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The linear convection-diffusion equation

The boundary value problem:

−ε4u+ w · ∇u = f, in Ω,

u = 0, on ∂Ω.

I ε > 0 is the diffusivity coefficient

I w : Ω→ Rd is a velocity vector field (satisfying ∇ ·w = 0)

I f : Ω→ R is the source term

I We are interested in the convection dominated case where ε� ‖w‖∞
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Example 1: boundary layer.

Consider the simple 1D case:

−εu′′ + u′ = 1 in (0, 1), with u(0) = u(1) = 0.

I Exact solution:

u(x) = x− 1− ex/ε

1− e1/ε
= x− e(x−1)/ε − e−1/ε

1− e−1/ε

I For ε� 1 the solution behaves essentially like ū(x) = x expect for x
being close to the right boundary:

Figure: Solution for ε ∈ {0, 0.01, 0.1, 1}
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Weak formulation and coercivity

I Weak formulation: Find u ∈ V = H1
0 (Ω) such that, for all v ∈ V ,

A(u, v) = ε a(u, v)+b(w;u, v) =

∫
Ω
ε∇u ·∇v+

∫
Ω

(w ·∇u)v =

∫
Ω
fv.

I Since velocity ω is divergence-free, we have

b(w;u, u) =

∫
Ω

(w · ∇u)u =
1

2

∫
Ω
∇ · (w u2) = 0

I Hence, bilinear form A(·, ·) is coercive and bounded:

A(u, u) ≥ c0ε‖u‖21, A(u, v) ≤ (ε+ ‖w‖∞)‖u‖1‖v‖1,

where c0 > 0 is related to the Poincare’ constant
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Galerkin FEM and Céa Lemma

I Galerkin FEM: Find uh ∈ Vh ⊂ H1
0 (Ω) such that

A(uh, v) = F (v), ∀v ∈ Vh.

I Energy estimate (Cea’s lemma):

‖u− uh‖1 ≤
ε+ ‖w‖∞

c0 ε
inf
v∈Vh
‖u− v‖1 =

1 + ‖w‖∞
ε

c0
inf
v∈Vh
‖u− v‖1

Proof: Galerkin orthogonality: A(u− uh, v) = 0 ∀v ∈ Vh.
Then, for any vh ∈ Vh, we have:

‖u− uh‖21 ≤
1

c0 ε
A(u− uh, u− uh)

=
1

c0 ε
A(u− uh, u− vh) ≤ ε+ ‖w‖∞

c0 ε
‖u− uh‖1‖u− vh‖1
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Example 2: Hemker problem. Show code [cd CG.ipynb]

Page 3400 in [CMAME, 200(2011), pp. 3395-3409]

I Domain: [−3, 9]× [−3, 3]\{(x, y) : x2 + y2 < 1}
I Dirichlet boundary condition u = 0 on left boundary, Dirichlet

boundary condition u = 1 on the disk boundary. Homogeneous
Neumann BC on other boundaries.

I PDE: −ε4u+ ∂xu = 0,

I Boundary layer can be observed around the inner disk boundary.
Small ε� 1 leads to large oscillations near the left half of the disk
boundary.

I Denote the local mesh Péclet number: PeT = ‖w‖∞hT
2rε . The

challenging case is when PeT � 1. Here r is the polynomial degree.

I For PeT � 1, suitable convective stabilization is needed
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Convective stabilization I: SUPG (skip)

SUPG stabilization

I Keep the same H1-conforming finite element space, but replace
A(uh, v) = F (v) with a stabilized version:

Ah(uh, v) = A(uh, v) + sh(uh, v) = F (v) + fs(v).

I The (residual-based) stabilization term (γT ≥ 0):

sh(uh, v)− fs(v) =
∑
T∈Ωh

γT

∫
T

(−ε∆uh + w · ∇uh − f)(w · ∇v)dx
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Convective stabilization II: upwinding DG

DG upwinding stabilization

I Relax H1-conformity in the finite element space:

V dg
h = {v ∈ L2(Ω) : v|T ∈ Pr(T ), ∀T ∈ Ωh} 6⊂ H1(Ω)

I Upwinding DG for convection (upwinding numerical flux ûh):

bh(w;uh, v) =
∑

T∈Ωh

−(wuh,∇v)T + 〈w · n ûh, v〉∂T

Figure: The flow direction is indicated by the green arrows. On every facet (blue)
the numerical flux is chosen according to the upwind element (red).
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Upwinding flux introduce numerical dissipation

bh(w; vh, vh) =
∑
T∈Ωh

−(wvh,∇vh)T + 〈w · n v̂h, vh〉∂T

=
∑
T∈Ωh

−1

2

∫
T
∇ · (wv2

h) + 〈w · n v̂h, vh〉∂T

=
∑
T∈Ωh

∫
∂T

(
−1

2
(w · n)v2

h + w · nv̂hvh
)

ds

=
∑
T∈Ωh

∫
∂T

(
−1

2
(w · n)(vh − v̂h)2 +

1

2
w · nv̂2

h

)
ds

= · · ·

=
∑
F

∫
F

1

2
|w · n|[[vh]]2 ds ≥ 0.
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Discontinuous Galerkin: interior penalty for diffusion1

I Symmetric interior penalty DG (S-IPDG) for diffusion:

ah(uh, v) =
∑

T∈Ωh

(∇uh,∇v)T − 〈{{∇u}} · n, v〉∂T︸ ︷︷ ︸
consistency

−〈{{∇v}} · n, uh〉∂T︸ ︷︷ ︸
for symmetry

+〈αr
2

h
[[uh]] · n, v〉∂T︸ ︷︷ ︸

for stability

=
∑

T∈Ωh

(∇uh,∇v)T

−
∑
F∈Ei

h

(
〈{{∇uh}}, [[v]]〉F + 〈{{∇v}}, [[uh]]〉F − 〈

αr2

h
[[uh]], [[v]]〉F

)

−
∑
F∈E∂

h

(
〈∇uh, v〉F + 〈∇v, uh〉F − 〈

αr2

h
uh, v〉F

)
I Stabilization parameter α > 0 needs to be big enough for stability. In

practice, taking α = 4 is usually good enough.
1You can also use LDG/DDG...
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DG scheme for convection-diffusion

DG scheme: Find uh ∈ V dg
h such that, for all v ∈ V dg

h ,

Ah(uh, v) = ε ah(uh, v) + bh(w;uh, v) = F (v).

I Consistency: Ah(u− uh, v) = 0 for all v ∈ Vh.
Proof: Integration by parts, for any v ∈ Vh,

Ah(u, v) =
∑
T∈Ωh

∫
T

(−ε∆u+ w · ∇u)vdx = F (v) = Ah(uh, v).

I Coercivity: Ah(uh, uh) ≥ 1
2‖|uh‖|

2 where

‖|vh‖|2 := ε
∑
T

(‖∇uh‖2T +
αr2

2h
‖[[uh]]‖2∂T )︸ ︷︷ ︸

=‖uh‖2a

+
∑
F

∫
F
|w · n|[[uh]]2 ds︸ ︷︷ ︸

=|uh|2b
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Proof of coercivity: diffusion part

I Trace inequality: On each element T , there exists a positive constant
ctr such that ‖uT ‖2∂T ≤ ctr(r, T )h−1

T ‖uT ‖2T , ∀uT ∈ P r(T ).

For any v ∈ V dg
h , we get

ah(v, v) =
∑

T∈Ωh

∫
T

∇v · ∇v +
∑
F∈Eh

∫
F

2{{−∇v}}[[v]] +
αr2

h
[[v]]2

≥
∑

T∈Ωh

{
‖∇v‖2T −

∫
∂T

|∇v| · |[[v]]|+ αr2

2h

∫
∂T

[[v]]2
}

≥
∑

T∈Ωh

{
‖∇v‖2T +

αr2

2h
‖[[v]]‖2∂T −

h

αr2
‖∇v‖2∂T −

αr2

4h
‖[[v]]‖2∂T

}

≥
∑

T∈Ωh

{
‖∇v‖2T +

αr2

4h
‖[[v]]‖2∂T −

ctr
αr2
‖∇v‖2T

}

Take α big enough, e.g., α ≥ 2ctr/r
2, we get ah(v, v) ≥ 1

2‖v‖
2
a. In practice,

ctr ∝ r2, and taking α = 4 is usually good enough.
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Error analysis

We present the error analysis in a simplified case where the velocity field
w is a polynomial of degree at most 1 on each element T .

Denote Πu ∈ V dg
h the L2-projection of u. Write eu = Πu− uh and

δu = Πu− u. Then, by consistency we have the following error equation

Ah(eu, v) = Ah(δu, v), ∀v ∈ V dg
h .

Taking v = eu in the above equation and using coercivity result, we get

1

2
‖|eu‖|2 ≤ Ah(eu, eu) = Ah(δu, eu) = εah(δu, eu) + bh(w; δu, eu)

Next, we control each term in the above left hand side.
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Error analysis: convection part

bh(w; δu, eu) =
∑
T∈Ωh

− (wδu,∇eu)T︸ ︷︷ ︸
=0

+〈w · n δ̂u, eu〉∂T

=
∑
F∈Eh

∫
F
|w · n| δ̂u[[eu]]ds

≤ (
∑
F∈Eh

∫
F
|w · n| δ̂u

2
ds)1/2|[[eu]]|b

. ‖w‖∞hr+1/2‖u‖r+1 |[[eu]]|b
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Error analysis: diffusion part

Repeatly using Cauchy-Schwarz inequality to obtain

ah(δu, eu) . ‖δu‖a∗‖eu‖a

Here ‖ · ‖a∗ is a stronger norm:

‖v‖2a∗ := ‖v‖2a +
∑
T

h/r2‖∇v‖2∂T

Note: by trace inequality, we easily get the following norm equavilence

‖v‖a ≤ ‖v‖a∗ . ‖v‖a, ∀v ∈ V dg
h

Standard approximation theory implies that

‖δu‖a∗ . hr‖u‖r+1
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Putting it together

Hence
‖|eu‖|2 . (ε+ h1/2‖w‖∞)hr‖u‖r+1‖|eu‖|

Finally, by triangle inequality, we get

‖|u− uh‖| . ‖|u−Πu‖|+ ‖|Πu− uh‖| . (ε+ h1/2‖w‖∞)hr‖u‖r+1

I Taking v = w · ∇eu, one can further control the L2-norm of the
directional derivative ‖w · ∇eu‖0. We skip the detailed derivation.

I With more advanced techniques, we can also prove the L2-norm of
the error eu converges at a rate of of hr+1/2. [Ayuso&Marini
SINUM2009]

Show code [cd DG.ipynb]
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Hybridizable Discontinuous Galerkin (HDG) Methods2

I Major advantages of DG: robust in both diffusion-dominated (interior
penalty) and convection-dominated (upwinding) regimes.

I Major drawback of DG: Computationally more expensive to solve
compared with CG/SUPG. (more DOFs and more DOF coupling in
the linear system)

HDG introduce new DOFs on the mesh skeleton to reduce the
computational cost of a DG scheme while keeping all its advantages.

2Also known as hybrid DG/hybridized DG in the literature
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HDG: facet FE space

I Finite element space on the mesh:

V r
h = {v ∈ L2(Ωh) : v|T ∈ Pr(T ), ∀T ∈ Ωh}

I Finite element space on mesh skeleton only:

M r
h = {v̂ ∈ L2(Eh) : v̂|F ∈ Pr(F ), ∀F ∈ Eh, v̂|E∂ = 0}

Note: Dirichlet boundary condition is incoporated in Mr
h .

HDG method approximation the solution u using two finite element spaces

(uh, ûh) ∈ V r
h ×M r

h
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HDG: interior penalty for diffusion

Derivation of Symmetric interior penalty HDG:
I Integration by parts: for any v ∈ Vh,∑

T

∫
T
−∇ · (∇u) v dx =

∑
T

∫
T
∇u · ∇v dx−

∫
∂T

∂u

∂n
vds

I Normal continuity: for any v̂ ∈Mh,∑
T

∫
∂T

∂u

∂n
v̂ds =

∑
F∈Ei

∫
F

(
∂u

∂n+
+

∂u

∂n−
)︸ ︷︷ ︸

=0

v̂ ds = 0

I Add symmetry and stability terms, we get the HDG diffusion operator:

ah((u, û), (v, v̂)) =
∑
T

∫
T
∇u · ∇v dx−

∫
∂T

∂u

∂n
[[v]]ds

−
∫
∂T

∂v

∂n
[[u]]ds +

∫
∂T

αr2

h
[[u]][[v]]ds

Here [[v]] := v − v̂.
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Coercivity of HDG diffusion operator

Denote HDG norm

‖(u, û)‖2a :=
∑
T

{‖∇u‖2T +
αr2

h
‖[[u]]‖2∂T }

We can easily show that

ah((u, û), (u, û)) ≥ 1

2
‖(u, û)‖2a

for α sufficiently large. (Again, taking α = 4 is usually enough)
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Advantage of HDG: static condensation

Consider the pure diffusion problem −∆u = f on Ω with homogeneous
Dirichlet boundary condition u = 0 on ∂Ω.
HDG scheme: find (uh, ûh) ∈ Vh ×Mh s.t.

ah((uh, ûh), (v, v̂)) = f(v) =
∑
T

∫
T
f vdx

The above discretization gives rise to a matrix equation of the form[
A B

BT C

][
U

Û

]
=

[
F

0

]
 

U = −A−1BÛ +A−1F

(−BTA−1B + C)Û = −BTA−1F

Here U and Û represent the coefficient vector of the DOFs for uh and ûh.

A↔ ah((uh, 0), (v, 0)), B ↔ ah((0, ûh), (v, 0)),

C ↔ ah((0, ûh), (0, v̂)), F ↔ f(v).

Key observation: A is block-diagonal, very easy to invert. [sparsity.ipynb]
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HDG: upwinding convection

Upwinding HDG for convection:

bh(w; (uh, ûh), (v, v̂)) =
∑
T∈Ωh

−(wuh,∇v)T + 〈w · n ûuph , (v − v̂)〉∂T

HDG Upwinding numerical flux: ûuph :=

{
uh if w · n > 0,

ûh if w · n ≤ 0.
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Coercivity of upwinding HDG on a semi-norm

bh(w; (vh, v̂h), (vh, v̂h)) =
∑
T∈Ωh

−(wvh,∇vh)T + 〈w · n v̂uph , [[vh]]〉∂T

=
∑
T∈Ωh

−1

2

∫
T
∇ · (wv2

h) + 〈w · n v̂uph , [[vh]]〉∂T

=
∑
T∈Ωh

∫
∂T

(
−1

2
(w · n)v2

h + w · nv̂uph [[vh]]

)
ds

= · · ·

=
∑
T

∫
∂T

1

2
|w · n|[[vh]]2 ds :=

1

2
|(vh, v̂h)|2b

Note: the term |(vh, v̂h)|b is non negative, and is usually called a
numerical dissipation term.
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HDG scheme for convection-diffusion

HDG scheme: Find (uh, ûh) ∈ Vh×Mh such that, for all (v, v̂) ∈ Vh×Mh,

Ah((uh, ûh), (v, v̂)) = ε ah((uh, ûh), (v, v̂))+bh(w; (uh, ûh), (v, v̂)) = F (v).

I Consistency: Ah((u, u)− (uh, ûh), (v, v̂)) = 0 for all
(v, v̂) ∈ Vh ×Mh.

I Coercivity: Ah((v, v̂), (v, v̂)) ≥ 1
2‖|(v, v̂)‖|2 for all (v, v̂) ∈ Vh ×Mh

where

‖|(v, v̂)‖|2 := ε
∑
T

(‖∇v‖2T +
αr2

2h
‖[[v]]‖2∂T )︸ ︷︷ ︸

=‖(v,v̂)‖2a

+
∑
F

∫
F
|w · n|[[v]]2 ds︸ ︷︷ ︸
=|(v,v̂)|2b

I Convergence: (Exercise. hint: follow the steps in DG)

‖|(u− uh, u− ûh)‖| . (ε+ h1/2‖w‖∞)hr‖u‖r+1 (1)
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A more efficient hybrid DG scheme: EDG

We can further save computational cost of the HDG scheme by replacing
the discontinuous facet space Mh to be continuous on the mesh skeleton:

M̃h = Mh ∩ C0(Eh)

The resulting scheme is called the embedded DG (EDG) method.

All the previous analysis still holds for EDG (verify it yourself), and the
resulting global linear system has exactly the same sparsity pattern as the
CG method (after static condensation).

Show code [cd HDG.ipynb]
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The Stokes problem

We first consider the following Stokes problem, which models creeping
flow:

−2µ∇ · ε(u) +∇p = f, in Ω (2a)

∇ · u = 0, in Ω (2b)

u = 0, on ∂Ω (2c)∫
Ω
p dx = 0. (2d)

I u: velocity, p: pressure, µ ≥ 0: dynamic viscosity. Deformation
tensor:

ε(u) :=
1

2
(∇u+∇uT )

I The last equation is a pressure average-zero constrain for the
uniqueness of pressure.
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Weak formulation

I The weak form: find (u, p) ∈ V ×Q s.t.

a(u, v)− b(v, p) = F (v), b(u, q) = G(q), ∀(v, q) ∈ V ×Q. (8.2.5)

I Bilinear/linear forms:

a(u, v) =

∫
Ω

2µε(u) · ε(v) dx, b(v, p) =

∫
Ω

(∇ · v)p dx

F (v) =

∫
Ω
f · v dx, G(q) =

∫
Ω
g q dx.

For the Stokes equations (2), we have G(q) = 0.

I Function spaces:

V = [H1
0 (Ω)]d, Q = L2

0(Ω) = {q ∈ L2 :

∫
Ω
q = 0}
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Well-posedness and mixed FEM
(Boffi,Brezzi,Fortin, 2018)

I Mixed FEM:
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Stability of mixed FEM

Notation: Eu := infvh∈Vh ‖u− vh‖V , Ep := infqh∈Qh
‖p− qh‖V
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Stability of mixed FEM

We consider the case where

kh ≥ k0 > 0 (8.2.19)

The following quasi-optimal estimate is an immediate consequence.
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Some examples: check out code [stokes mixed.ipynb]

The following claims will not be proved, but only verified numerially

Continuous Pressure pairs (velocity-pressure)

I The P1 − P1 element [NO]

I The mini element: (P1-bubble)− P1 pair [YES]

I The Taylor-Hood element: Pk − Pk−1 (k ≥ 2) [YES]

I ...

Discontinuous Pressure pairs (velocity-pressure)

I The P1 − P0 element [NO]

I The P2 − P0 element: [YES]

I The Scott-Vogelius element: Pk − P dck−1 pair [YES/NO]3

I ...

3Stability holds for k ≥ d on special meshes (Alfeld splits), and for k ≥ 2d on
generial meshes. d: space dimension
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Beyond inf-sup stability: pressure robustness
John et al. SIAM Review, 59 (2017), pp. 492–544

Two fundamentaion obervations for the Stokes equations (2):
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Beyond inf-sup stability: pressure robustness

I The significance of the first observation is well known and forms a
cornerstone of mixed FEM for the Stokes and NavierStokes equations:
finite element spaces for velocity and pressure shall satisfy a discrete
inf-sup condition, c.f. (8.2.16).

I However, almost all mixed/stabilized finite elements violate the
condition (1.4) in the discrete level:

f → f +∇ψ 6⇒ (uh, ph)→ (uh, ph + ψh)

and also violate local mass conservation: ∇ · uh 6= 0

I A scheme that fulfills the condition (1.4) in the discrete level is called
pressure-robust.

I Claim: FEM satisfies a strong divergence-free property ∇ · uh = 0 is
pressure-robust.
Show code [stokes pr.ipynb]
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Improve mass conservation of classical mixed FEM
Grad-Div stabilization

I Adding the term 0 = −γ∇(∇ · u) to the momentum equation:

−2µ∇ · ε(u) +∇p− γ∇(∇ · u) = f,

Mixed FEM with grad-div stabilization

The mixed FEM with grad-div stabilization is to find (uh, ph) ∈ Vh ×Qh
such that Agd((uh, ph), (vh, qh)) = Lgd(vh, qh) ∀(vh, qh) ∈ Vh ×Qh,
where

Agd((uh, ph), (vh, qh)) = a(uh, vh)− b(vh, ph) + b(uh, qh) + γ(∇ · u,∇ · v),

Lgd((vh, qh)) = F (vh),

Here γ ≥ 0 is a proper chosen stabilization parameter.

Grad-div stabilization penalizes for lack of mass conservation. However, it is not a
complete remedy as the resulting scheme is still not pressure-robust.
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Strongly divergence-free mixed FEM

I The construction of mixed FEM that satisfies the divergence-free
constraint strongly is a much harder task

I Existing divergence-free mixed FEM is usually more complex to
implement than classical mixed FEM like the Taylor-Hood elements

I Perhaps, the most popular choice of div-free mixed FEM is the the
Scott-Vogelius element on Alfeld splits (barycentric refined mesh)

Scott-Vogelius elements on Alfeld splits

Let Ωh be an Alfeld splitted simplicial mesh. The Scott-Vogelius finite elements

Vh = {v ∈ H1
0 (Ω) : v|T ∈ Pk(T ), ∀T ∈ Th},

Qh = {q ∈ L2(Ω) : q|T ∈ Pk−1(T ), ∀T ∈ Th}
is inf-sup stable if k ≥ 2 in 2D or k ≥ 3 in 3D, and its velocity approximation is
strongly divergence-free: ∇ · uh = 0.

See (Arnold&Qin,92) for the proof in 2D, and (Zhang, 05) for the proof in 3D.
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Relax H1-conformity: the H(div)-DG scheme
(Cockburn, Kanschat, & Schötzau, JSC, 31(2007), pp. 61–73)

I Use mixed FE spaces for Darcy flow:

V div
h ⊂ H(div; Ω) and Qh = ∇ · V div

h ⊂ L2(Ω)

e.g. V div
h = {v ∈ H(div; Ω) : v|T ∈ Pr(T )}, Qh = {q ∈ L2(Ω) : q|T ∈ Pr−1(T )}

I Because Qh = ∇ · V div
h , the divergence-free constrain in velocity is

automatically satisfied:
∫

Ω(∇ · uh)qdx = 0, ∀q ∈ Qh  ∇ · uh ≡ 0.
I V div

h 6⊂ H1(Ω) Apply DG for the viscous term.

Figure: tangential and normal continuity for different methods.
42 / 56



The H(div)-DG scheme. check out [stokes hdivdg.ipynb]

Symmetric-interior penalty DG (S-IPDG) with H(div)-conforming space
V div
h for second-order viscous term −2µ∇ · (ε(u))4:

ah(uh, vh) =
∑
T∈Ωh

(2µε(uh), ε(vh))T −
∑
F∈Eh

〈2µ{{ε(uh)}}, [[vh]]〉F︸ ︷︷ ︸
consistency

−
∑
F∈Eh

〈2µ{{ε(vh)}}, [[uh]]〉F︸ ︷︷ ︸
symmetry

+
∑
F∈Eh

〈2µαr
2

h
[[uh]], [[vh]]〉F︸ ︷︷ ︸
stability

Here average {{ε(u)}} := 1
2
(ε(u+) + ε(u−))n+, and jump [[u]] = u+ − u−. Stability

parameter α needs to be big enough for coercivity. We take α = 4 in practice.

The H(div)-DG scheme: find (uh, ph) ∈ V div
h ×Qh s.t.

ah(uh, vh)− b(vh, ph) = F (vh), b(uh, qh) = 0, ∀(vh, qh) ∈ V div
h ×Qh.

4Compare with DG for diffusion in page 12
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Improve computational efficiency: H(div)-DG  H(div)-HDG

Hybridization and static condensation

I Functions in H(div) is continuous along normal direction across
element boundaries, but discontinuous along tangential directions:

[[uh]] = tang([[uh]]), where tang(v) = v − (v · n)n.

I For H(div)-HDG, we shall further introduce a facet finite element
space that only lives on the mesh skeleton and is only active on the
tangential component:

V̂h := {v̂ ∈ L2(Eh) : v̂|F ∈ [Pr(F )]d × n, ∀F ∈ Eh}

I Then, we can replace the element-element coupling of the jump term
[[uh]] in the H(div)-DG scheme with the following HDG-jump term:

[[uh]] tang(uh − ûh)

 all element-wise calculation can be locally static condensed out.
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The H(div)-HDG scheme. check out [stokes hdivhdg.ipynb]

Symmetric-interior penalty HDG (S-IPHDG) with H(div)-conformity for
second-order viscous term −2µ∇ · (ε(u))5:

ah((u, û), (v, v̂)) =
∑
T∈Ωh

(2µε(uh), ε(vh))T − 〈2µ ε(uh)n, [[vh]]〉∂T︸ ︷︷ ︸
consistency

− 〈2µ ε(vh)n, [[uh]]〉∂T︸ ︷︷ ︸
symmetry

+ 〈2µαr
2

h
[[uh]], [[vh]]〉∂T︸ ︷︷ ︸
stability

Here [[v]] := tang(v − v̂). Again, stability parameter α needs to be big enough for

coercivity. We take α = 4 in practice.

The H(div)-HDG scheme: find (uh, ûh, ph) ∈ V div
h × V̂h ×Qh s.t.

ah((uh, ûh), (vh, v̂h))− b(vh, ph) = F (vh), b(uh, qh) = 0.

5Compare with HDG for diffusion in page 22
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H(div)-HDG: a glance over the error analysis
Lehrenfeld, 2010, Diploma thesis
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H(div)-HDG: a glance over the error analysis
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H(div)-HDG: pressure-robust estimates

Velocity approximation is independent of pressure:

Duality argument to get L2-estimate
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The steady-state Navier-Stokes equations

Now we consider the following steady Navier-Stokes equations:

u · ∇u− ν∆u+∇p = f, in Ω (3a)

∇ · u = 0, in Ω (3b)

u = 0, on ∂Ω (3c)∫
Ω
p dx = 0. (3d)

I We are interested in the high Reynolds number case where
Re = V L

ν � 1.
I We would expect some special treatment of the nonlinear convection

term to make a scheme stable in the convection-dominated regime:
I SUPG stabilization
I upwinding via DG
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H(div)-HDG: upwinding stabilization.

The H(div)-HDG scheme: find (uh, ûh, ph) ∈ V div
h × V̂h ×Qh s.t.

ah((uh, ûh), (vh, v̂h))− b(vh, ph) + ch(uh; (uh, ûh), (vh, v̂h)) = F (vh),

b(uh, qh) = 0.

for all (vh, v̂h, qh) ∈ V div
h × V̂h ×Qh. Here the convection term

ch =
∑
T

−
∫
T

(u⊗ u) : ∇v dx +

∫
∂T

(u · n)ûup · [[v]] ds

where [[v]] = tang(v− v̂), and ûup is the hdg-upwinding flux base on u · n.

Note: the convection term above is a standard upwinding (H)DG
discretization of the operator ∇ · (u⊗ u) = (uiuj),i = uiuj,i = u · ∇u.
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HDiv-HDG scheme: properties

(1) Exact mass conservation/pressure robustness: ∇ · uh ≡ 0

(2) Natural upwinding discretization of convection term:
no need of additional stabilization or skew-symmetrization

ch(uh; (vh, v̂h), (vh, v̂h)) =
1

2

∑
F∈Eh

∫
F
|uh · n|[[vh]]2 ds ≥ 0,

(3) Energy-identity:
minimal amount of numerical dissipation

ch(uh; (uh, ûh), (uh, ûh))︸ ︷︷ ︸
num. disp. ≥ 0

+ ah((uh, ûh), (uh, ûh))︸ ︷︷ ︸
phy. disp. ≥ 0

= F (uh)

(4) Fairly general structured/unstructured meshes. High-order/low-order
accuracy (vary polynomial degree).
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Test case: driven cavity. Check out code sns hdivhdg.ipynb

I Ω = [0, 1]× [0, 1]. No body forces f = 0.
I Dirichlet boundary condition: u = 0 on three sides, on top side (the

cavity lid), u = (1, 0).
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Conclusion

I HDG methods are well-suited for steady convection-dominated
problems.

• Upwinding DG stabilization for convection
• Hybridization and static condensation for efficient linear system solver
• Exact mass conservation for incompressible flow
• TODO: Fast HDG linear system solver

I The HDG technique might also be used to speed-up a DG solver for
unsteady problems with implicit time stepping.

Thank you for your attention! Any questions?
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