (2006) 589–611
The effect of vorticity driven mesh adaptation is shown by comparing the pressure coefficient and the
helicity (u Æ x with x the vorticity) obtained on the coarse and adapted mesh with those on the fine mesh.
Figs. 14 and 15 show the pressure coefficient Cp on the delta wing at cross-sections x/c = 0.3 and
x/c = 0.6, respectively. In these figures, we also show the Cp computed with the NLR finite volume code
ENSOLV [20] on the fine mesh and found some small differences. For instance, the suction peak with HEX-

ADAP on the coarse and adapted mesh is higher than the one on the fine mesh and the one obtained with
ENSOLV. Also, the sharp edge at the bottom of the wing induces a small oscillation in Cp with HEXADAP on
the coarse and adapted mesh, while the fine mesh results of both HEXADAP and ENSOLV are smoother. We
conclude that the pressure coefficient is not very sensitive to the mesh quality, even the coarse mesh gives
reasonable results.

The helicity, however, is much more sensitive to the mesh quality as can be seen in Figs. 16 and 17 where we
show the mesh and helicity contours in cross-sections x/c = 0.9 and x/c = 1.1, respectively. At x/c = 0.9, the
results on the coarse mesh are rather poor, while the results on the adapted mesh are much closer to those on
the fine mesh. Downstream of the delta wing (x/c = 1.1), the advantage of grid adaptation is even clearer: on
the coarse grid the details in the helicity are almost lost, while on the adapted grid the helicity still strongly
resembles the one on fine mesh. Since the adapted mesh has five times less elements than the fine grid, the com-
putational cost is much lower.

This demonstrates that a solution adaptive space–time method can result in significant cost savings when
applied to vortex dominated viscous flows.

Remark 2. Cost saving is important as DG methods are known to be computationally expensive in
comparison to finite volume methods. In [29], the computational complexity of the space–time DG method for
the Euler equations is considered in detail and in [27] it was shown that the CPU time per degree of freedom is
comparable to a Jameson finite volume solver. In Table 1, the relative cost of the viscous part is given and in
[18] the efficiency of the pseudo-time stepping method is analyzed.
6. Discussion and conclusions

In this article, we presented a space–time discontinuous Galerkin method for the compressible Navier–
Stokes equations aimed at the accurate solution of time dependent problems on moving and deforming
grids. The method does not distinguish between space and time, thereby providing optimal flexibility to
accommodate time-dependent boundaries and element deformation. We have discussed our choices for the
space–time numerical fluxes and emphasized the treatment of the viscous part of the Navier–Stokes equations
needed to maintain locality of the stencil and optimal order of accuracy.

The method was implemented in the NLR program HEXADAP, parallelized using OpenMP and typically runs
at 6.4 Gflops/s on 8 processors of an SGI Altix supercomputer. This method accurately handles complex aero-
dynamic problems, which we demonstrated by computing the flow around a 3D delta wing and around a 2D
NACA0012 airfoil in rapid pitch-up maneuver. We found that the results for the 3D delta wing on a coarse
adapted mesh are comparable with those on a (costly) fine mesh. The method remains accurate even in the
case of significant mesh movement and deformation as required by the NACA0012 airfoil in rapid pitch-up
maneuver.
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Appendix A. The homogeneity tensor

The elements of the homogeneity tensor (Aikrs) are calculated by applying the definition:
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AikrsðUÞ :¼ oF v
ikðU ;rUÞ
oðUr;sÞ
for i, r = 1, . . . , 5 and k, s = 1, . . . , 3 and by using the Stokes hypothesis 3k + 2l = 0 to eliminate k. For clar-
ity’s sake, the elements are grouped in the following matrices:
A11 :¼ Ajk¼1
s¼1 ; A12 :¼ Ajk¼1

s¼2 ; A13 :¼ Ajk¼1
s¼3 ;

A21 :¼ Ajk¼2
s¼1 ; A22 :¼ Ajk¼2

s¼2 ; A23 :¼ Ajk¼2
s¼3 ;

A31 :¼ Ajk¼3
s¼1 ; A32 :¼ Ajk¼3

s¼2 ; A33 :¼ Ajk¼3
s¼3 ;
which are given by
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A23 ¼ 1

q
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