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The discontinuous finite element space

Consider the 1d linear hyperbolic equation

Ut + βUx = 0, x ∈ (0, 1), t ∈ (0,T], (1)

equipped with the periodic boundary condition. Here β 6= 0 is a
constant, and the initial solution is U(x, 0) = U0(x).

Let {Ii}N
i=1 be the quasi-uniform partition, with the maximum length h.

The discontinuous finite element space Vh is defined as the piecewise
polynomials of degree at most k ≥ 0.

jump: [[v]] = v+ − v−

and weighted average: {{v}}(θ) = θv− + (1− θ)v+
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The semi-discrete DG method

Find the map u : [0,T]→ Vh such that

(ut, v) = H(u, v), ∀ v ∈ Vh, t ∈ (0,T], (2)

with the initial solution u(x, 0) ∈ Vh.
The spatial DG discretization is given in the form

H(u, v) =
∑

1≤i≤N

[∫
Ii

βuvx dx + β{{u}}(θ)
i+ 1

2
[[v]]i+ 1

2

]
, (3)

in which β(θ − 1/2) > 0 provides the upwind-biased numerical flux.
After choosing the basis functions of Vh, the above semi-discrete DG
method can be written into an ODEs of N(k + 1) order

d~u
dt

= Lh~u,

where ~u is the vector-valued function made up of all freedoms of the
numerical solution, and Lh is a constant matrix.
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The fully discrete RKDG method

Consider the widely-used RKDG(s, r, k) method:
the explicit RK algorithm of s-stages and r-th order,
the DG spatial discretization with piecewise polynomials of degree at most k.

Discretize the time by tn = nτ with the time step τ . The single-step time
marching is generally given in the Shu-Osher representation:

un,0 = un;

For stage number ` = 0, 1, . . . , s− 1, successively seek the stage
solution un,`+1 ∈ Vh by the variational form

(un,`+1, v) =
∑

0≤κ≤`

[
c`κ(un,κ, v) + d`κτH(un,κ, v)

]
, ∀v ∈ Vh;

un+1 = un,s.

All parameters c`κ and d`κ are given by the used RK algorithm;

Note that d`` 6= 0;
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The purpose of this talk

It is well known for the semi-discrete DG method that the L2-norm of
numerical solution does not increase with time.

What about the L2-norm stability of the fully-discrete RKDG method?

temporal-spatial condition? or the restriction on the CFL number

λ = |β|τh−1?

stability performance?

New observation and explanation!
energy technique, not Fourier method!
easy extension to linear varying-coefficient problem and nonlinear problem.
flexible application for error estimates, superconvergence analysis, . . . .
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0. Related works on the L2-norm stability
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Non SSP framework

SSP framework
Levy and Tadmor (SR98) proved monotonicity stability for some fully discrete
schemes with RK time-marching of third order and fourth order, when
solving coercive problems.
Gottlieb (SR01) extended the above results to general RK algorithms, and
utilized the strong-stability-preserving (SSP) framework.

However, hyperbolic equation is not coercive, and the RKDG method
does not satisfy the elemental assumption in SSP framework:

the Euler-forward time-marching in each stage evolution is stable
under the standard CFL condition.

New proof line is needed!
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ODEs with semi-negative linear spatial operator

Tadmor (SINUM02) proved monotonicity stability for the three-stages and
third-order RK time-marching, and present an open problem:

Does monotonicity stability hold for the four-stages and fourth
order RK time discretization?

Along the same line, Sun and Shu (AMSA17) answered this problem:
presented a counter-example (not a real DG operator) which does not
always have monotonicity stability;
proved that the L2-norm does not increase every two steps.

Sun and Shu (SINUM19) then extended the above work and proposed a
framework to investigate the L2-norm stability performance for arbitrary
RK time discretization.

The above works ignore the particular effect of DG discretization, and are
not good at carrying out the error estimates.
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The lower order RKDG methods

In the L2-norm error estimates, some stability analysis have been done
for lower order RKDG methods.

Zhang and Shu (SINUM04) have implicitly showed for RKDG(2,2,k) method
that the monotonicity stability holds only for k = 1.
Zhang and Shu (SINUM10) have proved for RKDG(3, 3, k) method that the
monotonicity stability holds for arbitrary k.
Similar result on the third order RKDG methods was given by Burman and
Ern (SINUM10), with different energy equation.

Based on our experience on error estimate, Y. Xu and e.t.c. (SINUM19)
independently proposed an uniform framework to judge the L2-norm
stability performance for arbitrary RKDG method.

The important contribution is the wonderful energy equation, which is
expressed by the temporal difference of stage solutions. This purpose
can be automatically obtained by an matrix transform process.
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1. Concepts on stability
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Three concepts on the L2-norm stability

Definition 1
Weak(γ) stability: there exist two constants C > 0 and γ ≥ 2, such that

‖un+1‖2 ≤ (1 + Cλγ)‖un‖2, n ≥ 0.

This implies the general stability with exponent constant, namely

‖un‖ ≤ eCT‖u0‖, n ≥ 0,

when
λγ/τ is bounded⇔ τ = O(h

γ
γ−1 ).

Note that a more stronger temporal-spatial condition is demanded, which
is not generally acceptable in practice.
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Three concepts on the L2-norm stability

Definition 2
Strong (boundedness) stability: there exists an integer n∗ ≥ 1, such that

‖un‖ ≤ ‖u0‖, n ≥ n∗,

if the CLF number λ is fixed and small enough.

Definition 3
Monotonicity stability: (implies the strong (boundedness) stability)

‖un+1‖ ≤ ‖un‖, n ≥ 0,

if the CFL number λ is fixed and small enough.

Strong (boundedness) stability is a new concept.
Monotonicity stabilityis often called strong stability in many literature.
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What is the strong stability?
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Figure: An example of strong (boundedness) stability. RKDG(4, 4, 3) method: θ = 1,
J = 64, λ = 0.05.
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Stability of some RKDG methods

Theorem 2.1 (s = r or s = r + 1)

For these RKDG(s, r, k) method, we have
1 arbitrary degree: the L2-norm stability performance depends on the

remainder when r is divided by 4, namely

r 4,8,12 1,5,9 2,6,10 3,7,11
stability strong weak(r + 1) weak(r + 2) monotonicity

2 lower degree: there has a better stability performance
r 1 2 3 4 5 6 7 8 9 10 11 12

monotonicity k ≤ 0 1 ∞ 1 2 3 ∞ 3 4 5 ∞ 5
strong k ≤ 0 1 ∞ ∞ 2 3 ∞ ∞ 4 5 ∞ ∞

The above RK algorithms can be found in the works of S. Gottlieb, for
example

Strong stability preserving time discretizations: a review.
In: ICOSAHOM 2014, Lecture Notes Computer Science Engineering, 106 (2015), 17–30.
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Framework on energy analysis

1 This theorem is proved by the matrix transferring process, independently
introduced by the investigation of the construct in time discretization and
the properties of DG discretization.

2 The matrix transferring process can be done by the computer-aided
manipulations, as in

Y. Xu, Q. Zhang, C.- W. Shu, and H. J. Wang,

The L2-norm stability analysis of Runge-Kutta discontinuous Galerkin methods for linear hyperbolic
equations, SIAM J. Numer. Anal. 57 (2019), no. 4, 1574–1601.

3 Actually, this process can be totally hidden in theory analysis.

Y. Xu, C. -W. Shu, and Q. Zhang,
Error estimate of the fourth-order Runge–Kutta discontinuous Galerkin methods for linear
hyperbolic equations, accepted by SINUM (2020)

Y. Xu, X. Meng, C. -W. Shu, and Q. Zhang,
Superconvergence analysis of Runge-Kutta Discontinuous Galerkin Method for Linear Hyperbolic
Equation, online J. Sci. Comput. (2020)
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Framework on energy analysis

1 The temporal differences of stage solutions are related to the time
derivatives of different orders, in some sense.

easily defined by induction;
not limited to one-step time marching, also works well for the multiple-steps
time marching;
not limited to the uniform time step, also works well for different time step
sizes.

2 The matrix transferring process provides a uniform manipulation to get an
energy equation, which is nice to show the stability performance.

3 The stability mechanism of RKDG method is explicitly shown by
the temporal discretization: the termination index, and the sign of the central
objective;
the interaction of the temporal discretization and the spatial discretization:
the contribution index;
the spatial discretization.

4 Deep investigation on the relationships of the temporal differences.
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2. Matrix transferring process
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Temporal differences of stage solutions

Let m be the number of multiple-steps (1 means one-step) time marching,
i.e., updating the solution from tn to tn+m.

Generalized notation: un,sa+b = un+a,b, where a ≥ 0 and 0 ≤ b < s.

Definition 4 (temporal difference of stage solutions)
Let D0(m)un = un; then recursively define temporal difference of stage
solutions

Dκ(m)un =
∑

0≤`≤κ

σκ`(m)un,`, κ ≥ 1,

to satisfy the kernel constructiona

(Dκ(m)un, v) = τH(Dκ−1(m)un, v), ∀ v ∈ Vh. (4)
aused in: Y. Xu and e.t.c., SINUM2019, 1574–1601.

They are easily obtained by linear combinations of numerical schemes,
not depending on the specific definition of spatial discretization.
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The equivalent representation of RKDG method

At the same time when defining the temporal differences
D0(m)un

D1(m)un

...
Dms(m)un

 =


1
σ10 σ11
...

...
. . .

σms,0 σms,1 . . . σms,ms

 (m)


un

un,1

...
un+m

 ,
we also achieve the evolution equation (α0(m) > 0 only for scaling)

α0(m)un+m =
∑

0≤i≤ms

αi(m)Di(m)un. (5)

Note that
∑

0≤`≤κ σκ`(m) = 0 and σκκ(m) 6= 0.
The evolution equation can be denoted by the evolution vector

α(m) = (α0(m), α1(m), . . . , αms(m)). (6)

If needed, define αi(m) = 0 for i > ms.
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Matrix transferring process

This process is able to automatically provide a good energy equation

α2
0(m)

[
‖un+m‖2 − ‖un‖2

]
= SP(`) + TM(`), (7)

for ` = 0, 1, . . ., with

temporal information: TM(`) =
∑

0≤i,j≤ms

a(`)
ij (m)(Di(m)un,Dj(m)un),

spatial information: SP(`) =
∑

0≤i,j≤ms

b(`)
ij (m)τH(Di(m)un,Dj(m)un).

The formulations of SP(`) and TM(`) can be respectively expressed by
the (ms + 1)th order symmetric matrices:

A(`)(m) = {a(`)
ij (m)}, B(`)(m) = {b(`)

ij (m)}.

Note that the row/column indices i and j are taken from {0, 1, . . . ,ms}.
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Matrix transferring process

It is easy to see A(0)(m) = {a(0)
ij (m)} and B(0) = O for the initial situation,

i.e.,

a(0)
00 (m) =

{
0 i = j = 0,
αi(m)αj(m), otherwise. b(0)

ij (m) = 0.

The initial energy equation does not reflect the contribution of spatial
discretization. Transform is needed!

The symmetric demand on B`(m) comes from the following observation,
which is the starting point of the matrix transferring process.

Lemma 2.1

There holds the approximating skew-symmetric property

H(w, v) +H(v,w) = −2β(θ − 1/2)
∑

1≤j≤N

[[w]]i+ 1
2
[[v]]i+ 1

2
, ∀w, v ∈ Vh.
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Matrix transferring process

The purpose in the `-th matrix transform is very simple:
1 move out the lower-order temporal information

Eliminating the entries at the `-th row/column of A(`)(m),
at the left-top corner,

2 and turn them into the spatial information

Exporting the entries at the `-th row/column of B(`+1)(m),
at the right-bottom corner.

The above actions employ two facts:
1 the relationship of the temporal differences of stage solutions

(Dκ(m)un, v) = τH(Dκ−1(m)un, v), ∀ v ∈ Vh.

2 the symmetrical demand of all matrices.

Hence, some high-order temporal information must be changed, due to
the approximating skew-symmetric property (Lemma 2.1).
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Description of matrix transferring process

Since a(0)
00 (m) = 0 forever, we carry out the following transferring.

Looking at the (1, 0) position of matrix (drop (m) for simplicity)

A(0) =



0 a(0)
01 a(0)

02 · · · a(0)
0,ms

a(0)
10 a(0)

11 a(0)
12 · · · a(0)

1,ms

a(0)
20 a(0)

21 a(0)
22 · · · a(0)

2,ms
...

...
...

. . .
...

a(0)
ms,0 a(0)

ms,1 a(0)
ms,2 · · · a(0)

ms,ms


,

Noticing the symmetry of matrix, we have

(D0un,D1un) + (D1un,D0un) = 2τH(D0un,D0un).

This eliminates a(0)
10 such that a(1)

10 = 0 and b(1)
00 = 2a(0)

10 .
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Description of matrix transferring process

Looking at the (2, 0) position of matrix

A(0) =



0 0 a(0)
02 · · · a(0)

0,ms

0 a(0)
11 a(0)

12 · · · a(0)
1,ms

a(0)
20 a(0)

21 a(0)
22 · · · a(0)

2,ms

...
...

...
. . .

...
a(0)

ms,0 a(0)
ms,1 a(0)

ms,2 · · · a(0)
ms,ms


.

To eliminate a(0)
20 and preserve the symmetry of B(1), we need the help of

the time information at the (1, 1) position

(D2un,D0un) + (D1un,D1un) = τH(D1un,D0un) + τH(D0un,D1un),

This leads into a(1)
20 = 0, a(1)

11 = a(0)
11 − 2a(0)

20 , and b(1)
10 = 2a(0)

20 .
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Description of matrix transferring process

Looking at the (3, 0) position of matrix

A(0) =



0 0 0 a(0)
0,3 →

0 a(0)
11 a(0)

12 → · · ·

0 a(0)
21 a(0)

22 a(0)
23 · · ·

a(0)
30 ↓ a(0)

32 a(0)
33 · · ·

↓
...

...
...

. . .


.

To eliminate a(0)
30 and preserve the symmetry of B(1), we need the help of

the time information at the (2, 1) position

(D3un,D0un) + (D1un,D2un) = τH(D2un,D0un) + τH(D0un,D2un),

This leads to a(1)
30 = 0, a(1)

21 = a(0)
21 − a(0)

20 , and b(1)
20 = 2a(0)

30 .
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Formulations of matrix transferring process

Let ` ≥ 1 be the number of matrix transform, and assume

A(`−1) = {a(`−1)
ij }i,j≥0 =


O O O · · · O
O a(`−1)

`−1,`−1 a(`−1)
`−1,` · · · a(`−1)

`−1,ms

O a(`−1)
`,`−1 a(`−1)

`` · · · a(`−1)
`,ms...

...
...

. . .
...

O a(`−1)
ms,`−1 a(`−1)

ms,` · · · a(`−1)
ms,ms

 ,

B(`−1) = {b(`−1)
ij }i,j≥0 =


? ? ? · · · ?

? b(`−1)
`−1,`−1 b(`−1)

`−1,` · · · b(`−1)
`−1,ms

? b(`−1)
`,`−1 0 · · · 0

...
...

...
. . .

...
? b(`−1)

ms,`−1 0 · · · 0

 .

In B(`−1), only the entries marked by ? are allowed to be nonzero.
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Formulations of matrix transferring process

If a(`−1)
`−1,`−1(m) 6= 0, carry out the following manipulations1

a(`)
ij (m) =



0, j = `− 1,

a(`−1)
ij (m)− 2a(`−1)

i+1,j−1(m), i = ` and j = `,

a(`−1)
ij (m)− a(`−1)

i+1,j−1(m), `+ 1 ≤ i ≤ ms− 1 and j = `,

a(`−1)
ij (m), otherwise,

b(`)
ij (m) =

 2a(`−1)
i+1,j (m), `− 1 ≤ i ≤ ms− 1 and j = `− 1,

b(`−1)
ij (m), otherwise,

Otherwise, this nonzero diagonal entry is called the central objective, and
the matrix transferring process is terminated.

1Since the matrices are symmetrical, only the lower-triangular are presented.
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Algorithm of matrix transferring process

Algorithm 1 The matrix transferring process
Require: α = (α0, α1, . . . , αms)
Ensure: A and B
1: A← α⊥α, B← O
2: for j← 0 to ms do
3: if ajj 6= 0 then
4: Break
5: end if
6: bjj ← 2aj+1,j

7: aj+1,j ← 0
8: for i← j + 1 to ms do
9: bij ← 2ai+1,j

10: bji ← 2aj,i+1

11: ai,j+1 ← ai,j+1 − ai+1,j

12: aj+1,i ← aj+1,i − aj,i+1

13: ai+1,j ← 0
14: aj,i+1 ← 0
15: end for
16: end for
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Two important indices

Definition 5
Assume the matrix transferring process stop when a(`)

`` (m) 6= 0. Denote

ζ(m) = `, (8)

and this number is defined as the termination index.

Definition 6
The contribution index of the spatial DG discretization is defined by

ρ(m) = min{κ : κ ∈ BI(m) ∪ {ζ(m)}}. (9)

where ζ(m) is the termination index and

BI(m) =
{
κ : 0 ≤ κ ≤ ζ(m)− 1 and det

{
b(ζ(m))

ij (m)
}

0≤i,j≤κ
≤ 0
}
.

ρ(m) ≤ ζ(m) is the maximal order of SPD submatrix at the left-top corner.
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3. energy analysis
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Elemental inequality

Lemma 2.2 (denote ζ = ζ(m) and ρ = ρ(m) for simiplicity)

Let ε = ε(m) > 0 be the smallest eigenvalue of the left-top SPD submatrix

B(ζ)
ρ (m) = {b(ζ)

ij }0≤i,j≤ρ−1.

There holds the inequality

α2
0(m)

[
‖un+m‖2 − ‖un‖2

]
≤ Y1(m) + Y2(m), (10)

where λ is the CFL number and

Y1(m) =
[
a(ζ)
ζζ (m) + λQ1(λ) + λQ2(λ)

]
‖Dζ(m)un‖2 + λQ2(λ)‖Dρun‖2, (11)

Y2(m) = − 1
2
ε(m)β(θ − 1

2
)τ

∑
0≤i≤ρ−1

‖[[Di(m)un]]‖2
Γh
. (12)

Here Q1(·) and Q2(·) are generic polynomials with nonnegative coefficients.
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Remarks on Lemma 2.2

The stability effects of time-marching are explicitly shown by the term Y1,
where

Q1(·): the negative effects due to the high order temporal differences;
Q2(·): the negative effects due to the skew-symmetric property of spatial
discretization.
The sign of the central objective a(ζ)

ζζ (m) is very important.

The stability mechanism, inherited from semi-discrete DG method, is
explicitly showed by Y2 ≤ 0.

The proof is trivial.

qzh@nju.edu.cn L2 -norm analysis of RKDG method July 27-28, 2020, USTC 35 / 141



Proof of Lemma 2.2 (cont.)

Recall some elemental properties of the DG discretization:
The non-positive property (numerical viscosity):

H(w,w) = −β(θ − 1/2)‖[[w]]‖2
Γh
, w ∈ Vh.

A development on the non-positive property:

Lemma 2.3 (the positive contribution of interface jumps)
Given arbitrary (row and column) index set G. Assume G = {gij}i,j∈G
form a symmetric positive semidefinite matrix, then there holds∑

i∈G

∑
j∈G

gijH(wi,wj) ≤ 0,

for any function sequence {wi ∈ Vh : i ∈ G}.

”weak” boundedness

|H(w, v)| ≤ C|β|h−1‖w‖‖v‖, ∀w, v ∈ Vh.
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Proof of Lemma 2.2 (cont.)

By the matrix transferring process, we have gotten

α2
0(m)

[
‖un+m‖2 − ‖un‖2

]
= SP(ζ) + TM(ζ), (13)

where ζ = ζ(m) is the termination index, and

TM(ζ) =
∑

ζ≤i,j≤ms

a(ζ)
ij (m)(Di(m)un,Dj(m)un),

SP(ζ) =
∑

0≤i,j≤ms

b(ζ)
ij (m)τH(Di(m)un,Dj(m)un).

(14)

It is easy to see from the ”weak” boundedness that

TM(ζ) ≤
[
a(ζ)
ζζ + λQ1(λ)

]
‖Dζun‖2.
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Proof of Lemma 2.2 (cont.)

Drop the index m below.
Split the index set {0, 1, . . . ,ms} into three subsets

π1 = {0, . . . , ρ− 1}, π2 = {ρ, . . . , ζ − 1}, π3 = {ζ, . . . ,ms}.

Note that π1 = ∅ if ρ = 0, and π2 = ∅ if ρ = ζ.
The second term in RHS can be written in the form

SP(ζ) =
∑

ξ,η∈{1,2,3}

∑
i∈πξ,j∈πη

τb(ζ)
ij H(Diun,Djun)

︸ ︷︷ ︸
Tξη

.

If the index subset is empty, the corresponding term is equal to zero.
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Proof of Lemma 2.2 (cont.)

The submatrix B(ζ)
ρ−1 is symmetric positive definite.

Hence the negative property of DG discretization yields

T11 ≤ −εβ(θ − 1
2

)τ
∑
i∈π1

‖[[Diun]]‖2
Γh
.

By the approximate skew-symmetric property, the relationship among
temporal differences and the weak boundedness, the inverse inequality,
and Young’s inequality, we have

T12 + T21 = − β(θ − 1
2

)τ
∑

i∈π1,j∈π2

b(ζ)
ij ‖[[Diun]]‖Γh‖[[Djun]]‖Γh

≤ 1
4
εβ(θ − 1

2
)τ
∑
i∈π1

‖[[Diun]]‖2
Γh

+ Cετ
∑
j∈π2

‖[[Djun]]‖2
Γh

≤ 1
4
εβ(θ − 1

2
)τ
∑
i∈π1

‖[[Diun]]‖2
Γh

+ λQ2(λ)‖Dρun‖2.
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Proof of Lemma 2.2

Similarly, we also have

T22 + T23 + T32 ≤ λQ2(λ)‖Dρun‖2 + λQ2(λ)‖Dζun‖2.

Along the same line, we have

T13 + T31 ≤
1
4
εβ(θ − 1

2
)τ
∑
i∈π1

‖[[Diun]]‖2
Γh

+ λQ1(λ)‖Dζun‖2.

It is trivial to see that T33 = 0, since all related coefficients are zero.
Collecting the above estimates, we complete the proof.
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Main results on stability

Theorem 2.2 (stated for m = 1)

For the piecewise polynomials of arbitrary degree k ≥ 0, the RKDG method
has the following stability performance at least:

1 a(ζ)
ζζ < 0 and ρ = ζ: monotonicity stability;

2 a(ζ)
ζζ < 0 and ρ < ζ: weak(γ) stability with γ = 2ρ+ 1;

3 a(ζ)
ζζ > 0: weak(γ) stability with γ = min(2ζ, 2ρ+ 1).

The proof is easy, as a corollary of Lemma 2.2.
The contribute of Y2 is not considered yet.
The strong stability is implied by the multi-step marching, namely m > 1.
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Discussions on Theorem 2.2

1 The first conclusion:
neither the temporal nor the spatial discretization produces any
anti-dissipative energy.

Example: RKDG(3, 3, k) scheme.
2 The second conclusion is pointed to an intermediate state:

The temporal discretization provides dissipative energy, but the spatial
discretization causes some anti-dissipative modes that must be controlled by
reducing the time step.
This trouble results from the approximate skew-symmetric property.

Example: RKDG(4, 4, k) scheme.
3 The third conclusion:

the temporal discretization has an anti-dissipative energy that can only be
controlled through a time-step reduction.

Example: RKDG(1, 1, k) and RKDG(2, 2, k) scheme.
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More discussions on the second conclusion

When there holds the strictly skew-symmetric property

H(w, v) +H(v,w) = 0, ∀w, v ∈ Vh,

for example,
the functions in Vh are restricted to be continuous (the DG method
degenerates to the standard finite element method),
or the central numerical flux (i.e., θ = 1/2) is used,

the spatial discretization does not cause any trouble in the L2-norm
stability of fully-discrete scheme.

As a result, the scheme has the monotonicity stability.
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4. Examples
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Example: the RKDG(3,3,k) method

Example 2.1 (Zhang and Shu, SINUM2010)
The RKDG(3, 3, k) method

(un,1, v) = (un, v) + τH(un, v),

(un,2, v) = (un,1, v) + τH(un,1, v),

(un+1, v) =
1
3

(un, v) +
1
2

(un,1, v) +
1
6

(un,2, v) +
τ

6
H(un,2, v).

has the monotonicity stability for any degree k.
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Example: the RKDG(3,3,k) method

First transferring:

A(1) =


0

0 12 6
12 9 3
6 3 1

 , B(1) =


72 36 12 0
36 0 0 0
12 0 0 0
0 0 0 0

 .

Second transferring:

A(2) =


0

0
−3 3
3 1

 , B(2) =


72 36 12 0
36 24 12 0
12 12 0 0
0 0 0 0

 .
Since a(2)

22 = −3, the transferring process is terminated with ζ = 2.
Furthermore we get ρ = 2, since the former two leading principal minors
are respectively equal to 72 and 432.
Since a(2)

22 = −3 < 0 and a(2)
22 ‖D2un‖2 provides an additional stability

mechanism, the monotonicity stability is proved.
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Example: the RKDG(4,4,k) method

Example 2.2 (classical RK algorithm)
The RKDG(4, 4, k) method

(un,1, v) = (un, v) + τH(un, v),

(un,2, v) = (un,1, v) + τH(un,1, v),

(un,3, v) = (un,2, v) + τH(un,2, v),

(un+1, v) =
3
8

(un, v) +
1
3

(un,1, v) +
1
4

(un,2, v) +
1
24

(un,3, v) +
1

24
τH(un,3, v).

has the strong stability with n? = 2.
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Example: the RKDG(4,4,k) method

Define the temporal differences
D0un

D1un

D2un

D3un

D4un

 =


1
−1 1
1 −2 1
−1 3 −3 1
−8 −12 0 −4 24




un

un,1

un,2

un,3

un+1


Obtain the evolution identity

24un+1 = 24D0un + 24D1un + 12D2un + 4D3un + D4un,

with α = (24, 24, 12, 4, 1).
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Example: the RKDG(4,4,k) method

Matrix transferring process

A(0) =


0 576 288 96 24

576 576 288 96 24
288 288 144 48 12
96 96 48 16 4
24 24 12 4 1

 , B(0) = O.

A(3) =


0

0
0
−8 4
4 1

 , B(3) =


1152 576 192 48 0
576 384 144 48 0
192 144 48 24 0
48 48 24 0 0
0 0 0 0 0

 .
Since a(3)

33 = −8 < 0, we stop the transferring and obtain ζ = 3.
It is easy to see ρ = 2 = ζ − 1, since the former three leading principal
minors in order of 1152 576 192

576 384 144
192 144 48

 .
are 1152, 110592, and −884736.
Hence the RKDG(4, 4, k) scheme with one-step time-marching has the
weak(5) stability at least.
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Example: the RKDG(4,4,k) method

Matrix transferring process

A(2) =


0

0
0 24 12
24 16 4
12 4 1

 , B(2) =


1152 576 192 48 0
576 384 144 48 0
192 144 0 0 0
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0 0 0 0 0

 .
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4 1
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are 1152, 110592, and −884736.
Hence the RKDG(4, 4, k) scheme with one-step time-marching has the
weak(5) stability at least.
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Example: Two-steps of RKDG(4,4,k) method

Two-steps time-marching of RKDG(4, 4, k) method can be looked upon as
one-step time-marching of an RKDG(8, 4, k) method, in the form

(un,`+1, v) = (un,`, v) + τH(un,`, v), ` = 0, 1, 2,

(un,4, v) =
(3

8
un +

1
3

un,1 +
1
4

un,2 +
1
24

un,3, v
)

+
1

24
τH(un,3, v),

(un,`+1, v) = (un,`, v) + τH(un,`, v), ` = 4, 5, 6,

(un+2, v) =
(3

8
un,4 +

1
3

un,5 +
1
4

un,6 +
1
24

un,7, v
)

+
1

24
τH(un,7, v).

Notations: un,4 = un+1, un,5 = un+1,1, un,6 = un+1,2, . . .

The related discussion on the multi-steps RKDG(4,4,k) method is cited
from the paper

Y. Xu, SIAM J. Numer. Anal. 57 (2019), no. 4, 1574–1601.
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Example: Two-steps of RKDG(4,4,k) method

Repeating the above process, we can define temporal differences:

D0un

D1un

D2un

D3un

D4un

D5un

D6un

D7un

D8un


=



1
−1 1
1 −2 1
−1 3 −3 1
−8 −12 0 −4 24
44 36 12 4 −120 24
−80 −24 0 8 216 −144 24

8 −120 −72 −8 −24 360 −168 24
64 192 0 −64 −384 −576 384 −192 576





un

un,1

un,2

un,3

un,4

un,5

un,6

un,7

un+2


The former five lines are the same as those for one-step time-marching.
Obtain the evolution identity

α0un+2 =
∑

0≤i≤8

αiDiun,

with α = (576, 1152, 1152, 768, 384, 144, 40, 8, 1).
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Example: Two-steps of RKDG(4,4,k) method
The process stops at the third transferring

A(3)
=



0
0

0
−9216 170496 73152 22656 4992 768
170496 147456 55296 15360 3072 384
73152 55296 20736 5760 1152 144
22656 15360 5760 1600 320 40
4992 3072 1152 320 64 8
768 384 144 40 8 1


,

B(3)
=



1327104 1327104 884736 442368 165888 46080 9216 1152 0
1327104 1769472 1327104 718848 285696 82944 17280 2304 0
884736 1327104 1050624 599040 248832 74880 16128 2304 0
442368 718848 599040 0 0 0 0 0 0
165888 285696 248832 0 0 0 0 0 0
46080 82944 74880 0 0 0 0 0 0
9216 17280 16128 0 0 0 0 0 0
1152 2304 2304 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0


.

Obtain ζ = 3, and a(3)
33 = −9216 < 0.

It is easy to see ρ = 3, since the three leading principal minors are
1327104, 587068342272 and 10820843684757504 respectively.
Hence the monotonicity stability is proved for two-steps time-marching.
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Example: Three-steps of of RKDG(4,4,k) method

Three-steps time-marching of the RKDG(4, 4, k) method can be looked
upon as one-step time-marching of an RKDG(12, 4, k) method.
Define temporal differences, and obtain the evolution identity with

α =(13824, 41472, 62208, 62208, 46656,
27648, 13248, 5184, 1656, 424, 84, 12, 1).

The matrix transferring stops with ζ = 3, and a(3)
33 = −7962624 < 0.

Also we have ρ = 3, since three leading principal minors in1146617856 1719926784 1719926784
1719926784 3439853568 3869835264
1719926784 3869835264 4634247168

 .
are 1146617856, 986049380773527552 and 117773106967986435753246720.
Hence the monotonicity stability is proved for three-steps time-marching.
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Example: more applications

The above analysis framework works well for many fully-discrete RKDG
methods, even s 6= r and non-uniform time step.
For example, consider the RKDG(10, 4, k) method [Gottlieb, 2009]

(un,i+1, v) = (un,i, v) +
1
6
τH(un,i, v), i = 0, 1, 2, 3,

(un,5, v) = (
3
5

un +
2
5

un,4, v) +
1
15
τH(un,4, v),

(un,i+1, v) = (un,i, v) +
1
6
τH(un,i, v), i = 5, 6, 7, 8,

(un+1, v) = (
1

25
un +

9
25

un,4 +
3
5

un,9, v) +
3
50
τH(un,4, v) +

1
10
τH(un,9, v).

It can be proved to have the monotonicity stability.
A deep discussion on temporal differences can yield the monotonicity
stability for lower-degree polynomials, as expected.
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5. Development
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Remarks on the previous analysis framework

At the previous study, three important quantities
1 the termination index;
2 the contribution index of spatial discretization;
3 the sign of the central objective

are computed through the matrix transferring process.

However,
The above process may be carried out again and again for different number
m = 1, 2, . . ..
The above heavy manipulations are implemented by the help of computer.
By introduction of α0(m), all arithmetic is accurate!

Some development:

How to get rid of (or reduce) the aid of computer and set up the
theory results in a uniform theory framework?
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Solutions on this purpose

In fact, we are able to find out the essential property hidden in the matrix
transferring process, by making two minor modifications on the previous
works:

new expression for the m-step time marching

(un,`+1, v) =
∑

0≤κ≤`

[
c`κ(m)(un,κ, v) + mτd`κ(m)H(un,κ, v)

]
.

new kernel construction

(Dκ(m)un, v) = mτH(Dκ−1(m)un, v), ∀ v ∈ Vh, (15)

when defining the temporal difference of stage solutions.

The others are the same.

The analysis process is long and complex, although the proof line is the
same.
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The matrix transform

Proposition 2.1 (at most change once)

If integers κ1 and κ2 strictly stand on the same side of min(i, j), then

a(κ1)
ij (m) = a(κ2)

ij (m). (16)

Proposition 2.2 (directly expressed by the evolution vector)

For 0 ≤ ` ≤ ζ(m), we have

a(`)
i` (m) =



∑
0≤κ≤`

(−1)καi+κ(m)α`−κ(m), ` < i ≤ ms,

∑
−`≤κ≤`

(−1)κα`+κ(m)α`−κ(m), i = ` 6= 0,

0, i = ` = 0.

(17)
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The evolution vector with different multi-steps

Proposition 2.3 (main relationship)

Let m ≥ 1 be the step of multi-steps. There holds

αi(m)

α0(m)
=

1
mi

∑∑
· · ·
∑

︸ ︷︷ ︸
i1+i2+...+im=i
0≤i1,i2,...,im≤s

αi1(1)

α0(1)

αi2(1)

α0(1)
· · · αim(1)

α0(1)
, (18)

for i = 0, 1, 2, . . . ,ms.

Proposition 2.4 (time order)
For any m ≥ 1, there holds αi(m) = 1/i! if 0 ≤ i ≤ r.
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Remarks on the above conclusion

By an induction process.

Associate with α(m), define the generating polynomial

p(m)(z) =
∑

0≤i≤ms

αi(m)

α0(m)
zi (19)

The conclusion in Proposition 2.3 can be expressed by the identity

p(m)(z) =
[
p(1)
( z

m

)]m
. (20)

The value of αi(m) for i > r depends on m and s.

As a result, some important information in the matrix transferring process
can be shown by the evolution vector related to the single-step.
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General conclusions on three important quantities

Proposition 2.5 (dependence on the time order r)
1 The termination index satisfies

ζ(m) ≡ ζ ≥ b(r + 2)/2c.

and the central objectives have the same sign, namely

a(ζ)
ζζ (m)a(ζ)

ζζ (1) > 0.

2 The contribution index satisfies

ρ(m) ≥ b(r + 1)/2c.

3 There exists an integer n? ≥ 1 such that

ρ(m) = ζ(m), if m ≥ n?.
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A quantity for quick statement

The stability performance of RKDG method can be quickly judged by the
following quantity

ψr =

{
α̃r+2(1)− α̃r+1(1) if r is even,
α̃r+1(1), if r is odd,

(21)

when it is not equal to zero. Here α̃i(1) = αi(1)/α0(1)− 1/i!.
Based on the conclusion on the previous page, we have

Proposition 2.6

ζ(m) ≡ ζ = b(r + 2)/2c, and the sign of a(ζ)
ζζ (m) is the same as (−1)ζψr.

For odd r we have n? = 1, and for even r we have

n? = min

{
m : mr + (−1)

r
2

r!(r + 1)!

[(r/2)!]2 α̃r+1(1) > 0
}
.
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Stability conclusion

Theorem 2.3

The sign of (−1)br/2cψr is very important:
if it is postive, then the RKDG(s, r, k) method has

the strong (boundedness) stability, at least;
the monotonicity stability, if n? = 1 is admitted.

Assume it is negative, then the RKDG(s, r, k) method has
the weak(γ) stability with γ = 2b(r + 2)/2c.

strong (boundedness) stability: RKDG(3, 3, k).
monotonicity stability: RKDG(4, 4, k).
weak(4) stability: RKDG(2, 2, k).
weak(6) stability: RKDG(5, 5, k).
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6. Remarks on the lower degree of piecewise polynomials
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Better stability for lower degree polynomials

Theorem 2.4 (m = 1: monotonicity; otherwise, strong)

If ρ(m) = ζ(m), then the RKDG(s, r, k) method has the m-steps monotonicity
stability for piecewise polynomials with degree at most ρ(m)− 1.

By recursively using Lemma 2.4 (next page), we have

‖Dκun‖2 ≤ C‖∂`x (Dκ−`un)‖2 + λQ3(λ)τ
∑

1≤i≤`

‖[[Dκ−iun]]‖2
Γh
. (22)

Taking κ = ` = ρ, we have for the lower degree piecewise polynomials

‖Dρun‖2 ≤ λQ3(λ)τ
∑

0≤i≤ρ−1

‖[[Diun]]‖2
Γh
.

Note that ‖Dζun‖ ≤ C‖Dρun‖, since ρ ≤ ζ.

Substituting the above results into Lemma 2.2, we have Y1 + Y2 ≤ 0 for
small CFL number, and get the m-steps monotonicity stability.
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Lemma to get (22)

Lemma 2.4 (drop m)

There exists a constant C = C(m, θ, i, µ) > 0, such that

‖∂i
x(D`un)‖ ≤ τ |β|‖∂i+1

x (D`−1un)‖+ Cτ |β|h−i−1/2‖[[D`−1un]]‖Γh .

The proof is trivial by an induction.

Denote S = D`un + τβ∂x(D`−1un). Integrating by parts yields

(S, v) = −τβ
∑

1≤j≤J

[[D`−1un]]j+ 1
2
{{v}}(1−θ)

j+ 1
2
, ∀ v ∈ Vh. (23)

Taking v = S in (23) and using the inverse inequality, we have

(S,S) = −τβ
∑

1≤j≤J

[[D`−1un]]j+ 1
2
{{S}}(1−θ)

j+ 1
2
≤ Cτ |β|h− 1

2 ‖[[D`−1un]]‖Γh‖S‖,

(24)
which implies this lemma for i = 0.
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Proof of Lemma 2.4

Let i ≥ 1, and take v = ∂2i
x S in (23).

Integrating by parts for i times to deal with (S, ∂2i
x S), we have

(−1)i‖∂i
xS‖2 +

∑
0≤i′<i

∑
1≤j≤J

(−1)i−i′ [[∂i+i′
x S∂i−i′−1

x S]]j+ 1
2

= − τβ
∑

1≤j≤J

[[D`−1un]]j+ 1
2
{{∂2i

x S}}
(1−θ)
j+ 1

2
.

The inverse inequality implies that

‖∂i
xS‖2 ≤ Ch−1

∑
0≤i′<i

‖∂i+i′
x S‖‖∂i−i′−1

x S‖+ Cτ |β|h−1/2‖[[D`−1un]]‖Γh‖∂2i
x S‖

≤ Ch−i‖∂i
xS‖‖S‖+ Cτ |β|h−1/2−i‖[[D`−1un]]‖Γh‖∂i

xS‖.

Substituting the estimate of S, and we complete the proof of this lemma.

qzh@nju.edu.cn L2 -norm analysis of RKDG method July 27-28, 2020, USTC 67 / 141



7. Numerical experiments
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Numerical experiments: RKDG(4, 4, k)

Consider Ut + Ux = 0, and use the uniform meshes with J = 16, 32, 64.

The RKDG method can be written into

un+1 = Kun,

and ‖Km‖2 shows the L2-norm amplification of solution every m-steps.

Plot the picture of ‖Km‖2
2 − 1 v.s. the CFL number λ, where

k = 1, 2, 3 from top to bottom;
m = 1, 2, 3 from left to right.
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Numerical experiments: RKDG(4, 4, k)

Also plot the evolution of the L2-norm for 0 ≤ n ≤ 12.

λ = 0.05, and J = 64.

Let the initial solution u0 be the unit singular vector with respect to the
largest singular value of K.

k = 1, 2, 3 from top to bottom, and

θ = 0.75, 1.00, 1.25 from left to right.

Results:
For k = 1, the monotonicity stability is clearly observed.

For k ≥ 2, the monotonicity stability does not hold, however the
multi-steps monotonicity stability is observed.

Hence, there only holds the strong stability but not monotonicity stability
for high order piecewise polynomials.
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Numerical experiments: RKDG(5, 5, k)

Take β = 1 and use uniform meshes with J = 16, 32, 64;
The RKDG method with θ = 0.75, 1.00, 1.25.
Plot the picture of ‖Km‖2

2 − 1 with respect to λ, where
k = 2, 3, 4 from top to bottom, and
m = 1, 2, 3 from left to right.

Results:
For k = 2 and m = 1, 2, 3, the quantity is very close to machine-precision,
which numerically verifies the monotonicity stability for lower-degree
piecewise polynomials.
For k = 3 and k = 4, the quantity strongly depends on λ, with slope 6 in
the logarithmic coordinates, for m = 1, 2, 3.
This performance is different to the RKDG(4, 4, k) method.
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The RKDG(5, 5, k) method

Slope = 6
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Linearly unstable?

Let u0 be the L2-projection of

u(x, 0) =
√

2 sin(
J

16
2πx)

with J = 16, 32, 64.
Plot the evolution performance of the L2-norm, with λ = 0.06, 0.08, 0.10
(from top to bottom), and θ = 0.75, 1.00, 1.25 (from left to right).

Result:
The L2-norms of the solution are shown to be exponentially increases
after an extremely large number of time steps (for most cases), and
this phenomenon is independent of the mesh size.
Maybe linearly instability!
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1. Main conclusion and proof
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error estimate

Theorem 3.1
Suppose the time step τ ensures the L2-norm stability of the RKDG(s, r, k)
method. Then we have

‖U(tn)− un‖ ≤ C‖U0‖Hmax(k+2,r+1)(I)(hk+1 + τ r), ∀n.

if the initial solution ensures (L2/GGR projection and so on)

‖U(0)− u0‖ ≤ Chk+1.

The assumption on smoothness is weak!

The proof is trivial, including the following technique:
stability analysis for the nonhomogeneous scheme;
reference functions at every time stage, with the cutting-off trick;
application of the GGR projection.

qzh@nju.edu.cn L2 -norm analysis of RKDG method July 27-28, 2020, USTC 79 / 141



Stability result for the nonhomogeneous scheme

At each time-marching there holds

(un,`+1, v) =
∑

0≤κ≤`

{
c`κ(un,κ, v) + τd`κ

[
H(un,κ, v) + (f n,κ, v)

]}
, ∀v ∈ Vh,

for ` = 0, 1, . . . , s− 1. Here f n,` is the given source term.
Similarly as the previous analysis, we have

Lemma 3.1

Under the temporal-spatial condition as stated before, there holds the
general stability

‖un‖2 ≤ C

‖u0‖2 + τ
∑

0≤κ<n

∑
0≤`<s

‖f κ,`‖2

 , (25)

where the bounding constant C > 0 is independent of n, h, τ , and u, but
may depends on the final time T.
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Reference functions at every time stage

Given an integer 1 ≤ σ ≤ r, and let U(0)
[σ] (t) = U(t).

The other reference functions are defined by an induction process:
Suppose for an integer ` ≥ 0 that the previous `+ 1 reference functions have
been defined well, and been expanded in the form

U(κ)

[σ] =
∑

0≤i≤min(σ,κ)

γ
(κ)

i[σ]τ
i∂ i

t U, 0 ≤ κ ≤ `. (26)

According to the stage marching of RKDG method, define an auxiliary
reference function and then expand it in the form

Ũ(`+1)
[σ] =

∑
0≤κ≤`

[
c`κU(κ)

[σ] − τd`κβ∂xU
(κ)

[σ]

]
=

∑
0≤i≤min(σ+1,`+1)

γ
(`+1)
i[σ] τ i∂ i

t U.

By cutting off the term involving the (σ + 1)th order time derivative – if exists
– the new reference function is defined as

U(`+1)
[σ] =

∑
0≤i≤min(σ,`+1)

γ
(`+1)
i[σ] τ i∂ i

t U. (27)

For the convenience of notations, denote U(s)
[σ](x, t) = U(x, t + τ).
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Reference functions at every time stage

After some manipulations that all Taylor expansions in time are only done
up to the (σ + 1)-th time derivatives, it is easy to see that

U(`+1)
[σ] =

∑
0≤κ≤`

[
c`κU(κ)

[σ] − τd`κβ∂xU(κ)
[σ]

]
+ τ%

(`)
[σ], 0 ≤ ` ≤ s− 1, (28)

where %(`)
[σ] are the truncation errors in time, bounded by

‖%(`)
[σ]‖L∞(HR(I)) ≤ C‖∂σ+1

t U‖L∞(HR(I))τ
σ ≤ C‖U0‖Hi+σ+1(I)τ

σ, R ≥ 0. (29)

Here L∞(HR(I)) denotes the space-time Sobolev space in which the
function’s HR(I)-norm at any time t ∈ [0,T] is uniformly bounded.

Actually, there holds %(`)
[σ] = 0 for ` ≤ min(σ − 1, s− 2).
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Standard analysis process: skectch

Denote by en,` = un,` − Un,` the stage error, where

Un,` = U(`)
[r] (x, tn), 0 ≤ ` ≤ s− 1, (30)

is the reference function at each time stage.

Let χn,` ∈ Vh be arbitrary series of stage functions. Consider the error
decomposition

en,` = ξn,` − ηn,`, (31)

where
the error in the finite element space: ξn,` = un,` − χn,` ∈ Vh,
and the approximation of reference solution: ηn,` = Un,` − χn,`.

In general, ηn,` is easily bounded by the help of some projection and
other techniques.

Estimate ξn,` by its error equation and the obtained stability result.

Application of the triangular inequality.

qzh@nju.edu.cn L2 -norm analysis of RKDG method July 27-28, 2020, USTC 83 / 141



Standard analysis process: error equation

Letting t = tn in (28), we can get a group of variational forms similar as in
the RKDG method.

Subtracting them from each other and using the error decomposition, we
can achieve the error equation for ` = 0, 1, . . . , s− 1,

(ξn,`+1, v) =
∑

0≤κ≤`

{
c`κ(ξn,κ, v) + τd`κ

[
H(ξn,κ, v) + (Fn,κ, v)

]}
, (32)

for any v ∈ Vh. Here (Fn,`, v) is the residual functional at every time stage,
recursively defined by

d``(Fn,`, v) = (ηn,`
c , v)−H(ηn,`

d , v)− (%n,`
[r] , v)︸ ︷︷ ︸

Zn,`(v)

−
∑

0≤κ≤`−1

d`κ(Fn,κ, v), (33)

with the compact notation

ηn,`
c =

1
τ

[
ηn,`+1 −

∑
0≤κ≤`

c`κηn,κ
]
, ηn,`

d =
∑

0≤κ≤`

d`κηn,κ, (34)

Note that %n,`
[r] = %

(`)
[r] (tn), and the summation in (33) is zero if ` = 0.
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Standard analysis process: error equation

The above error equations are very important in the error estimates for
the RKDG method, due to the following conclusion

Lemma 3.2 (application of Lemma 3.1)

Assume that the RKDG(s, r, k) method has the L2-norm stability under
suitable temporal-spatial condition. Then we have

‖ξn‖2
L2(I) ≤ C

{
‖ξ0‖2

L2(I) + τ
∑

0≤κ<n

∑
0≤`<s

‖Zκ,`‖2
}
, (35)

where ‖Zκ,`‖ = sup0 6=v∈Vh
Zκ,`(v)/‖v‖L2(I).

For the optimal error estimate, it is good enough to take the GGR
projection of the reference functions

χn,` = GθhUn,` = GθhUn,`
[r] ∈ Vh, (36)

such that the regularity assumption is independent of the stage number.
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2. Numerical experiments
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Numerical experiments

The above results also hold for multi-dimensional problem.
Below we present the numerical experiments of the RKDG(4,4,k) method
and the RKDG(10,4,k) method to solve

Ut + Ux + Uy = 0.

Test on accuracy order:

U(x, y, t) = sin(x + y− 2t).

Test on regularity assumption:

U(x, y, t) = sinq+ 2
3 [2π(x + y− 2t)]

with different integer q.
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Test on accuracy order: RKDG(4,4,k)

Ix × Jy
θ = 0.75 θ = 1 θ = 1.25

error order error order error order

k = 1

40× 40 2.52E-03 1.50E-03 1.21E-03
80× 80 6.35E-04 1.99 3.75E-04 2.00 3.03E-04 2.00

120× 120 2.83E-04 2.00 1.67E-04 2.00 1.35E-04 2.00
160× 160 1.59E-04 2.00 9.38E-05 2.00 7.58E-05 2.00
200× 200 1.02E-04 2.00 6.01E-05 2.00 4.85E-05 2.00

k = 2

40× 40 1.42E-05 1.89E-05 2.48E-05
80× 80 1.77E-06 3.00 2.36E-06 3.00 3.11E-06 3.00

120× 120 5.25E-07 3.00 7.00E-07 3.00 9.21E-07 3.00
160× 160 2.22E-07 3.00 2.95E-07 3.00 3.88E-07 3.00
200× 200 1.13E-07 3.00 1.51E-07 3.00 1.99E-07 3.00

k = 3

40× 40 2.97E-07 1.83E-07 1.52E-07
80× 80 1.87E-08 3.99 1.14E-08 4.00 9.47E-09 4.00

120× 120 3.69E-09 4.00 2.25E-09 4.00 1.87E-09 4.00
160× 160 1.17E-09 4.00 7.13E-10 4.00 5.92E-10 4.00
200× 200 4.79E-10 4.00 2.92E-10 4.00 2.42E-10 4.00
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Test on accuracy order: RKDG(10,4,k)

Ix × Jy
θ = 0.75 θ = 1 θ = 1.25

error order error order error order

k = 1

40× 40 2.52E-03 1.50E-03 1.21E-03
80× 80 6.35E-04 1.99 3.75E-04 2.00 3.03E-04 2.00

120× 120 2.83E-04 2.00 1.67E-04 2.00 1.35E-04 2.00
160× 160 1.59E-04 2.00 9.38E-05 2.00 7.58E-05 2.00
200× 200 1.02E-04 2.00 6.01E-05 2.00 4.85E-05 2.00

k = 2

40× 40 1.42E-05 1.89E-05 2.48E-05
80× 80 1.77E-06 3.00 2.36E-06 3.00 3.11E-06 3.00

120× 120 5.25E-07 3.00 7.00E-07 3.00 9.21E-07 3.00
160× 160 2.22E-07 3.00 2.95E-07 3.00 3.88E-07 3.00
200× 200 1.13E-07 3.00 1.51E-07 3.00 1.99E-07 3.00

k = 3

40× 40 2.97E-07 1.83E-07 1.52E-07
80× 80 1.87E-08 3.99 1.14E-08 4.00 9.47E-09 4.00

120× 120 3.69E-09 4.00 2.25E-09 4.00 1.87E-09 4.00
160× 160 1.17E-09 4.00 7.13E-10 4.00 5.92E-10 4.00
200× 200 4.79E-10 4.00 2.92E-10 4.00 2.42E-10 4.00
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Test on regularity assumption: independent of s

Ix × Jy
θ = 0.75 θ = 1 θ = 1.25

error order error order error order

s = 4
q = 3

40× 40 9.38E-06 9.71E-06 1.11E-05
80× 80 6.95E-07 3.76 7.34E-07 3.72 8.47E-07 3.71

120× 120 1.52E-07 3.75 1.64E-07 3.69 1.90E-07 3.69
160× 160 5.18E-08 3.73 5.71E-08 3.68 6.57E-08 3.68
200× 200 2.26E-08 3.71 2.52E-08 3.67 2.89E-08 3.68

s = 4
q = 4

40× 40 1.07E-05 7.82E-06 6.96E-06
80× 80 7.43E-07 3.84 4.82E-07 4.02 4.10E-07 4.09

120× 120 1.51E-07 3.94 9.47E-08 4.01 7.98E-08 4.04
160× 160 4.81E-08 3.97 2.99E-08 4.01 2.51E-08 4.02
200× 200 1.98E-08 3.98 1.22E-08 4.01 1.02E-08 4.02

s = 10
q = 3

40× 40 9.40E-06 9.73E-06 1.11E-05
80× 80 6.98E-07 3.75 7.37E-07 3.72 8.47E-07 3.71

120× 120 1.53E-07 3.75 1.65E-07 3.69 1.90E-07 3.69
160× 160 5.24E-08 3.72 5.73E-08 3.68 6.56E-08 3.69
200× 200 2.29E-08 3.70 2.53E-08 3.67 2.88E-08 3.68

s = 10
q = 4

40× 40 1.07E-05 7.82E-06 6.95E-06
80× 80 7.43E-07 3.84 4.81E-07 4.02 4.09E-07 4.09

120× 120 1.51E-07 3.94 9.46E-08 4.01 7.96E-08 4.04
160× 160 4.81E-08 3.97 2.99E-08 4.01 2.50E-08 4.02
200× 200 1.98E-08 3.98 1.22E-08 4.01 1.02E-08 4.02
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Motivation and difficulties

Many theoretical analysis have been presented for the semi-discrete DG
method. However, the numerical experiments are gotten by virtue of
some suitable time-marching.

In some sense, the superconvergence results of RKDG(s, r, k) method is
stated as follows:

The superconveregence results of the semi-discrete DG method
are preserved, and the time order is provided additionally.

The difficulties in analysis:
stability analysis of high order RKDG method;
reference function in the stage time;
the incomplete correction function;
Deep investigation on the derivation of error.
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1. Incomplete correction of the reference functions
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Technique of correction function

Cited from the following paper for the semi-discrete DG method, however,
with minor modification

W. X. Cao, and e.t.c, ESAIM 51 (2017), 467-486

Given any integer p ≥ 0. For any function w ∈ H1(Th), the p-th correction
function is defined by

Fpw = (−GθhD−1
h )p(Ph −Gθh)w ∈ Vh. (37)

Here
Ph and Gθh are the L2 projection and the GGR projection, respectively;
D−1

h is the antiderivative in each element, defined by

D−1
h z(x) =

∫ x

xi−1/2

z(x′)dx′, x ∈ Ii = (xi− 1
2
, xi+ 1

2
). (38)
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Technique of correction function

Lemma 4.1

Let 0 ≤ p ≤ k and w ∈ H1(Th).
There exists a constant C > 0 independent of h and w, such that

‖Fpw‖L2(I) ≤ Chp‖(Ph −Gθh)w‖L2(I). (39)

As a corollary, the correction operator Fp is linear and continuous from
H1(Th) to Vh.
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Technique of correction function

Lemma 4.2

Let 1 ≤ p ≤ k and w ∈ H1(Th).
There holds

1 the exact collocation of the numerical flux, namely,

{{Fpw}}(θ)
i+ 1

2
= 0, i = 1, 2, . . . ,N.

2 the recurrence relationship, namely,

(Fpw, vx) = (Fp−1w, v), ∀v ∈ Vh.

As a corollary of the above results, we have

H(Fpw, v) = β(Fp−1w, v), ∀v ∈ Vh.
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Technique of correction function

Lemma 4.3

Let 1 ≤ p ≤ k and w ∈ H1(Th). There holds

(Fp−1w, v) = 0, ∀v ∈ Vk−p
h .
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Incomplete correction function

Let 1 ≤ q ≤ k be the total number of correction manipulation. Take

χn,` = GθhUn,` −
∑

1≤p≤q

Fp(−∂x)
pWn,` ∈ Vh. (40)

The word ”incomplete” comes from the fact that

Wn,` = U(`)
[min(q,r)](tn)

is truncated from the reference function Un,` = U(`)
[r] (tn).

Based on the above lemmas, we have the following estimate for the RHS
term in the error equation of ξ.

Lemma 4.4 (trivial proof but a little complex)

Assume τ/h is upper bounded. With the choice (40), there holds

‖Zn,`‖ ≤ C‖U0‖Hmax(k+q+2,r+1)(I)(hk+q+1 + τ r), (41)

for ` = 0, 1, . . . , s− 1.
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2. Supraconvergence analysis
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Supraconvergence results

Theorem 4.1

Suppose here and below that the time step τ is taken to ensure the
L2-norm stability of the RKDG(s, r, k) method.
Let 1 ≤ q ≤ k and take the initial solution

u0 = GθhU0 −
∑

1≤p≤qnt

Fp(−∂x)
pU0, (42)

where qnt is a given integer.
Then there holds the following supraconvergence results:

Let q− 1 ≤ qnt ≤ k, then we have

‖ξn‖ ≤ C‖U0‖Hmax(k+q+2,r+1)(I)(hk+q+1 + τ r), (43)

Let q ≤ qnt ≤ k, then we have

‖ξn
x‖ ≤ C‖U0‖Hmax(k+q+3,r+2)(I)(hk+q+1 + τ r), (44)
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Proof of Theorem 4.1 (cont.)

The proof about the solution is trivial, by using Lemmas 3.2 and 4.4,
together with the estimate for the initial error

‖ξ0‖L2(I) ≤
∑

q≤p≤k

‖Fp(−∂x)
pU0‖L2(I)

≤
∑

q≤p≤k

Chphk+1+q−p‖U0‖Hp+k+1+q−p(I)

≤ Chk+1+q‖U0‖Hk+1+q(I).

At the second step, we have used Lemma 4.1 and the approximation
properties of the two projections.
The proof about the derivative is a little complex. A new PDE:

Let Π = −βUx.
Obviously, it satisfies the auxiliary (same-form) problem

Πt + βΠx = 0, x ∈ I = (0, 1), t ∈ (0, T], (45)

equipped with the periodic boundary condition and the initial solution
Π(x, 0) = Π0(x).
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Proof of Theorem 4.1 (cont.)

For any function w ∈ Vh, there exists a unique function w̃ ∈ Vh such that

(w̃, v) = H(w, v), ∀v ∈ Vh.

Define w̃ = Hhw, which forms a linear map from Vh to itself.
Let ũn,` = Hhun,`.
It follows from the RKDG method that

un,`+1 =
∑

0≤κ≤`

[c`κun,κ + τd`κũn,κ].

Making a left-multiplication of Hh yields for n and `, and make an L2 inner
product, we will have

(ũn,`+1, v) =
∑

0≤κ≤`

[
c`κ(ũn,κ, v) + τd`κH(ũn,κ, v)

]
. (46)
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Proof of Theorem 4.1 (cont.)

These formulations can be viewed as the RKDG(s, r, k) method to
approximate the solution of (45), with the initial solution

ũ0 = Hhu0. (47)

Along the same line as the previous discussion, we analogously define

ξ̃n,` = ũn,` −GθhΠn,`
[r] +

∑
1≤p≤q

Fp(−∂x)
pΠn,`

[min(q,r)] ∈ Vh, (48)

and achieve the supraconvergence result

‖ξ̃n‖L2(I) ≤ C‖ξ̃0‖L2(I) + C‖Π0‖Hmax(k+q+2,r+1)(I)(hk+q+1 + τ r). (49)

By a tedious manipulation, we can yield (later)

‖ξ̃0‖L2(I) ≤ Chk+1+q‖U0‖Hk+q+2(I). (50)
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Proof of Theorem 4.1 (cont.)

It is no harm to assume q ≥ 1.
Recalling the definition of ξn,`, we know that

D1(1)ξn = D1(1)un −Gh

(
D1(1)Un

[r]

)
+
∑

1≤p≤q

Fp(−∂x)
p
(
D1(1)Un

[min(q,r)]

)
.

Each term satisfies:
By the definition of temporal difference, there holds

D1(1)un = τHhun = τ ũn.

By the definition of the reference functions, we have

D1(1)Un
[r] = −τβUn

x = D1(1)Un
[min(q,r)].

A comparison with this formulation and (48) yields for that

τ−1D1(1)ξn = ξ̃n. (51)

Note that (51) also holds for q = 0, since the summations vanish.
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Proof of Theorem 4.1

Substituting identity (51) into error equation (32) with ` = 0, we have

H(ξn, v) = (ξ̃n, v)− d−1
00 Z

n,0(v), ∀v ∈ Vh. (52)

Here d00 is the given parameter in the RKDG method.

Similar as Lemma 2.3 in the paper

H. J.Wang, Q. Zhang and C. W. Shu, JSC 81(2019), 2080-2114

we have that
‖ξn

x‖L2(I) ≤ C‖ξ̃n‖L2(I) + C‖Zn,0‖. (53)

Together with (49), (50) and Lemma 4.4, this inequality completes the
proof of this theorem.
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Supplement: proof of inequality (50)

Two simple facts (no harm in assuming that q ≥ 1):
Since U0 ∈ H1(I) is continuous, the definitions of the two projections imply

(HhGθh U0, v) = H(Gθh U0, v) = H(U0, v) = −β((U0)x, v) = −β(Ph(U0)x, v),

holds for any v ∈ Vh. Hence

HhGθh U0 = −βPh(U0)x = −βGθh (U0)x + βF0(−∂x)U0. (54)

Similarly, due to Lemma 4.2, there holds

(HhFp(−∂x)
pU0, v) = H(Fp(−∂x)

pU0, v) = β(Fp−1(−∂x)
pU0, v)

for any v ∈ Vh. Hence,

HhFp(−∂x)
pU0 = βFp−1(−∂x)

pU0. (55)

Hence, it follows from the initial setting (42) that

ũ0 = Hhu0 = Hh

(
GhU0 −

∑
1≤p≤qnt

Fp(−∂x)
pU0

)
= GθhΠ0 − β

∑
2≤p≤qnt

Fp−1(−∂x)
pU0.
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Supplement: proof of inequality (50)

It is no harm in assuming that q ≥ 1.

Substituting the initial setting (42) into the definition of ξ̃0. Together with
the above facts, we have

ξ̃0 = ũ0 −
(
GhΠ0 −

∑
1≤p≤q

Fp(−∂x)
pΠ0

)
= − β

∑
1≤p≤qnt−1

Fp(−∂x)
p+1U0 + β

∑
1≤p≤q

Fp(−∂x)
p+1U0.

Since q ≤ qnt ≤ k, we can get (50).

A supplement is given for q = 0.
Since the summation is equal to zero if the index set is empty, the above
formula also holds for q = 0 and qnt ≥ 1.
If q = qnt = 0, a direct manipulation shows ξ̃0 = −βF0(U0)x.
For these special cases, it is easy to see that (50) holds.
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3. Superconvergence analysis
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Superconvergence results

Theorem 4.2
1 Let k − 1 ≤ qinit ≤ k, then the numerical fluxes and the cell averages are

superconvergent, namely,

|||{{en}}(θ)|||L2(SB
h ) + |||ēn|||L2(SE

h ) ≤ C‖U0‖Hmax(2k+2,r+1)(I)(h2k+1 + τ r).

2 Let 0 ≤ qinit ≤ k, then the solution is superconvergent at the roots namely,

|||en|||L2(SR
h ) ≤ C‖U0‖Hmax(k+3,r+1)(I)(hk+2 + τ r).

and the derivative is superconvergent at the extremums, namely,

|||en
x |||L2(SL

h) ≤ C‖U0‖Hmax(k+3,r+2)(I)(hk+1 + τ r).

3 The above roots and extremums in each element are both related to the
parameter-dependent Radau polynomial, stated as follows.
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The parameter-dependent Radau polynomial

Let Li(x̂) be the standard Legendre polynomial of degree i on [−1, 1], and
thus

Lj,i(x) = Li(x̂) = Li (2(x− xj)/hj) , i ≥ 0,

is the Legendre polynomial of degree i in Ij.

Associated with the mesh and the upwind-biased parameter, we are able
to seek a group of parameters {ϑj}1≤j≤J by the following system of linear
equations

θhk+1
j ϑj + (−1)k(1− θ)hk+1

j+1 ϑj+1 = θhk+1
j − (−1)k(1− θ)hk+1

j+1 , (56)

where j = 1, 2, . . . ,N.

The existence and uniqueness can be verified since the determinant is
not equal to zero, due to θ 6= 1/2.
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The parameter-dependent Radau polynomial

The parameter-dependent Radau polynomial is defined element by
element, namely

Rj,k+1(x) = Lj,k+1(x)− ϑjLj,k(x), x ∈ Ij.

The roots in Ij are denoted by rij for 1 ≤ i ≤ nR
j , where

nR
j =

{
k + 1, if |ϑj| < 1,
k, otherwise

The set SR
h includes all of the above roots.

The extrema in Ij are denoted by lij for 1 ≤ i ≤ nL
j , where

nL
j ≥ nR

j − 1.

The set SL
h includes all of the above extrema.
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Remarks

For the purely upwind flux (θ = 1), there always holds ϑj = 1 and hence
Rj,k+1(x) is the right Radau polynomial.

For the upwind-biased flux (θ 6= 1):
if the uniform mesh is used, we have

ϑj ≡
θ − (−1)k(1− θ)
θ + (−1)k(1− θ) > 0.

However, it may happen ϑj ≤ 0 for thee non-uniform mesh.

To show that, we give a numerical example.

N 1000 2000 4000 8000 16000
10% perturbation 9.318% 9.022% 9.199% 9.085% 9.139%
20% perturbation 25.513% 25.477% 25.449% 25.510% 25.471%

Here k = 2 and θ = 0.75. The non-uniform mesh is gotten by random
perturbations of a uniform mesh with N elements.
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Proof for the numerical flux

Apply the definition of GGR projection.

Take q = k in (40), and get

{{en}}(θ) = {{ξn}}(θ) − {{(Gθh)⊥Un}}(θ) −
∑

1≤p≤k

{{Fp(−∂x)
pUn}}(θ) = {{ξn}}(θ),

due to the first property in Lemma 4.2.

Applying the inverse inequality and Theorem 4.1 we have

|||{{en}}(θ)|||L2(SB
h ) ≤ C‖ξn‖L2(I)

≤ C‖U0‖Hmax(2k+2,r+1)(I)(h2k+1 + τ r).
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Proof for the average

Analogously we have

ēn = ξ̄n −G⊥h Un −
∑

1≤p≤k

Fp(−∂x)pUn = ξ̄n −Fk(−∂x)kUn,

due to Lemma 4.3.
Applying the triangle inequality and the Holder’s inequality, we obtain

|||ēn|||L2(SE
h ) ≤ C‖ξn‖L2(I) + C‖Fk(−∂x)

kUn‖L2(I)

≤ C‖U0‖Hmax(2k+2,r+1)(I)(h2k+1 + τ r).

where
Theorem 4.1 is used for the first term, and
Lemma 4.1 and the approximation properties of the two projections are used
for the second term.
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Proof for the roots and extrema (cont.)

A local projection is introduced with minor modification, which is cited
from the work of W. X. Cao.

Definition 7
Let w ∈ H1(Th) be any given function.

The projection Chw ∈ Vh is defined element by element, and depends on
the parameter ϑj.

If ϑj 6= 0, it satisfies (here C⊥h w = w− Chw is the projection error)∫
Ij

(C⊥h w)v dx = 0, ∀v ∈ Pk−1(Ij),

θj(C⊥h w)−
j+ 1

2
+ (1− θj)(C⊥h w)+

j− 1
2

= 0,

where θj = (ϑj + 1)/2 for even k, and θj = (ϑ−1
j + 1)/2 for odd k.

If ϑj = 0, it is defined as the standard L2-projection Phw in this element.
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Proof for the roots and extrema

Lemma 4.5 (on weak regularity assumption)

There exists a bounding constant C > 0 independent of j, hj and w, such that∣∣C⊥h w(rij)
∣∣+ hj

∣∣(C⊥h w)x(lij)
∣∣ ≤ Chk+ 3

2
j ‖w‖Hk+2(Ij). (57)

Lemma 4.6 (key conclusion for superconvergence)

There exists a bounding constant C > 0 independent of h and w, such that

‖Gθhw− Chw‖L2(I) ≤ Chk+2‖w‖Hk+2(I). (58)

Lemma 4.7 (corollary of above conclusions)

There exists a bounding constant C > 0 independent of h and w, such that

|||(Gθh)⊥w|||L2(SR
h ) + h|||((Gθh)⊥w)x|||L2(SL

h ) ≤ Chk+2‖w‖Hk+2(I). (59)
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Proof for the roots and extrema

Taking q = 1 in (40), we have

|||en|||L2(SR
h ) ≤ |||ξn|||L2(SR

h ) + |||(Gθh)⊥Un|||L2(SR
h ) + |||F1(−∂x)Un|||L2(SR

h ).

Using the inverse inequality, together with Theorem 4.1 and Lemma 4.1,
we obtain

|||ξn|||L2(SR
h ) ≤ C‖ξn‖L2(I) ≤ C(hk+2 + τ r)‖U0‖Hmax(k+3,r+1)(I),

|||F1(−∂x)Un|||L2(SR
h ) ≤ C‖F1(−∂x)Un‖L2(I) ≤ Chk+2‖U0‖Hk+2(I),

where the approximation property of the two projections are also used.
It follows from Lemma 4.7 that

|||(Gθh)⊥Un|||L2(SR
h ) ≤ Chk+2‖Un‖Hk+2(I) ≤ Chk+2‖U0‖Hk+2(I).

Collecting up the above conclusions, we prove the estimate for roots in
Theorem 4.2.
Along the similar line, we can bound |||en

x |||L2(SL
h ) by taking q = 0 in (40),.
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4. Accuracy enhancement of post-processed solution
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Accuracy enhancement of post-processed solution

The filter on a uniform mesh is implemented by the convolution of the
numerical solution with the kernel function

K2k+1,k+1
h (x) =

1
h

∑
−k≤γ≤k

c2k+1,k+1
γ ϕ(k+1)

( x
h
− γ
)
, (60)

where ϕ(k+1) is the B-spline function of order k + 1.
As a byproduct of the above superconvergence analysis, we have the
following conclusion.

Theorem 4.3

Assume that the RKDG(s, r, k) method is of the L2-norm stability under
suitable temporal-spatial condition. Let (42) be the initial solution with
qnt = k, and Mτ = T is the final time, then we have that

‖U(Mτ)− K2k+1,k+1
h ? uM‖ ≤ C‖U0‖Hmax(2k+2,r+1)(I)(h2k+1 + τ r). (61)

Here ? denotes the convolution.
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Proof of Theorem 4.3 (cont.)

For the obtained numerical solution uM, the post-processed solution
satisfies the well-known conclusion2

LHS ≤ Ch2k+1‖UM‖H2k+1(I) + C
∑

0≤`≤k+1

‖∂`heM‖H−(k+1)(I), (62)

where the bounding constant C > 0 solely depends on k.

Here ∂`heM is the `-th order divided difference of the numerical error.

It is sufficient to prove this theorem by showing

(∂`heM,Φ) ≤ C‖U0‖Hmax(2k+2,r+1)(I)(h2k+1 + τ r)‖Φ‖Hk+1(I), (63)

for any Φ ∈ C∞0 (I) and 0 ≤ ` ≤ k + 1.

This purpose can be achieved with the previous superconvergence
results.

2B. Cockburn, M. Luskin, C. -W. Shu and E. Süli, Math. Comp., 72 (2003), 577-606
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Proof of Theorem 4.3 (cont.)

Let w be any piecewise smooth function on Th. The divided difference is
recursively defined by

∂`hw(x) = h−1
[
∂`−1

h w(x + h/2)− ∂`−1
h w(x− h/2)

]
,

for ` ≥ 1, where ∂0
hw(x) = w(x).

By Holder’s inequality, one can see that

‖∂`hw‖L2(I) ≤ ‖∂`x w‖L2(I). (64)

If w and v are periodic, there holds

(∂`hw, v) = (−1)`(w, ∂`hv), ` ≥ 0. (65)

∂`h commutes with Gh, ∂x,Fp, and many operators.
The above manipulations should be understood on the correspondingly
shifted meshes.

qzh@nju.edu.cn L2 -norm analysis of RKDG method July 27-28, 2020, USTC 121 / 141



Proof of Theorem 4.3 (cont.)

Take q = k in (40), and define for 0 ≤ κ ≤ s− 1,

χn,κ = GθhUn,κ −
∑

1≤p≤k

Fp(−∂x)
pWn,κ ∈ Vh.

Recalling the error decomposition en,κ = ξn,κ − ηn,κ with ξn,κ = un,κ − χn,κ,
we have

(∂`he,Φ) = (∂`hξ,Φ)− (∂`hη,Φ).

Here and below e = eM, i.e., the superscript M is dropped for simplicity of
notations.
Since 0 ≤ ` ≤ k + 1, by (65) and (64) we have

(∂`hξ,Φ) = (−1)`(ξ, ∂`hΦ) ≤ ‖ξ‖L2(I)‖Φ‖Hk+1(I).

Hence, due to Theorem 4.1, we have

(∂`hξ,Φ) ≤ C(h2k+1 + τ r)‖U0‖Hmax(2k+2,r+1)(I)‖Φ‖Hk+1(I).
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Proof of Theorem 4.3 (cont.)

By the definition of the correction function, (∂`hη,Φ) is equal to

(∂`h(Gθh)⊥U,Φ) +
∑

1≤p≤k−1

(
∂`hFp(−∂x)

pU,Φ
)

+
(
∂`hFk(−∂x)

kU,Φ
)
.

Each tern will be separately estimated below.
The first term:

The GGR projection implies

(∂`h (Gθh )⊥U,Φ) = ((Gθh )⊥∂`h U,Φ) = ((Gθh )⊥∂`h U,Φ− Pk−1
h Φ),

where Pk−1
h is the local L2-projection onto Vk−1

h .
The approximation properties of the two projections lead to

(∂`h (Gθh )⊥U,Φ) ≤ Ch2k+1‖∂`h U‖Hk+1(I)‖Φ‖Hk(I)

≤ Ch2k+1‖U‖H2k+2(I)‖Φ‖Hk(I).
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Proof of Theorem 4.3 (cont.)

The second term: assume k ≥ 2, since it vanishes when k = 1.
Depending on `, we split the summation index into two sets.
There is no harm in assuming 1 ≤ p ≤ min(`, k − 1).
By using (65), the commutative property, and Lemma 4.3, we have

(∂`hFp(−∂x)
pU,Φ) = (−1)p(∂`−p

h Fp(−∂x)
pU, ∂p

hΦ)

= (−1)p(Fp(−∂x)
p∂`−p

h U, ∂p
hΦ)

= (−1)p(Fp(−∂x)
p∂`−p

h U, ∂p
hΦ− Pk−1−p

h ∂p
hΦ)

≤ Chp · hk+1‖∂`−p
h U‖Hk+1+p(I) · h

k−p‖∂p
hΦ‖Hk−p(I)

≤ Ch2k+1‖U‖H2k+2(I)‖Φ‖Hk(I),

where Lemma 4.1, the approximation property of the two projections, and
(64) are used.
Along the same line we can get the same boundedness for ` < p ≤ k − 1.
Hence, the second term is bounded by∑

1≤p≤k−1

(
∂`hFp(−∂x)

pU,Φ
)
≤ Ch2k+1‖U‖H2k+2(I)‖Φ‖Hk(I).
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Proof of Theorem 4.3

Similarly, the third term can be bounded in the form

(∂`hFk(−∂x)
kU,Φ) = (−1)`(Fk(−∂x)

kU, ∂`hΦ)

≤ Ch2k+1‖U‖H2k+1(I)‖∂`hΦ‖L2(I)

≤ Ch2k+1‖U‖H2k+1(I)‖Φ‖Hk+1(I).

Collecting up the above estimates and noticing that U = U0(x− βT), we
can obtain (63) and then prove this theorem.

Remark 4.1
Theorem 4.3 requires a special setting on the initial solution, which is
inherited from the supraconvergence study.
In practice, the L2-projection setting (not included in this theorem) still
works well to obtain the accuracy enhancement; see the numerical
experiment below.
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5. Numerical experiments
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Numerical experiments

Carry out the RKDG(r, r, 2) method with the upwind-biased parameter
θ = 0.75, to solve the model problem (1) with β = 1 and T = 1.
The non-uniform meshes are obtained by a random perturbation of the
equidistance nodes by at most 10%.
The uniform mesh is used for the post-processing.
The time step is taken τ = 0.2hmin, where hmin is the minimum of all
element lengths.
Two tests:

supraconvergence/superconvergence order:

U0 = sin(2πx).

the sharpness of the regularity assumption:

U0 = sinε+2/3(2πx)

with a positive integer ε.
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Superconvergence order: solution and derivative (1)

qnt = 1 N |||e|||L2(SR
h )

|||e|||L∞(SR
h )

|||ex|||L2(SL
h )

|||ex|||L∞(SL
h )

r = 3

1000 1.89E-10 2.79E-10 1.20E-08 7.30E-08
2000 2.45E-11 2.95 3.53E-11 2.98 1.41E-09 3.09 7.97E-09 3.19
4000 2.98E-12 3.04 4.23E-12 3.06 1.71E-10 3.04 1.12E-09 2.83
8000 3.73E-13 3.00 5.30E-13 3.00 2.11E-11 3.01 1.33E-10 3.07
16000 4.62E-14 3.01 6.54E-14 3.02 2.68E-12 2.98 1.83E-11 2.87

r = 4

1000 1.83E-12 8.22E-12 1.05E-08 5.02E-08
2000 1.20E-13 3.94 6.85E-13 3.59 1.39E-09 2.91 7.76E-09 2.69
4000 7.31E-15 4.04 5.48E-14 3.64 1.69E-10 3.05 1.14E-09 2.77
8000 4.60E-16 3.99 3.38E-15 4.02 2.12E-11 2.99 1.43E-10 2.99
16000 2.90E-17 3.99 2.17E-16 3.96 2.68E-12 2.98 1.79E-11 3.00

r = 5

1000 1.90E-12 8.44E-12 1.10E-08 5.10E-08
2000 1.16E-13 4.03 6.26E-13 3.75 1.33E-09 3.05 7.25E-09 2.81
4000 7.35E-15 3.98 4.03E-14 3.96 1.70E-10 2.97 9.23E-10 2.97
8000 4.63E-16 3.99 3.28E-15 3.62 2.14E-11 2.99 1.38E-10 2.74
16000 2.92E-17 3.98 2.51E-16 3.71 2.72E-12 2.98 2.12E-11 2.70

r = 6

1000 1.91E-12 1.00E-11 1.11E-08 5.84E-08
2000 1.18E-13 4.02 7.79E-13 3.69 1.36E-09 3.03 8.65E-09 2.75
4000 7.29E-15 4.01 4.17E-14 4.22 1.68E-10 3.01 9.12E-10 3.25
8000 4.60E-16 3.99 3.51E-15 3.57 2.12E-11 2.99 1.49E-10 2.62
16000 2.88E-17 4.00 2.35E-16 3.90 2.66E-12 3.00 1.94E-11 2.94
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Superconvergence order: solution and derivative (2)

qnt = 0 N |||e|||L2(SR
h )

|||e|||L∞(SR
h )

|||ex|||L2(SL
h )

|||ex|||L∞(SL
h )

r = 3

1000 1.96E-10 2.89E-10 1.12E-08 6.70E-08
2000 2.40E-11 3.03 3.48E-11 3.06 1.39E-09 3.02 8.61E-09 2.96
4000 2.98E-12 3.01 4.24E-12 3.03 1.74E-10 2.99 1.14E-09 2.91
8000 3.71E-13 3.01 5.27E-13 3.01 2.16E-11 3.01 1.53E-10 2.90
16000 4.61E-14 3.01 6.54E-14 3.01 2.70E-12 3.00 1.87E-11 3.04

r = 4

1000 1.96E-12 1.16E-11 1.14E-08 6.00E-08
2000 1.19E-13 4.03 7.46E-13 3.96 1.39E-09 3.04 8.18E-09 2.88
4000 7.27E-15 4.04 4.85E-14 3.94 1.67E-10 3.06 9.84E-10 3.06
8000 4.62E-16 3.98 3.84E-15 3.66 2.13E-11 2.97 1.57E-10 2.65
16000 2.88E-17 4.00 2.19E-16 4.13 2.66E-12 3.00 2.03E-11 2.95

r = 5

1000 1.93E-12 8.61E-12 1.13E-08 5.24E-08
2000 1.14E-13 4.08 6.47E-13 3.73 1.30E-09 3.12 7.42E-09 2.82
4000 7.52E-15 3.92 5.59E-14 3.53 1.75E-10 2.90 1.13E-09 2.72
8000 4.58E-16 4.04 2.74E-15 4.35 2.11E-11 3.05 1.48E-10 2.94
16000 2.87E-17 4.00 2.53E-16 3.44 2.65E-12 3.00 2.04E-11 2.86

r = 6

1000 1.91E-12 1.34E-11 1.11E-08 7.20E-08
2000 1.18E-13 4.02 8.20E-13 4.03 1.35E-09 3.03 8.81E-09 3.03
4000 7.37E-15 4.00 4.81E-14 4.09 1.70E-10 2.99 1.06E-09 3.05
8000 4.55E-16 4.02 3.80E-15 3.66 2.09E-11 3.02 1.53E-10 2.79
16000 2.88E-17 3.98 2.35E-16 4.01 2.66E-12 2.98 1.95E-11 2.98
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Superconvergence order: flux and average (1)

qnt = k N |||{{e}}(θ)|||L2(SB
h )

|||{{e}}(θ)|||L∞(SB
h )

|||̄e|||L2(SE
h )

|||̄e|||L∞(SE
h )

r = 3

1000 1.92E-10 2.71E-10 1.92E-10 2.71E-10
2000 2.44E-11 2.97 3.45E-11 2.97 2.44E-11 2.97 3.45E-11 2.97
4000 2.98E-12 3.03 4.21E-12 3.03 2.98E-12 3.03 4.21E-12 3.03
8000 3.72E-13 3.00 5.27E-13 3.00 3.72E-13 3.00 5.27E-13 3.00

16000 4.60E-14 3.02 6.51E-14 3.02 4.60E-14 3.02 6.51E-14 3.02

r = 4

1000 3.90E-14 5.51E-14 3.95E-14 5.77E-14
2000 2.40E-15 4.02 3.39E-15 4.02 2.42E-15 4.03 3.48E-15 4.05
4000 1.53E-16 3.97 2.17E-16 3.97 1.54E-16 3.97 2.19E-16 3.99
8000 9.35E-18 4.03 1.32E-17 4.03 9.37E-18 4.04 1.33E-17 4.04

16000 5.85E-19 4.00 8.27E-19 4.00 5.85E-19 4.00 8.30E-19 4.00

r = 5

1000 3.62E-15 5.12E-15 3.69E-15 5.63E-15
2000 1.13E-16 5.00 1.60E-16 5.00 1.15E-16 5.00 1.79E-16 4.97
4000 3.51E-18 5.01 4.97E-18 5.01 3.58E-18 5.00 5.66E-18 4.99
8000 1.11E-19 4.99 1.57E-19 4.99 1.13E-19 4.99 1.79E-19 4.98

16000 3.45E-21 5.00 4.88E-21 5.00 3.52E-21 5.00 5.64E-21 4.99

r = 6

1000 3.65E-15 5.16E-15 3.72E-15 5.79E-15
2000 1.14E-16 5.00 1.61E-16 5.00 1.16E-16 5.00 1.87E-16 4.96
4000 3.54E-18 5.01 5.01E-18 5.01 3.61E-18 5.01 5.79E-18 5.01
8000 1.11E-19 5.00 1.57E-19 5.00 1.13E-19 5.00 1.80E-19 5.01

16000 3.47E-21 5.00 4.91E-21 5.00 3.54E-21 5.00 5.57E-21 5.02
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Superconvergence order: flux and average (2)

qnt = k − 1 N |||{{e}}(θ)|||L2(SB
h )

|||{{e}}(θ)|||L∞(SB
h )

|||̄e|||L2(SE
h )

|||̄e|||L∞(SE
h )

r = 3

1000 1.89E-10 2.67E-10 1.89E-10 2.67E-10
2000 2.45E-11 2.94 3.47E-11 2.94 2.45E-11 2.94 3.47E-11 2.94
4000 2.98E-12 3.04 4.21E-12 3.04 2.98E-12 3.04 4.21E-12 3.04
8000 3.73E-13 3.00 5.27E-13 3.00 3.73E-13 3.00 5.27E-13 3.00
16000 4.62E-14 3.01 6.53E-14 3.01 4.62E-14 3.01 6.53E-14 3.01

r = 4

1000 3.95E-14 5.62E-14 4.01E-14 5.77E-14
2000 2.41E-15 4.04 3.41E-15 4.04 2.42E-15 4.05 3.47E-15 4.06
4000 1.49E-16 4.02 2.11E-16 4.02 1.49E-16 4.02 2.12E-16 4.03
8000 9.29E-18 4.00 1.31E-17 4.00 9.31E-18 4.00 1.32E-17 4.01
16000 5.81E-19 4.00 8.22E-19 4.00 5.82E-19 4.00 8.24E-19 4.00

r = 5

1000 3.70E-15 5.26E-15 3.67E-15 5.33E-15
2000 1.14E-16 5.01 1.64E-16 5.00 1.14E-16 5.02 1.66E-16 5.00
4000 3.61E-18 4.99 5.21E-18 4.98 3.59E-18 4.98 5.29E-18 4.97
8000 1.12E-19 5.01 1.61E-19 5.01 1.12E-19 5.01 1.65E-19 5.00
16000 3.52E-21 5.00 5.07E-21 4.99 3.50E-21 4.99 5.19E-21 4.99

r = 6

1000 3.73E-15 5.34E-15 3.71E-15 5.41E-15
2000 1.15E-16 5.02 1.66E-16 5.01 1.14E-16 5.02 1.69E-16 5.00
4000 3.58E-18 5.00 5.12E-18 5.02 3.56E-18 5.00 5.24E-18 5.01
8000 1.12E-19 4.99 1.62E-19 4.99 1.12E-19 4.99 1.65E-19 4.98
16000 3.51E-21 5.00 5.05E-21 5.00 3.49E-21 5.00 5.19E-21 5.00
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Test on supraconvergence order

qnt = k N ‖ξ‖L2(I) ‖ξx‖L2(I) ‖ξxx‖L2(I)

r = 3

1000 1.92E-10 1.20E-09 7.57E-09
2000 2.44E-11 2.97 1.53E-10 2.97 9.63E-10 2.97
4000 2.98E-12 3.03 1.87E-11 3.03 1.18E-10 3.03
8000 3.72E-13 3.00 2.34E-12 3.00 1.47E-11 3.00
16000 4.60E-14 3.02 2.89E-13 3.02 1.82E-12 3.02

r = 4

1000 3.90E-14 2.45E-13 7.97E-12
2000 2.40E-15 4.02 1.51E-14 4.02 4.79E-13 4.06
4000 1.53E-16 3.97 9.63E-16 3.97 3.02E-14 3.99
8000 9.35E-18 4.03 5.88E-17 4.03 1.93E-15 3.96
16000 5.85E-19 4.00 3.67E-18 4.00 1.19E-16 4.02

r = 5

1000 3.62E-15 2.30E-14 7.62E-12
2000 1.13E-16 5.00 7.18E-16 5.00 4.78E-13 3.99
4000 3.51E-18 5.01 2.23E-17 5.01 2.95E-14 4.02
8000 1.11E-19 4.99 7.06E-19 4.98 1.92E-15 3.95
16000 3.45E-21 5.00 2.20E-20 5.01 1.17E-16 4.04

r = 6

1000 3.65E-15 2.32E-14 7.90E-12
2000 1.14E-16 5.00 7.24E-16 5.00 4.77E-13 4.05
4000 3.54E-18 5.01 2.25E-17 5.01 3.00E-14 3.99
8000 1.11E-19 5.00 7.06E-19 4.99 1.89E-15 3.99
16000 3.47E-21 5.00 2.21E-20 5.00 1.18E-16 4.00
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Supraconvergence order (1)

qnt = k − 1 N ‖ξ‖L2(I) ‖ξx‖L2(I) ‖ξxx‖L2(I)

r = 3

1000 1.89E-10 1.19E-09 7.45E-09
2000 2.45E-11 2.94 1.54E-10 2.94 9.68E-10 2.94
4000 2.98E-12 3.04 1.87E-11 3.04 1.17E-10 3.04
8000 3.73E-13 3.00 2.34E-12 3.00 1.47E-11 3.00
16000 4.62E-14 3.01 2.90E-13 3.01 1.82E-12 3.01

r = 4

1000 3.95E-14 2.77E-13 1.34E-10
2000 2.41E-15 4.04 1.61E-14 4.11 1.04E-11 3.69
4000 1.49E-16 4.02 9.72E-16 4.05 9.38E-13 3.47
8000 9.29E-18 4.00 5.98E-17 4.02 8.10E-14 3.53
16000 5.81E-19 4.00 3.72E-18 4.01 7.53E-15 3.43

r = 5

1000 3.70E-15 9.76E-14 1.05E-10
2000 1.14E-16 5.01 4.91E-15 4.31 9.65E-12 3.44
4000 3.61E-18 4.99 2.72E-16 4.17 9.42E-13 3.36
8000 1.12E-19 5.01 1.33E-17 4.36 8.24E-14 3.51
16000 3.52E-21 5.00 6.96E-19 4.25 7.70E-15 3.42

r = 6

1000 3.73E-15 1.08E-13 1.14E-10
2000 1.15E-16 5.02 5.20E-15 4.38 1.03E-11 3.47
4000 3.58E-18 5.00 2.71E-16 4.26 9.57E-13 3.43
8000 1.12E-19 4.99 1.38E-17 4.30 8.54E-14 3.49
16000 3.51E-21 5.00 6.64E-19 4.37 7.38E-15 3.53
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Supraconvergence order (2)

qnt = k − 2 N ‖ξ‖L2(I) ‖ξx‖L2(I) ‖ξxx‖L2(I)

r = 3

1000 1.96E-10 1.23E-09 1.70E-08
2000 2.40E-11 3.03 1.51E-10 3.03 2.22E-09 2.94
4000 2.98E-12 3.01 1.87E-11 3.01 3.10E-10 2.84
8000 3.71E-13 3.01 2.33E-12 3.01 4.44E-11 2.81
16000 4.61E-14 3.01 2.90E-13 3.01 5.93E-12 2.90

r = 4

1000 4.22E-14 1.95E-11 2.36E-08
2000 2.48E-15 4.09 1.64E-12 3.57 3.58E-09 2.72
4000 1.53E-16 4.02 1.39E-13 3.56 5.46E-10 2.71
8000 9.51E-18 4.01 1.31E-14 3.40 9.11E-11 2.58
16000 5.96E-19 4.00 1.18E-15 3.48 1.45E-11 2.65

r = 5

1000 1.63E-14 1.80E-11 2.18E-08
2000 8.42E-16 4.27 1.72E-12 3.39 3.76E-09 2.53
4000 4.11E-17 4.36 1.44E-13 3.57 5.53E-10 2.76
8000 2.05E-18 4.32 1.29E-14 3.48 8.95E-11 2.63
16000 1.04E-19 4.31 1.16E-15 3.48 1.43E-11 2.64

r = 6

1000 1.66E-14 1.80E-11 2.15E-08
2000 8.05E-16 4.37 1.60E-12 3.49 3.48E-09 2.62
4000 3.95E-17 4.35 1.41E-13 3.50 5.47E-10 2.67
8000 2.00E-18 4.31 1.27E-14 3.47 8.82E-11 2.63
16000 1.10E-19 4.19 1.23E-15 3.36 1.51E-11 2.55
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Accuracy enhancement of post-processed solution

N qnt = k qnt = 0 (GGR) L2 projection

r = 3

1000 3.67E-10 3.67E-10 3.67E-10
2000 4.59E-11 3.00 4.59E-11 3.00 4.59E-11 3.00
4000 5.74E-12 3.00 5.74E-12 3.00 5.74E-12 3.00
8000 7.17E-13 3.00 7.17E-13 3.00 7.17E-13 3.00

16000 8.97E-14 3.00 8.97E-14 3.00 8.97E-14 3.00

r = 4

1000 9.38E-14 9.29E-14 9.24E-14
2000 5.82E-15 4.01 5.79E-15 4.00 5.77E-15 4.00
4000 3.62E-16 4.01 3.61E-16 4.00 3.61E-16 4.00
8000 2.26E-17 4.00 2.26E-17 4.00 2.25E-17 4.00

16000 1.41E-18 4.00 1.41E-18 4.00 1.41E-18 4.00

r = 5

1000 3.46E-15 3.18E-15 3.15E-15
2000 1.06E-16 5.03 9.73E-17 5.03 9.61E-17 5.03
4000 3.28E-18 5.01 3.00E-18 5.02 2.97E-18 5.02
8000 1.02E-19 5.01 9.33E-20 5.01 9.22E-20 5.01

16000 3.18E-21 5.00 2.91E-21 5.00 2.87E-21 5.00

r = 6

1000 3.48E-15 3.20E-15 3.17E-15
2000 1.07E-16 5.03 9.79E-17 5.03 9.67E-17 5.03
4000 3.30E-18 5.01 3.02E-18 5.02 2.99E-18 5.02
8000 1.03E-19 5.01 9.39E-20 5.01 9.28E-20 5.01

16000 3.20E-21 5.00 2.93E-21 5.00 2.89E-21 5.00
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Sharpness of regularity assumption (1)

Table: Superconvergence results. In each group, the regularity parameter is ε− 1 for
the left column, and is ε for the right column.

J |||e|||L2(SR
h )
, qnt = 0, r = 4, ε = 4 |||ex|||L2(SL

h )
, qnt = 0, r = 3, ε = 4

1000 6.53E-10 8.42E-11 1.42E-06 4.92E-07
2000 5.65E-11 3.53 4.96E-12 4.09 2.57E-07 2.46 6.35E-08 2.95
4000 4.91E-12 3.52 3.10E-13 4.00 4.52E-08 2.51 7.76E-09 3.03
8000 4.31E-13 3.51 1.91E-14 4.02 8.29E-09 2.45 9.87E-10 2.98

16000 3.84E-14 3.49 1.21E-15 3.98 1.54E-09 2.43 1.22E-10 3.02

N |||{{e}}(θ)|||L2(SB
h )
, qnt = k, r = 5, ε = 5 |||̄e|||L2(SE

h )
, qnt = k, r = 5, ε = 5

1000 1.72E-11 5.12E-12 1.64E-11 5.12E-12
2000 8.20E-13 4.39 1.61E-13 4.99 7.88E-13 4.38 1.61E-13 4.99
4000 4.11E-14 4.32 5.06E-15 4.99 3.97E-14 4.31 5.07E-15 4.99
8000 2.02E-15 4.34 1.57E-16 5.01 1.97E-15 4.33 1.57E-16 5.01

16000 9.99E-17 4.34 4.94E-18 4.99 9.80E-17 4.33 4.94E-18 4.99
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Sharpness of regularity assumption (2)

Table: Supraconvergence results. In each group, the regularity parameter is ε− 1 for
the left column, and is ε for the right column.

N ‖ξ‖L2(I), qnt = k, r = 5, ε = 5 ‖ξx‖L2(I), qnt = k, r = 5, ε = 6

1000 1.72E-11 5.12E-12 6.38E-10 2.99E-10
2000 8.32E-13 4.37 1.61E-13 4.99 3.04E-11 4.39 9.39E-12 4.99
4000 4.08E-14 4.35 5.06E-15 4.99 1.48E-12 4.36 2.95E-13 4.99
8000 2.01E-15 4.34 1.57E-16 5.01 7.23E-14 4.35 9.15E-15 5.01

16000 9.96E-17 4.33 4.94E-18 4.99 3.58E-15 4.34 2.87E-16 4.99
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Sharpness of regularity assumption (3)

Table: Accuracy enhancement of post-processed solution. The regularity parameter is
ε− 1 for the left column, and is ε for the right column.

N qnt = k, r = 5, ε = 5

1000 1.59E-11 4.50E-12
2000 7.59E-13 4.39 1.38E-13 5.03
4000 3.67E-14 4.37 4.25E-15 5.02
8000 1.79E-15 4.36 1.32E-16 5.01

16000 8.82E-17 4.35 4.12E-18 5.00
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Concluding remarks

Stability and error estimates of RKDG methods when solving linear
hyperbolic equation:

a flexible framework is proposed to analyze the L2-norm stability;
different stability mechanisms are pointed out;
a systematical theory discussions on the termination index and the
contribution index.
the detailed performances are investigated for many popular schemes,
especially for the same-stage-and-same-order RK time-marching.
the optimal L2-norm error estimate and superconvergence analysis for the
fully discrete RKDG methods.

Future work
generalize to the other kinds of time-marching?
apply to the RKDG method for linear hyperbolic equations with variable
coefficients and/or nonlinear conservation laws?
the other kinds of error estimates?
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Concluding remarks

We have proposed a uniform framework to obtain the L2-norm stability
performance of the RKDG method, by the help of the matrix transferring
process, based on the temporal difference of stage solutions.
In the error estimate, the additional tool is the definition of the reference
function at every stage time.
By the above technique, the superconvergence analysis can be easily
carried out for the RKDG method.

Y. Xu, Q. Zhang, C.- W. Shu, and H. J. Wang,

The L2-norm stability analysis of Runge-Kutta discontinuous Galerkin methods for linear hyperbolic
equations, SIAM J. Numer. Anal. 57 (2019), no. 4, 1574–1601.

Y. Xu, C. -W. Shu, and Q. Zhang,
Error estimate of the fourth-order Runge–Kutta discontinuous Galerkin methods for linear hyperbolic
equations, accepted by SINUM (2020)

Y. Xu, X. Meng, C. -W. Shu, and Q. Zhang,
Superconvergence analysis of Runge-Kutta Discontinuous Galerkin Method for Linear Hyperbolic
Equation, online J. Sci. Comput. (2020)

Thanks for your attention!
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