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Motivation

Motivation

We are interested in deterministic kinetic simulations, e.g. those
arising in plasma models.

Computational challenges: high dimensions (3D+3V), conservation
properties, multiple scales.
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Motivation

An example

The Vlasov-Poisson system is a fundamental model in plasma physics.

ft + v · ∇xf + E(t, x) · ∇vf = 0, (1)

−∆xΦ(x) = ρ− 1, E(x) = −∇xΦ, (2)

where f (t, x, v) denotes the probability distribution function of electrons.

Conservation: particle charge, momentum, energy, enstrophy...

f is a high-dimensional function.

Filamentation: thin structure will develop in phase space.

Other scales exist in more realistic models, e.g. multi-species, strong
magnetic field...
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Motivation

Our approach

Transport dominated problem → discontinuous Galerkin method
(good conservation properties).

High dimensional equation (2-6D) → sparse grid method.

Multiple scales → adaptivity and other computational techniques.

Many other applications involve PDEs in high dimensions (3D and above),
and we are interested developing numerical algorithms for their simulations.
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Numerical methods

Sparse grid method: breaking the curse of dimensionality

Sparse grid is first introduced in the quadrature context Smolyak
(63), introduced by Zenger (91), developed by Griebel (91,98,05...),
widely used in UQ framework Xiu, Hesthaven (05...).

When solving high-dimensional PDEs, sparse grid method has been
incorporated in
I Finite difference/volume/element methods: Griebel (98); Griebel,

Zumbusch (99). Hemker (95); Bungartz, Griebel (04); Schwab, Suli,
Todor (08).

I Spectral methods: Griebel (07); Gradinaru (07); Shen, Wang (10);
Shen, Yu (10, 12).

I DG methods: Wang et al JCP, 2016, Guo, Cheng, SISC, 2016, 2017,
Tao et al JCP, SISC, 2019, Liu et al, JCP 2019, Tao et al, JCP, 2020,
Huang et al, SISC 2020.
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Numerical methods

Hierarchical decomposition of
piecewise polynomial spaces in one dimension

Consider Ω = [0, 1] and define n-th level grid

Ωn = {I jn = (2−nj , 2−n(j + 1)], j = 0, . . . , 2n − 1}
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Numerical methods

Hierarchical decomposition of
piecewise polynomial spaces in one dimension

Conventional approximation space on the n-th level grid Ωn

V k
n = {v : v ∈ Pk(I jn), ∀ j = 0, . . . , 2n − 1}

dim(V k
n ) = 2n(k + 1)

Nested structure
V k

0 ⊂ V k
1 ⊂ V k

2 ⊂ V k
3 ⊂ · · ·

W k
n : orthogonal complement of V k

n−1 in V k
n , for n > 1, represents the finer level details

when the mesh is refined, satisfying

V k
n−1 ⊕W k

n = V k
n

W k
n ⊥ V k

n−1

Let W k
0 := V k

0 , then

V k
N =

⊕
0≤n≤N

W k
n

dim(W k
n ) =

⌈
2n−1

⌉
(k + 1)
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Numerical methods

Background for multiwavelet in DG context

Haar wavelet Haar (1910).

L2 orthogonal multiwavelet bases Alpert (1993).

Adaptive multiresolution DG schemes Calle et al. (2005), Archibald
et al. (2011), Hovhannisyan et al. (2014), Gerhard et al. (2015)...

Multiwavelet trouble cell indicator Vuik, Ryan (2014)...
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Numerical methods

Hierarchical orthonormal bases: Alpert’s multiwavelet

Bases in W k
0 : scaled orthonormal Legendre polynomials.

Bases in W k
1 :

hi (x) = 21/2fi (2x − 1), i = 1, . . . , k + 1

The orthonormal, vanishing-moment functions {fi (x)}k (Alpert 93), which are supported
on (−1, 1) and depend on k, will be defined later.

Bases in W k
n , n ≥ 1

v j
i,n(x) = 2(n−1)/2 hi (2n−1x − j), i = 1, . . . , k + 1, j = 0, . . . , 2n−1 − 1

Orthonormality of multiwavelet bases across different hierarchical levels∫ 1

0

v j
i,n(x)v j′

i′,n′(x) dx = δii′δnn′δjj′
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Numerical methods

Bases on different levels for k = 0
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Numerical methods

Bases on different levels for k = 1
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Numerical methods

Approximation space in multi-dimensions

Consider 2D case, x = (x1, x2) ∈ Ω = [0, 1]2 and multi-index l = (l1, l2) ∈ N2
0

The standard rectangular grid Ωl with mesh size

hl := (2−l1 , 2−l2 )

h := min{2−l1 , 2−l2}

For each I j
l = {(x1, x2) : xi ∈ (2−li ji , 2

−li (ji + 1)]}, the traditional tensor-product polynomial space
is

Vk
l = {v : v(x) ∈ Pk(I j

l ), 0 ≤ j ≤ 2l − 1}

Pk denotes polynomial of degree at most k in each dimension.

Uniform grid: l1 = l2 = N,
Vk

l = Vk
N , then

Vk
N := V k

N,x1
× V k

N,x2
=

⊕
|l|∞≤N

Wk
l

where
Wk

l := W k
l1,x1
×W k

l2,x2

The basis functions for Wk
l can be defined by a tensor product

v j
i,l(x) :=

2∏
t=1

v jt
it ,lt

(xt), jt = 0, . . . ,max(0, 2lt−1 − 1), it = 1, . . . , k + 1
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Numerical methods

Full grid approximation space

Full grid space:

Vk
N =

⊕
|l|∞≤N

Wk
l

d = 2, N = 2, k = 0

1 1

-1

1
1-
1

1 1

-1

1

1 -1

-1 1

2 2

22

2

2 2

-2 -2

-2-2

-2

-2 -2

-22

-1

W00 W20W10

W01
W11

W02
W12

W21

W22
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Numerical methods

Sparse grid approximation space

We consider the sparse grid space: V̂k
N :=

⊕
|l|1≤N Wk

l

1 1

-1

1
1-
1

1 1

-1

1

1 -1

-1 1

-1

W00 W20W10

W01
W11

W02

A viewpoint without using multiwavelet space: V̂k
N =

⊕
|l|1≤N Vk

l .

dim(V̂k
N) = O(2NNd−1(k + 1)d) or O(h−1| log2 h|

d−1)
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Numerical methods

DG method on sparse grids

Consider the linear transport equation with variable coefficient{
ut +∇ · (α(x, t) u) = 0, x ∈ Ω = [0, 1]d ,

u(0, x) = u0(x),
(3)

The semi-discrete DG formulation for (3) is defined as follows: find uh ∈ V̂k
N , such that∫

Ω

(uh)t vh dx =

∫
Ω

uhα · ∇vh dx−
∑
e∈Γ

∫
e

α̂uh · [vh] ds, (4)

.
=A(uh, vh)

for ∀ vh ∈ V̂k
N , where α̂uh defined on the element interface denotes a monotone

numerical flux.
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Numerical methods

Stability (constant coefficient case)

Theorem (L2 stability)

The DG scheme (4) for (3) is L2 stable when α is a constant vector, i.e.

d

dt

∫
Ω

(uh)2 dx = −
∑
e∈Γ

∫
e

|α · n|
2
|[uh]|2ds ≤ 0. (5)
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Numerical methods

Error estimate (constant coefficient case)

Similar to Schwab, Suli, Todor (08), we can establish error estimate in L2 norm for the L2

projection operator, combining with an estimate for DG method, we get

Theorem (L2 error estimate)

Let u be the exact solution, and uh be the numerical solution to the semi-discrete scheme (4)
with numerical initial condition uh(0) = Pu0. For k ≥ 1, u0 ∈ Hp+1(Ω), 1 ≤ q ≤ min{p, k},
N ≥ 1, d ≥ 2, we have for all t ≥ 0,

‖uh − u‖L2(ΩN) ≤(
2
√

Cd ||α||2t C?(k, q, d ,N) + (¯̄ck,0,q + B0(k , q, d)κ0(k , q,N)d)2−N/2
)

2−N(q+1/2)|u0|Hq+1(Ω),

where Cd is a generic constant with dependence only on d,
C?(k, q, d ,N) = maxs=0,1

(
¯̄ck,s,q + Bs(k , q, d)κs(k , q,N)d

)
. The constants

¯̄ck,s,q, Bs(k , q, d), κs(k, q,N) are defined in L2 projection error estimates.

Convergence rate O((log h)dhk+1/2).
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Numerical methods

Linear advection: sparse grid DG

We consider the following linear advection problem
ut +

d∑
m=1

uxm = 0, x ∈ [0, 1]d ,

u(0, x) = sin

(
2π

d∑
m=1

xm

)
,

(6)

subject to periodic boundary conditions.
In the simulation, we compute the numerical solutions up to two periods in
time, meaning that we let final time T = 1 for d = 2, T = 2/3 for d = 3,
and T = 0.5 for d = 4.
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Table: L2 errors and orders of accuracy at T = 1 when d = 2, T = 2/3 when d = 3, and T = 0.5 when
d = 4. N is the number of mesh levels, hN is the size of the smallest mesh in each direction, k is the
polynomial order, d is the dimension. DOF denotes the degrees of freedom of the sparse approximation
space V̂ k

N . L2 order is calculated with respect to hN .

N hN DOF L2 error order DOF L2 error order DOF L2 error order

k = 1, d = 2 k = 1, d = 3 k = 1, d = 4

4 1/16 192 9.17E-02 – 832 3.72E-01 – 3072 4.99E-01 –
5 1/32 448 1.90E-02 2.27 2176 1.19E-01 1.64 8832 2.40E-01 1.06
6 1/64 1024 4.81E-03 1.98 5504 2.96E-02 2.01 24320 9.84E-02 1.28
7 1/128 2304 1.27E-03 1.92 13568 8.85E-03 1.74 64768 3.21E-02 1.62

k = 2, d = 2 k = 2, d = 3 k = 2, d = 4

4 1/16 432 2.13E-03 – 2808 1.10E-02 – 15552 2.80E-02 –
5 1/32 1008 4.39E-04 2.28 7344 1.79E-03 2.63 44712 5.82E-03 2.27
6 1/64 2304 4.45E-05 3.30 18576 3.97E-04 2.17 123120 1.37E-03 2.09
7 1/128 5184 7.68E-06 2.54 45792 5.14E-05 2.95 327888 2.58E-04 2.41

k = 3, d = 2 k = 3, d = 3 k = 3, d = 4

3 1/8 320 6.36E-04 – 2432 2.10E-03 – 16128 4.09E-03 –
4 1/16 768 8.93E-05 2.83 6656 2.37E-04 3.14 49152 6.06E-04 2.75
5 1/32 1792 4.07E-06 4.46 17408 2.49E-05 3.25 141312 6.85E-05 3.14
6 1/64 4096 3.47E-07 3.55 44032 1.83E-06 3.76 389120 7.19E-06 3.25
7 1/128 9216 1.97E-08 4.14 108544 2.03E-07 3.18 1036288 6.36E-07 3.50



Numerical methods

Adaptivity

To resolve fine local structures/accelerate the computation

Adaptive wavelet methods.

Adaptive DG methods.

Adaptive sparse grid schemes. Zenger (90), Griebel (98), Bokanowksi
et al. (12)...

Multiresolution finite difference/finite volume methods for hyperbolic
PDEs. Harten (95), Bihari, Harten (97), Dahmen et al. (01), Cohen
et al. (03)

Adaptive multiresolution DG schemes Calle et al. (2005), Archibald
et al. (2011), Hovhannisyan et al. (2014), Gerhard et al. (2015)
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Numerical methods

Adaptive projection algorithm: parents and children

If a element V j′

l′ satisfies the following conditions:

There exists an integer m such that 1 ≤ m ≤ d and l′ = l + em,
where em denotes the unit vector in xm direction, and the support of

V j′

l′ is within the support of V j
l .

|l′|∞ ≤ N,

then it is called a child element of V j
l . Accordingly, element V j

l is called a

parent element of V j′

l′ .

We use the hash table as the underlying data structure.
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Numerical methods

Refinement criteria

For a function u(x) ∈ Hp+1(Ω), we can show that

u(x) =
∑

l∈Nd
0

∑
j∈Bl,1≤i≤k+1 uj

i,lv
j
i,l(x), where the hierarchical coefficient is

uj
i,l =

∫
Ω u(x)v j

i,l(x)dx.

An element V j
l := {v j

i,l, 1 ≤ i ≤ k + 1} is considered important if∑
1≤i≤k+1

|uj
i,l|‖v

j
i,l(x)‖L1(Ω) > ε, if s = 1 (7)

 ∑
1≤i≤k+1

|uj
i,l|

2

 1
2

> ε, if s = 2 (8)

∑
1≤i≤k+1

|uj
i,l|‖v

j
i,l(x)‖L∞(Ω) > ε, if s =∞, (9)

where ε is a prescribed error threshold.
A similar coarsening criteria can be defined.
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Numerical methods

Adaptive evolution algorithm

Input: Hash table H and leaf table L at tn, numerical solution un
h ∈ Vk

N,H .
Parameters: Maximum level N, polynomial degree k , error constants ε, η,
CFL constant.
Output: Hash table H and leaf table L at tn+1, numerical solution
un+1
h ∈ Vk

N,H .

Prediction. Given a hash table H that stores the numerical solution
uh at time step tn, calculate ∆t. Predict the solution by the DG
scheme using space Vk

N,H and the forward Euler time stepping

method. Generate the predicted solution u
(p)
h .
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Numerical methods

Adaptive evolution algorithm

Refinement. Based on the predicted solution u
(p)
h , screen all

elements in the hash table H. If for element V j
l , the refining criteria

hold, then add its children elements to H and L provided they are not
added yet, and set the associated detail coefficients to zero. We also
need to make sure that all the parent elements of the newly added
element are in H (i.e., no “hole” is allowed in the hash table) and
increase the number of children for all its parent elements by one.
This step generates the updated hash table H(p) and leaf table L(p).
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Numerical methods

Adaptive evolution algorithm

Evolution. Given the predicted table H(p) and the leaf table L(p), we
evolve the solution from tn to tn+1 by the DG scheme using space
Vk

N,H(p) and the third order Runge-Kutta time stepping method. This

step generates the pre-coarsened numerical solution ũn+1
h .

Coarsening. For each element in the leaf table, if the coarsening
criteria hold, then remove the element from table H(p) and L(p). For
each of its parent elements in H(p), we decrease the number of
children by one. If the number becomes zero, i.e, the element has no
child, then it will be added to leaf table L(p). Repeat the coarsening
procedure until no element can be removed from the leaf list. Denote
the resulting hash table and leaf table by H and L respectively, and
the compressed numerical solution un+1

h ∈ Vk
N,H .
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Numerical methods

Linear advection: adaptive sparse grid DG

We test the convergence of adaptive scheme with smooth initial
u(0, x) =

∏d
m=1 sin4 (πxm) .

For smooth case, we fix N = 7, and calculate

convergence rate with respect to ε Rεl =
log(el−1/el)

log(εl−1/εl)

convergence rate with respect to DOF RDOFl
=

log(el−1/el)

log(DOFl/DOFl−1)
,
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Table: Numerical error and convergence rate. N = 7. T = 1. L2 norm based criteria.

ε DOF L2 error RDOF Rε DOF L2 error RDOF Rε DOF L2 error RDOF Rε
k = 1, d = 2 k = 1, d = 3 k = 1, d = 4

1E-03 312 1.47E-02 1168 2.62E-02 2592 2.87E-02
5E-04 404 8.90E-03 1.93 0.72 1840 1.87E-02 0.75 0.49 4512 2.32E-02 0.39 0.31
1E-04 1148 1.70E-03 1.59 1.03 3920 7.26E-03 1.25 0.59 14976 9.49E-03 0.75 0.56
5E-05 1688 1.04E-03 1.28 0.71 6440 4.16E-03 1.12 0.80 23776 6.60E-03 0.79 0.53
1E-05 3588 2.42E-04 1.93 0.90 18624 8.83E-04 1.46 0.96 62368 2.13E-03 1.17 0.70
5E-06 4636 1.37E-04 2.23 0.82 25496 5.10E-04 1.75 0.79 111424 1.18E-03 1.02 0.86

k = 2, d = 2 k = 2, d = 3 k = 2, d = 4

5E-05 774 3.61E-04 4428 1.30E-03 26244 1.48E-03
1E-05 1584 8.78E-05 1.97 0.88 9585 2.58E-04 2.10 1.01 51840 5.30E-04 1.51 0.64
5E-06 1998 4.58E-05 2.80 0.94 13716 1.74E-04 1.09 0.57 69012 2.60E-04 2.49 1.03
1E-06 4023 1.43E-05 1.67 0.73 27081 4.15E-05 2.11 0.89 168723 9.46E-05 1.13 0.63
5E-07 5157 7.20E-06 2.76 0.99 40446 2.45E-05 1.32 0.76 226719 4.89E-05 2.23 0.95
1E-07 9072 1.80E-06 2.46 0.86 77463 7.06E-06 1.91 0.77 531684 1.24E-05 1.61 0.85

k = 3, d = 2 k = 3, d = 3 k = 3, d = 4

1E-05 1120 3.71E-05 10496 5.72E-05 58368 1.26E-04
5E-06 1184 2.92E-05 4.32 0.35 12032 4.91E-05 1.12 0.22 97280 7.53E-05 1.01 0.74
1E-06 2208 9.87E-06 1.74 0.67 18688 1.31E-05 3.00 0.82 129024 3.73E-05 2.49 0.44
5E-07 2864 4.85E-06 2.73 1.03 25984 1.09E-05 0.56 0.27 204800 1.34E-05 2.21 1.47
1E-07 3968 1.31E-06 4.02 0.82 43840 2.71E-06 2.66 0.86 409600 6.14E-06 1.13 0.49
5E-08 5760 7.88E-07 1.36 0.73 57472 1.50E-06 2.20 0.86 521216 2.79E-06 3.27 1.14



Numerical methods

Linear advection: discontinuous profile

We consider

u(0, x) =

{
1 (x1, x2) ∈ [ 1

2 −
√

6
2 ,

1
2 +

√
6

2 ]2.

0 otherwise,
(10)

We fix N = 7, ε = 10−5 and compare the performance of the scheme with L1, L2

and L∞ based refinement/coarsening criteria up to final time T = 1.

(a) L1 criteria: solution (b) L1 criteria: active elements
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(c) L2 criteria: solution (d) L2 criteria: active elements

(e) L∞ criteria: solution (f) L∞ criteria: active elements



Kinetic simulations
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Kinetic simulations

Vlasov-Poisson simulation

Some related reference: Sparse grid methods for kinetic problems

wavelet-MRA method Besse et al (08); sparse adaptive FEM Widmer
et al (98); sparse discrete ordinate method, sparse tensor spherical
harmonics Grella, Schwab (11); combination techniques for linear
gyrokinetics Kowtiz et al (13).

Standard benchmark tests include:

Landau damping:

f (0, x , v) = fM(v)(1 + A cos(kx)), x ∈ [0, L], v ∈ [−Vc ,Vc ], (11)

where A = 0.5, k = 0.5, L = 4π, Vc = 2π, and fM(v) = 1√
2π

e−v
2/2.

Other initial conditions: Bump-on-tail instability, Two-stream
instability.
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Kinetic simulations

Conservation properties of moments for sparse grid DG

1, |v|2 still belongs to the space V̂k
N when k ≥ 2. That’s the key to particle

number and energy conservation.
If one wants to design a DG scheme with particle number and energy
conservation, it is key to choose a basis set that includes 1 and |v|2 on level 0,
while on other levels the bases can be chosen freely according to accuracy
consideration.
Conservation for adaptive sparse grids will deteriorate due to the error
contribution at velocity domain boundary.
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Kinetic simulations

Conservation: Landau damping (sparse grid DG)

Yingda Cheng (MSU) SG-DG USTC, Aug. 2020 Page 35



Kinetic simulations

Conservation: adaptive sparse grid DG
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PDF, Landau damping t = 10, t = 20



Kinetic simulations

Comparison: two stream instability I

(s) Sparse grid DG (t) Adaptive ε = 10−5

Figure: T = 20, k = 3,N = 7
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Kinetic simulations

Vlasov-Maxwell simulation

The Vlasov-Maxwell (VM) system is known as a fundamental model in plasma physics
for describing the dynamics of collisionless magnetized plasmas. We consider the
evolution of a single species of nonrelativistic electrons under the self-consistent
electromagnetic field while the ions are treated as uniform fixed background. Under the
scaling of the characteristic time by the inverse of the plasma frequency ω−1

p , length by
the Debye length λD , and electric and magnetic fields by −mcωp/e (with m the electron
mass, c the speed of light, and e the electron charge), the dimensionless form of the VM
system is

∂t f + ξ · ∇xf + (E + ξ × B) · ∇ξf = 0 , (12a)

∂E

∂t
= ∇x × B− J,

∂B

∂t
= −∇x × E , (12b)

∇x · E = ρ− ρi , ∇x · B = 0 , (12c)

with

ρ(x, t) =

∫
Ωξ

f (x, ξ, t)dξ, J(x, t) =

∫
Ωξ

f (x, ξ, t)ξdξ .
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Kinetic simulations

Numerical scheme

The sparse discrete spaces on Ω and Ωx we use is defined as
Ĝkh = V̂k

N(Ω), Ûk
h = [V̂k

N(Ωx)]dx . The semi-discrete DG methods for the VM
system are: to find fh ∈ Ĝkh , Eh,Bh ∈ Ûk

h , such that for any g ∈ Ĝkh , U,V ∈ Ûk
h ,∫

Ω
∂t fhgdxdξ −

∫
Ω

fhξ · ∇xgdxdξ −
∫

Ω
fh(Eh + ξ × Bh) · ∇ξgdxdξ

+

∫
Ωξ

∫
Ex

f̂hξ · [g ]xdsxdξ +

∫
Ωx

∫
Eξ

̂fh(Eh + ξ × Bh) · [g ]ξdsξdx = 0 ,

(13a)∫
Ωx

∂tEh ·Udx =

∫
Ωx

Bh · ∇x ×Udx +

∫
Ex

B̂h · [U]τdsx −
∫

Ωx

Jh ·Udx , (13b)∫
Ωx

∂tBh · Vdx = −
∫

Ωx

Eh · ∇x × Vdx−
∫
Ex

Êh · [V]τdsx , (13c)

with

Jh(x, t) =

∫
Ωξ

fh(x, ξ, t)ξdξ ∈ Ûk
h .

All “hat” functions are numerical fluxes. For the Vlasov part, we adopt the global
Lax-Friedrichs flux: For the Maxwell part, we use the upwind flux or the alternating
flux.
Similarly, the adaptive sparse grid scheme can be defined.
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Kinetic simulations

Properties

Theorem (Mass conservation)

The numerical solution fh ∈ Ĝkh with k ≥ 0 satisfies

d

dt

∫
Ω

fhdxdξ + Θh,1(t) = 0 , (14)

where Θh,1(t) =
∫

Ωx

∫
Ebξ

fh max((Eh + ξ × Bh) · nξ, 0)dsξdx .

Theorem (Energy conservation)

For k ≥ 2, the numerical solution fh ∈ Ĝkh , Eh,Bh ∈ Ûk
h with the upwind

numerical fluxes for the Maxwell part satisfies

d

dt

(∫
Ω

fh|ξ|2dxdξ +

∫
Ωx

(|Eh|2 + |Bh|2)dx

)
+ Θh,2(t) + Θh,3(t) = 0 ,

with

Θh,2(t) =

∫
Ex

(
|[Eh]τ |2 + |[Bh]τ |2

)
dsx , Θh,3(t) =

∫
Ωx

∫
Ebξ

fh|ξ|2 max((Eh+ξ×Bh)·nξ, 0)dsξdx .

While for the scheme with alternating flux for the Maxwell part, we have

d

dt

(∫
Ω

fh|ξ|2dxdξ +

∫
T x
h

(|Eh|2 + |Bh|2)dx

)
+ Θh,3(t) = 0 .

Theorem (L2-stability of fh)

For k ≥ 0, the numerical solution fh ∈ Ĝkh satisfies

d

dt

(∫
Ω
|fh|2dxdξ

)
≤ 0 .
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Kinetic simulations

Streaming Weibel instability

We consider 1D2V problem

ft + ξ2fx2 + (E1 + ξ2B3)fξ1 + (E2 − ξ1B3)fξ2 = 0 , (15)

∂B3

∂t
=
∂E1

∂x2
,

∂E1

∂t
=
∂B3

∂x2
− j1,

∂E2

∂t
= −j2 , (16)

The initial conditions are given by

f (x2, ξ1, ξ2, 0) =
1

πβ
e−ξ2

2/β[δe−(ξ1−v0,1)2/β + (1− δ)e−(ξ1+v0,2)2/β], (17)

E1(x2, ξ1, ξ2, 0) = E2(x2, ξ1, ξ2, 0) = 0, B3(x2, ξ1, ξ2, 0) = b sin(k0x2) , (18)

where b = 0 is an equilibrium state composed of counter-streaming beams
propagating perpendicular to the direction of inhomogeneity, β1/2 is the thermal
velocity and δ is a parameter measuring the symmetry of the electron beams.
β = 0.01, b = 0.001 Here, Ωx = [0, Ly ], where Ly = 2π/k0, and we set
Ωξ = [−1.2, 1.2]2. We consider the symmetric case

choice 1 : δ = 0.5, v0,1 = v0,2 = 0.3, k0 = 0.2

(19)
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Kinetic simulations

Mass conservation

We compare the sparse grid (SG) DG (N = 8, k = 3) with adaptive sparse
grid (ASG) DG scheme (N = 6, k = 3, ε = 2× 10−7, L2 based criteria) by
cfl = 0.1. The results of upwind/alternating fluxes for Maxwell’s equation
are very similar. Therefore, we only present results by alternating flux.
(computational time: SG∼10hrs, ASG∼70hrs)

t

m
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(a) Relative error in mass: SG

t

m
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(b) Relative error in mass: ASG
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Kinetic simulations

Energy conservation

t
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(c) Relative error in energy: SG
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Kinetic simulations

Percent of active elements by ASG

(e) t = 0. Active elements: 0.73% (f) t = 55. Active elements: 4.36%
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Kinetic simulations

Percent of active elements by ASG

(g) t = 82. Active elements: 26.55% (h) t = 100. Active elements:
52.41%
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Extensions: a new sparse grid collocation scheme

Outline

1 Motivation

2 Numerical methods

3 Kinetic simulations

4 Extensions: a new sparse grid collocation scheme

5 Extensions: adaptive sparse grid DG for nonlinear equations

6 Conclusions

Yingda Cheng (MSU) SG-DG USTC, Aug. 2020 Page 47



Extensions: a new sparse grid collocation scheme

Nonlinear equations

Nonlinear equations pose simulation challenges. For example, we consider
nonlinear conservation law

ut +∇ · f (u) = 0, (20)

The semi-discrete DG formulation is∑
K

∫
K

(uh)tvhdx−
∑
K

∫
K

f (uh)·∇vhdx +
∑
K

∫
∂K

f̂ (uh)·nKvhds = 0 (21)

Replace terms like f (uh) by If (uh), where I is an interpolation operator
corresponding to the (adaptive) sparse grid space.
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Extensions: a new sparse grid collocation scheme

Our work

We introduce a class of high order local hierarchical interpolating basis
using the following steps:

locating nested interpolation points, finding associated multiwavelet
bases in 1D

using Smolyak’s idea to gain sparsity in high dimensions

Fast transforms between point values and coefficients are introduced
with operation counts of O(d ·DoF) even for adaptive algorithms.

We should take into account accuracy and stability when designing the
interpolation.
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Extensions: a new sparse grid collocation scheme

1D: nested points

Consider the domain I = [0, 1], we use the same notation.In addition, we
define k + 1 distinct points on each cell

x j
i ,n = 2−nj + 2−nαi (22)

with αi ∈ [0, 1], i = 1, . . . , k + 1.
In particular, the collection of those points X k

n = {x j
i ,n} is called nested

points, if

X k
0 ⊂ X k

1 ⊂ X k
2 ⊂ · · · . (23)
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Extensions: a new sparse grid collocation scheme

1D - Examples

P0 case: nested points

Case 1: x0 = 0;
Case 2: x0 = 1;

0 0.5 1
0

1
N = 0

0 0.5 1
0

1
N = 1

(i) P0: choice 1.

0 0.5 1
0

1
N = 0

0 0.5 1
0

1
N = 1

(j) P0: choice 2.

Figure: Interpolation points: P0.Yingda Cheng (MSU) SG-DG USTC, Aug. 2020 Page 51



Extensions: a new sparse grid collocation scheme

1D-Example

P1 case:

Case 1: x0 = 0, x1 = 1/2;

Case 2: x0 = 0, x1 = 1;

Case 3: x0 = 1/3, x1 = 2/3;

Case 4: x0 = 1/2, x1 = 1;
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Extensions: a new sparse grid collocation scheme

1D-Example

0 1/4 1/2 3/4 1
-1

0

1

2
N = 0

0 1/4 1/2 3/4 1
-1

0

1

2
N = 1

(a) P1: choice 1.

0 1/4 1/2 3/4 1
0

1
N = 0

0 1/4 1/2 3/4 1
0

1
N = 1

(b) P1: choice 2.

Figure: Interpolation points: P1.

Similarly, we can construct bases based on Hermite interpolation.
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Extensions: a new sparse grid collocation scheme

1D

Since {X k
n } are nested, the points can be rearranged in such a way that

X k
n = X k

0 ∪ X̃ k
1 ∪ · · · ∪ X̃ k

n , with X̃ k
n = X k

n /X k
n−1. (24)

Moreover, we can now define the subspace W k
n , n ≥ 1, as the complement

of V k
n−1 in V k

n , in which the piecewise polynomials vanish at all points in
X k
n−1,

V k
n = V k

n−1 ⊕W k
n . (25)

Thus, we have

V k
N =

⊕
0≤n≤N

W k
n .
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Extensions: a new sparse grid collocation scheme

1D

We now illustrate the computation of the multiwavelet coefficients based
on interpolation. For a given function f (x) ∈ C k+1([0, 1]), we define Ikn [f ]
as the standard interpolation on V k

n . Next, we introduce the increment
interpolation operator

Ĩkn :=

{
Ikn − Ikn−1, n ≥ 1
Ik0 , n = 0.

(26)

Then, the interpolation operator IkN can be represented as

IkN [f ](x) =
N∑

n=0

Ĩkn [f ](x) =
N∑

n=0

max(2n−1−1,0)∑
j=0

k+1∑
i=1

bj
i ,nϕ

j
i ,n(x) (27)
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Extensions: a new sparse grid collocation scheme

1D

We can define an operator F−1 mapping from point values f (x j
i ,n) to

hierarchical coefficients bj
i ,n

bj
i ,n = Ĩkn [f ](x j

i ,n) = F−1[f ] =

{
f (x0

i ,0), n = 0,

f (x̃ j
i ,n)−

∑k+1
l=1 f (x j

l ,n−1)φl(x̃i ), n ≥ 1.

(28)

and similarly

f (x̃ j
i ,n) =F [b] =

{
b0
i ,0, n = 0,

bj
i ,n +

∑k+1
l=1 fh(x j

l ,n−1)φl(x̃i ), n ≥ 1,
(29)
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Extensions: a new sparse grid collocation scheme

Summary

This procedure works for arbitrary order, and include the continuous
FEM case.

We can switch from Lagrange to Hermite interpolation as long as the
points are nested. This can help construct, e.g., C 1 FEM etc.

For multi-D, if we use V̂k
N :=

⊕
|l|1≤N Wk

l , this gives a standard
sparse grid method.

Adaptivity can be incorporated based on thresholding.

Fast transforms between point values and coefficients are introduced
with operation counts of O(d ·DoF) by method in Shen, Yu (10, 12).
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Extensions: a new sparse grid collocation scheme

Function interpolation

Consider the function on [0, 1]2

f (x1, x2) =
1

|0.3− x2
1 − x2

2 |+ δ
,

where δ = 0.1. The function of interest has a line singularity that is not
along the grid directions.

(a) Hermite P3

x
1

x
2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(b) Hermite P3

Figure: The interpolating functions and adaptive grids with threshold ε = 10−5.
Left: surface; right: adaptive grid.
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Extensions: a new sparse grid collocation scheme

Kraichnan-Orszag (K-O) problem

dy1

dt
= y1y3,

dy2

dt
= −y2y3, (30)

dy3

dt
= −y 2

1 + y 2
2 ,

with initial condition

y1(0) = Y1(0;ω), y2(0) = Y2(0;ω), y3(0) = Y3(0;ω).

This problem presents a bifurcation on the parameter y1(0) and y2(0).
The deterministic solutions of the problem are periodic and the period
goes to infinity if the initial conditions are located at the planes y1 = 0
and y2 = 0 which means that discontinuity occurs when the initial
conditions cross the two planes. The random initial conditions are chosen
as the uniform distribution Y ∼ U(−1, 1).
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Extensions: a new sparse grid collocation scheme

1D random input
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Figure: Realization of the solution (y1, y2, y3) in one-dimensional random inputs.
y1(0) = 1.0, y2(0) = 0.1Y (0;ω), y3(0) = 0. k = 2 and ε = 10−3.
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Extensions: a new sparse grid collocation scheme

2D random input
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Figure: t = 10 with y1(0) = 1.0, y2(0) = 0.1Y1(0;ω), y3(0) = Y2(0;ω).
k = 2, ε = 10−3.
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Extensions: adaptive sparse grid DG for nonlinear equations
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Extensions: adaptive sparse grid DG for nonlinear equations

Collocation methods

Proposition (accuracy of interpolation)

Assume that the DG finite element space (regular or sparse) has
polynomials up to degree k. If the interpolation operator has the accuracy
of hk+2 (regular) or |log2 h|d hk+2 (sparse), then the truncation error is of
order hk+1 (regular) or |log2 h|d hk+1 (sparse), i.e., for sufficiently smooth
function u, regular DG:

‖Lh(u) + P(∇ · f (u))‖L2 ≤ Chk+1. (31)

and sparse DG

‖Lh(u) + P(∇ · f (u))‖L2 ≤ C |log2 h|d+1 hk+1. (32)

Another consideration is stability: based on numerical experiments, we
found the Hermite interpolation is stable, while Lagrangian interpolation is
not.
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Extensions: adaptive sparse grid DG for nonlinear equations

Artificial viscosity

For capturing shock, we add artificial viscosity∑
K

∫
K

(uh)tvhdx−
∑
K

∫
K

f (uh)·∇vhdx+
∑
K

∫
∂K

f̂ (uh)·nKvhds−
∑
K

∫
K

ν(uh)∇uh·∇vhdx = 0.

(33)
where ν = ν(uh) > 0 is artificial viscosity depending on uh. The artificial viscosity is only
imposed in the leaf element and is determined in the following approach:

ν =

{
0, if se ≤ s0 + κ,

ν0h, otherwise.

where ν0 > 0 and κ are constants chosen empirically. In the computation, we typically
take ν0 = 1 and κ = 0. The parameters se and s0 are given as

se = log10

 ∑
1≤i≤k+1

|uj
i,l|

2

 1
2

, s0 = log10(2−(k+1)|l|1 ). (34)

For smooth regions, se should be the same order as s0. In the discontinuous regions, se
should be much larger than s0.

Yingda Cheng (MSU) SG-DG USTC, Aug. 2020 Page 64



Extensions: adaptive sparse grid DG for nonlinear equations

Numerical results: 1D Burgers’ equation
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Figure: t = 0.1875. N = 8 and ε = 10−4. N = 9, k = 2,P3 Hermite interpolation.
red: elements with artificial viscosity
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Extensions: adaptive sparse grid DG for nonlinear equations

Numerical results: 2D KPP rotating wave problem

ut + sin(u)x + cos(u)y = 0.

The initial condition is

u0(x , y) =

3.5π, (x − 1/2)2 + (y − 1/2)2 ≤ 1

16
,

0.25π, otherwise.
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Figure: ε = 5E − 4,N = 7, k = 2,P3 Hermite interpolation
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Conclusions

Conclusions

We design efficient & highly accurate numerical schemes for moderately
high dimensional PDEs.

DG methods: excellent for transport problems.

Sparse grid DG methods: works well for smooth solutions. Stability
and convergence properties can be well understood theoretically.

Adaptivity is naturally incorporated.

The schemes have been extended to other types of nonlinear
equations, e.g. nonlinear waves, high dimensional Hamilton-Jacobi
equation.

Algorithm implementation https:

//github.com/JuntaoHuang/adaptive-multiresolution-DG
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The END!

Thank You!
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