
Space-Time Discontinuous Galerkin Finite Element
Methods

I. Scalar Conservation Laws

Jaap van der Vegt

Numerical Analysis and Computational Science Group
Department of Applied Mathematics

Universiteit Twente

Enschede, The Netherlands

Joint work with Janivita Sudirham and Harmen van der Ven (NLR)

USTC Summer School, August 31 – September 4, 2020

1 / 80

Space-Time Discontinuous Galerkin Finite Element Methods

Motivation of research:

Aerodynamical applications, such as helicopters, maneuvering aircraft and
fluid-structure interaction require:

• Moving and deforming flow domains.

• Improved capturing of vortical structures and flow discontinuities, such as shocks.

• Capability to deal with complex geometries.

• High computational efficiency for unsteady flow simulations.

2 / 80

Motivation of Present Research

Other free surface problems, e.g.:

• Stefan problems

• Two-phase flows with free surfaces

• Water waves

3 / 80

Objectives

To develop a numerical scheme for hyperbolic and parabolic conservation laws with the
following properties:

• Conservative numerical discretization on moving and deforming meshes (satisfy
geometric conservation law)

• Improve accuracy using hp-adaptation

• Maintain accuracy on irregular meshes

• Efficient capturing of discontinuities, interfaces and vortices

• Easy to parallelize

These requirements have been the primary motivation to develop space-time
discontinuous Galerkin finite element methods.

4 / 80

Overview

• One-dimensional example: hyperbolic scalar conservation laws

I space-time formulation

I numerical flux

I solution of non-linear coefficient equations

I stability analysis of pseudo-time integration

• Multi-dimensional parabolic scalar conservation laws:

I space-time discontinous Galerkin discretization

I ALE formulation

• Concluding remarks

5 / 80

References

1. J.J.W. van der Vegt and H. van der Ven, Space-time discontinuous Galerkin finite
element method with dynamic grid motion for inviscid compressible flows. Part I.
General formulation., J. Comput. Phys. 182, pp. 546-585 (2002).

2. H. van der Ven and J.J.W. van der Vegt, Space-time discontinuous Galerkin finite
element method with dynamic grid motion for inviscid compressible flows. II.
Efficient flux quadrature, Comput. Meth. Appl. Mech. Engrg. 191, pp. 4747-4780
(2002).

3. J.J. Sudirham, J.J.W. van der Vegt and R.M.J. van Damme, Space-time
discontinuous Galerkin method for advection-diffusion problems on
time-dependent domains, Applied Numerical Mathematics, 56, pp. 1491-1518
(2006).

6 / 80

Time-Dependent Flow Domain

x1(t)

t

1x

(t)

(t)

Example of a time dependent flow domain Ω(t).

7 / 80

Scalar Conservation Laws

• Consider the scalar conservation law in the time dependent flow domain Ω ⊆ R:

∂u
∂t

+
∂f (u)

∂x1
= 0, x1 ∈ Ω(t), t ∈ (t0,T),

with boundary conditions:

u(x1, t) = B(u, uw), x1 ∈ ∂Ω(t), t ∈ (t0,T),

and initial condition:

u(x1, 0) = u0(x1), x1 ∈ Ω(t0).

8 / 80

Space-Time Domain

Q

x

1x

Q

)0(t

(t)

(T)

E

0

Example of a space-time domain E .

9 / 80

Definition of Space-Time Domain

• Let E ⊂ R2 be an open domain.

• A point x ∈ R2 has coordinates (x0, x1), where x0 represents time and x1 the
spatial coordinate.

• Define the flow domain Ω at time t as:

Ω(t) := {x1 ∈ R | (t , x1) ∈ E}.

• Define the boundary Q as:

Q := {x ∈ ∂E | t0 < x0 < T}.

• Note: The space-time domain boundary ∂E is equal to:

∂E = Ω(t0) ∪Q ∪ Ω(T).

10 / 80

Space-Time Formulation of Scalar Conservation Laws

• Define the space-time flux vector: F(u) := (u, f (u))T , then scalar conservation
laws can be written as:

divF(u(x)) = 0, x ∈ E

with boundary conditions:

u(x) = B(u, uw), x ∈ Q,

and initial condition:

u(x) = u0(x), x ∈ Ω(t0).

• The div operator is defined as: divF = ∂Fi
∂xi

.

11 / 80

Space-Time Slab

x
T

1x

K

K

n

n

n+1t

nt

I

j

n+1
j

E

jK n QjQn
j
n

(T)0

Space-time slab in space-time domain E .

12 / 80

Definition of Space-Time Slab

• Consider a partitioning of the time interval (t0,T): {tn}N
n=0, and set In = (tn, tn+1).

• Define a space-time slab as: In := {x ∈ E | x0 ∈ In}

• Split the space-time slab into non-overlapping elements: Kn
j .

• We will also use the notation: K n
j = Kn

j ∩ {tn} and K n+1
j = Kn

j ∩ {tn+1}

13 / 80

Geometry of Space-Time Element

t

x

t

x

t

FnK

GK
1

1

[1,1]2

S
n

S2

t2

0

Kn+1

K

Kn

xn=
n

Geometry of 2D space-time element in both computational and physical space.

14 / 80

Element Mappings

Definition of the mapping Gn
K which the connects the space-time element Kn to the

reference element K̂ = (−1, 1)2:

• Define a smooth, orientation preserving and invertible mapping Φn
t in the interval

In as:

Φn
t : Ω(tn)→ Ω(t) : x1 7→ Φn

t (x1), t ∈ In.

• Split Ω(tn) into the tessellation T̄ n
h with non-overlapping elements Kj .

• Define χi (ξ1), ξ1 ∈ (−1, 1) as the standard linear finite element shape functions:

χ1(ξ1) = 1
2 (1− ξ1),

χ2(ξ1) = 1
2 (1 + ξ1).

15 / 80

Element Mappings

• The mapping F n
K is defined as:

F n
K : (−1, 1)→ K n : ξ1 7−→

2∑
i=1

xi (K n)χi (ξ1),

with xi (K n) the spatial coordinates of the space-time element at time t = tn.

• Similarly we define the mapping F n+1
K :

F n+1
K : (−1, 1)→ K n+1 : ξ1 7−→

2∑
i=1

Φn
tn+1

(xi (K n))χi (ξ1).

16 / 80

Element Mappings

• The space-time element is defined by linear interpolation in time:

Gn
K : (−1, 1)2 → Kn : (ξ0, ξ1) 7−→ (x0, x1),

with:

(x0, x1) =
(

1
2 (tn + tn+1)− 1

2 (tn − tn+1)ξ0,

1
2 (1− ξ0)F n

K (ξ1) + 1
2 (1 + ξ0)F n+1

K (ξ1)
)
.

• The space-time tessellation is now defined as:

T n
h := {K = Gn

K(K̂) |K ∈ T̄ n
h }.

17 / 80

Discontinous Galerkin Approximation

Discontinous Galerkin approximation of a function

Note: The polynomial expansions are discontinuous at element faces.

18 / 80

Basis Functions

• Define the basis functions φ̂m, (m = 1, · · · , (p + 1)2), in the master element K̂ as:

φ̂m(ξ0, ξ1) = ξ
i0
0 ξ

i1
1 .

Remark: In practice the best option is to use orthogonal basis functions, e.g.
Legendre polynomials or (generalized) Jacobi polynomials.

• Define the basis functions φm in an element K as:

φm(x) = φ̂m ◦ G−1
K (x).

.

19 / 80

Basis Functions

• Introduce the basis functions ψm : K → R and split the test and trial functions into
an element mean at time tn+1 and a fluctuating part:

ψm(x) = 1, m = 1,

= φm(x)−
1

|K (tn+1)|

∫
K (tn+1)

φmdK , m ≥ 2.

• This splitting is beneficial to show the relation between the space-time DG
discretization and the Arbitrary Lagrangian Eulerian (ALE) method, but not
essential in practice.

• A more general approach is to use orthogonal basis functions.

20 / 80

Finite Element Space

• Define the finite element space V p
h (T n

h) as:

V p
h (T n

h) :=
{

vh

∣∣∣ vh|K ∈ Qp(K), ∀K ∈ T n
h

}
,

with Qp(K) = span
{
φm,m = 1, · · · , (p + 1)2} a tensor product basis.

• The trial functions uh : T n
h → R2 are defined in each element K ∈ T n

h as:

uh(x) = P(u(x)|K) =

(p+1)2∑
m=1

Ûm(K)ψm(x), x ∈ K,

with P the projection operator to the finite element space V p
h (T n

h) and Ûm the DG
expansion coefficients.

21 / 80

Finite Element Space

• Note : Since
∫

K (tn+1) ψm(x)dK = 0 for m ≥ 2, we have the relation:

ūh(K (tn+1)) :=
1

|K (tn+1)|

∫
K (tn+1)

uhdK = Û1,

and we can write:

uh(x) = ūh(K (tn+1)) + ũh(x),

with
∫

K (tn+1) ũ(x)dK = 0.

• One of the main benefits of this splitting is that the equation for Û1 is very similar
to a first order finite volume discretization and is only weakly coupled to the
equations for ũh.

• This splitting is beneficial for the definition of the stabilization operator, which
should only act on ũh.

22 / 80

Weak Formulation for STDG Method

The scalar conservation laws can be transformed into a weak formulation:

• Find a uh ∈ V p
h , such that for all wh ∈ V p

h , we have:

NT∑
n=0

Nn∑
j=1

(∫
Kn

j

wh divF(uh)dK+

∫
Kn

j

(grad wh)T D(uh) grad uhdK
)

= 0.

• The second integral with D(uh) ∈ R2 is the stabilization operator necessary to
obtain monotone solutions near discontinuities.

23 / 80

Weak Formulation

After integration by parts we obtain the following weak formulation:

• Find a uh ∈ V p
h , such that for all wh ∈ V p

h , we have:

NT∑
n=0

Nn∑
j=1

(
−
∫
Kn

j

grad wh · F(uh)dK+

∫
∂Kn

j

w−h n− · F(u−h)d(∂K)

+

∫
Kn

j

(grad wh)T D(uh) grad uhdK
)

= 0.

24 / 80

Numerical Fluxes

• We can transform the boundary integrals into:

∑
K

∫
∂K

w−h n− · F−d(∂K) =
∑
S

∫
S

(
(w−h n− + w+

h n+) · 1
2 (F− + F+)+

1
2 (w−h + w+

h)(F− · n− + F+ · n+)
)

dS,
(1)

with F± = F(u±h), and n−, n+ the normal vectors at each side of the face S,
which satisfy n+ = −n−.

25 / 80

Numerical Fluxes

• The formulation must be conservative, which imposes the condition:∫
S

whn− · F−dS = −
∫
S

whn+ · F+dS, ∀wh ∈ V p
h (T n

h),

hence the second contribution in (1) must be zero.

• The boundary integrals therefore are equal to:

∑
K

∫
∂K

w−h n− · F−d(∂K) =
∑
S

∫
S

1
2 (w−h − w+

h)n− · (F− + F+)dS,

using the relation n+ = −n−.

26 / 80

Numerical Fluxes

• Replace the multi-valued trace of the flux at S with a numerical flux function:

H(u−h , u
+
h , n) ∼= 1

2 n · (F− + F+),

then we obtain the relation:

∑
K

∫
∂K

w−h n− · F−d(∂K) =
∑
S

∫
S

(w−h − w+
h)H(u−h , u

+
h , n
−)dS

=
∑
K

∫
∂K

w−h H(u−h , u
+
h , n
−)d(∂K),

using the relation H(u−h , u
+
h , n
−) = −H(u+

h , u
−
h , n

+).

27 / 80

Numerical Fluxes

• The numerical flux at the boundary faces K (tn) and K (tn+1), which have as
normal vectors n− = (∓1, 0)T , respectively, is defined as:

H(u−h , u
+
h , n
−) = u+

h at K (tn)

= u−h at K (tn+1).

• The numerical flux at the boundary faces Qn is a monotone Lipschitz
H(u−h , u

+
h , n), which is consistent:

H(u, u, n) = n · F(u)

and conservative:

H(u−h , u
+
h , n
−) = −H(u+

h , u
−
h , n

+).

28 / 80

Riemann Problem

• The monotone Lipschitz flux H(u−h , u
+
h , n) is obtained by (approximately) solving

the Riemann problem with initial states u−h and u+
h at the element faces Qn.

• This procedure introduces upwinding into the discontinuous Galerkin finite
element method.

29 / 80

Upwind Fluxes

Consistent, monotone Lipschitz fluxes are:

• Godunov flux

HG(u−h , u
+
h , n) =

min

u∈[u−h ,u
+
h]

f̂ (u), if u−h ≤ u+
h

max
u∈[u+

h ,u
−
h]

f̂ (u), otherwise,

with f̂ (u) = F(u) · n.

30 / 80

Upwind Fluxes

• Local Lax-Friedrichs flux

HLLF (u−h , u
+
h , n) =

1
2

(f̂ (u−h) + f̂ (u+
h)− C(u+

h − u−h)),

with

C = max
inf(u−h ,u

+
h)≤s≤sup(u−h ,u

+
h)

|̂f ′(s)|,

• Roe flux with entropy fix

• HLLC flux

• The choice which numerical flux should be used depends on many aspects, e.g.
accuracy, robustness, computational complexity, and personal preference.

31 / 80

Arbitrary Lagrangian Eulerian Formulation

• The space-time normal vector at Q can be expressed as:

n = (−ug · n̄, n̄),

with ug the mesh velocity.

• If we introduce this relation into the numerical fluxes then

f̂ (u) = F(u) · n = f (u) · n̄ − ug · n̄u,

which is exactly the flux in an ALE formulation.

32 / 80

Weak Formulation for DG Discretization

After introducing the numerical fluxes we can transform the weak formulation into:

• Find a uh ∈ V p
h (T n

h), such that for all wh ∈ V p
h (T n

h), the following variational
equation is satisfied:

Nn∑
j=1

(
−
∫
Kn

j

(grad wh) · F(uh)dK+

∫
Kj (tn+1)

w−h u−h dK−

∫
Kj (tn)

w−h u+
h dK +

∫
Qn

j

w−h H(u−h , u
+
h ; ug , n−)dQ+

∫
Kn

j

(grad wh)TD(uh) grad uh dK
)

= 0.

• Note: Due to the causality of the time-flux the solution in a space-time slab only
depends explicitly on the data from the previous space-time slab.

33 / 80

DG-Expansion Coefficient Equations for Element Mean

• Introduce the polynomial expansions for uh and wh into the weak formulation and
use the fact that the coefficients Ŵm are arbitrary, then the following set of
equations for the element mean ūh(Kj (tn+1)) is obtained:

∣∣Kj (tn+1)
∣∣ūh(Kj (tn+1))−

∣∣Kj (tn)
∣∣ūh(Kj (tn)) +

∫
Qn

j

H(u−h , u
+
h ; ug , n−)dQ = 0.

• These equations are equivalent to a first order accurate finite volume formulation,
except that more accurate data are used at the element faces.

34 / 80

DG Equations for Element Fluctuations

• The equations for the coefficients Ûm(Kn
j), (m ≥ 2) for the fluctuating part of the

flow field ũh are equal to:

(p+1)2∑
m=2

Ûm(Kn
j)
(
−
∫
Kn

j

∂ψl

∂x0
ψmdK+

∫
K n+1

j

ψl (t−n+1, x1)ψm(t−n+1, x1)dK

+

∫
Kn

j

∂ψl

∂xk
Dkp(uh)

∂ψm

∂xp
dK
)

−
∫

K n
j

uh(t−n , x1,)ψl (t+
n , x1)dK − ūh(K n+1

j)

∫
Kn

j

∂ψl

∂x0
dK

+

∫
Qn

j

ψl H(u−h , u
+
h ; ug , n−)dQ−

∫
Kn

j

∂ψl

∂x1
F1(uh)dK = 0, l = 2, · · · , (p + 1)2.

35 / 80

Solution of DG Expansion Coefficient Equations

• The space-time DG formulation results in an implicit time-integration scheme.

• The equations for the DG expansion coefficients are represented as:

L(Ûn; Ûn−1) = 0.

• The non-linear equations for the expansion coefficients Ûn can be solved by
introducing a pseudo-time τ and marching the solution with a Runge-Kutta
method to a steady state:

∂Û∗

∂τ
= −

1
4t
L(Û∗; Ûn−1).

• Convergence to steady state in pseudo-time can be accelerated using a multigrid
procedure.

36 / 80

Runge-Kutta Scheme for Pseudo-Time Integration

For the pseudo-time integration we use a point-implicit five stage Runge-Kutta scheme:

• Initialize the first Runge-Kutta stage: V̂ (0) = Ûn−1.

• Do for all stages s = 1 to 5:

(1 + αsλ̄)V̂ (s) = V̂ (0) + αsλ̄
(

V̂ (s−1) − Lk (V̂ (s−1); Ûn−1)
)

• End do

• Update solution: Ûn = V̂ (5).

with λ̄ = 4τ/4t . The Runge-Kutta coefficients are:

α1 = 0.0791451, α2 = 0.163551, α3 = 0.283663, α4 = 0.5, and α5 = 1.0.

37 / 80

Stability Analysis of Pseudo-Time Integration for Linear Advection
Equation

• Consider the linear advection equation:

ut + aux = 0,
with a > 0.

• If we assume a uniform mesh size then the space-time discontinuous Galerkin
discretization is equal to:

L(Û(Kn); Û(Kn−1)) = AÛ(Kn
j)− BÛ(Kn

j−1)− CÛ(Kn−1
j).

38 / 80

Stability Analysis of Pseudo-Time Integration for Linear Advection
Equation

• The matrices A, B, C in the space-time discontinuous Galerkin discretization are
defined as:

A =

1 + δ δ −δ

−δ 1
3 + δ δ

−2− δ −δ 2 + 4
3 δ

 , B =

δ δ −δ

−δ −δ δ

−δ −δ 4
3 δ

 ,

C =

1 0 0

0 1
3 0

−2 0 0

 ,

with δ = a4t/4x .

39 / 80

Fourier Analysis for Linear Advection Equation

• Consider the spatial Fourier mode: Û(Kn
j) = eiθj ÛF , the stability of the

pseudo-time integration algorithm then is determined by the equation:

dÛF

dτ
= −

1
∆t
P(θ)ÛF

with P(θ) = A− e−iθB.

• The matrix P can be written as: P = QMQ−1, with Q the matrix of the right
eigenvectors and M the diagonal matrix with the eigenvalues µm(θ) of P(θ).

• Introducing a new vector V̂ F = Q−1ÛF , we obtain a system of independent
ODEs:

dV̂ F
m

dτ
= −

µm(θ)

4t
V̂ F

m , for m = 0, 1, 2.

40 / 80

Fourier Analysis for Linear Advection Equation

• This system of ordinary differential equations is solved with a semi-implicit
Runge-Kutta scheme with an amplification factor G(z), which is defined
recursively as:

G(z) = 1

For s = 1 to 5

G(z) =
1.0 + αs(λ̄+ z)G(z)

1.0 + αsλ̄

End for

• The pseudo-time integration method is stable if:

|G(zm(θ))| ≤ 1

with zm(θ) = −∆τ
∆t µm(θ).

41 / 80

Stability Analysis of Pseudo-Time Integration for Linear Advection
Equation

10 9 8 7 6 5 4 3 2 1 0

6

4

2

0

2

4

6

Re(z)

Im
(z
)

0.2

0.
2

0.4

0.4

0.6

0.
6

0.8

0.8

1

1

6 5 4 3 2 1 0
5

4

3

2

1

0

1

2

3

4

5

Re(z)
Im
(z
)

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

Locus of eigenvalues zm (dots) of DG discretization of ut + aux = 0 and stability
domain of 5-stage semi-implicit Runge-Kutta method with optimized coefficients.
CFL4t = 1.0, CFL4τ = 1.8 (left), CFL4t = 100.0, CFL4τ = 1.8 (right).

42 / 80

Stability Analysis of Pseudo-Time Integration for Linear Advection
Equation

10 9 8 7 6 5 4 3 2 1 0
5

4

3

2

1

0

1

2

3

4

5

Re(z)

Im
(z
) 0.
6

0.8

0.4

0.
4

0.2

0.
2

0.4

0.6

0.
8

1

1

10 9 8 7 6 5 4 3 2 1 0

6

4

2

0

2

4

6

Re(z)
Im
(z
)

0.
2

0.2

0.2

0.2

0.2

0.
4

0.
4

0.6

0.
6

0.8

0.8

1

1

Locus of eigenvalues zm (dots) of DG discretization of ut + aux = 0 and stability
domain of 5-stage explicit Runge-Kutta method with optimized coefficients (left) and
5-stage semi-implicit Jameson Runge-Kutta scheme (right). CFL4t = 1.0,
CFL4τ = 1.8.

43 / 80

Parabolic Scalar Conservation Laws

• Parabolic scalar conservation laws on a time-dependent domain Ωt ⊂ Rd :

∂u
∂t

+
d∑

i=1

∂

∂xi
fi (u(t , x̄))−

d∑
i,j=1

∂

∂xj

(
Dij (t , x̄)

∂u
∂xi

)
= 0, in Ωt ,

• with:

I u a scalar quantity

I fi , i = 1, · · · , d real-valued flux functions

I D ∈ Rd×d a symmetric positive definite matrix of diffusion coefficients

44 / 80

Space-Time Formulation

• Introduce the convective flux F ∈ Rd+1 and the symmetric matrix
A ∈ R(d+1)×(d+1) as:

F(u) =
(
u, f1(u), · · · , fd (u)

)
,

A =

(
0 0
0 D

)
.

• The parabolic scalar conservation law can be transformed into a space-time
formulation as:

−∇ · (−F(u) + A∇u) = 0 in E,

where ∇ =
(
∂
∂x0

, ∂
∂x1

, . . . , ∂
∂xd

)
denotes the gradient operator in Rd+1.

45 / 80

Boundary Conditions

• The boundary ∂E is divided into disjoint boundary subsets ΓS , Γ−, and Γ+, where
each subset is defined as follows:

ΓS :={x ∈ ∂E : n̄T Dn̄ > 0},

Γ− :={x ∈ ∂E \ ΓS : λ(u) < 0},

Γ+ :={x ∈ ∂E \ ΓS : λ(u) ≥ 0},

with:

I n the space-time normal vector at ∂E

I n̄ the spatial part of the space-time normal vector n

I λ(u) = d
du (F(u) · n)

46 / 80

Boundary Conditions

• The boundary conditions on different parts of ∂E are written as

u = u0 on Ω0,

u = gD on ΓD ,

αu + n · (A∇u) = gM on ΓM ,

• α ≥ 0 and u0, gD , gM given functions defined on the boundary.

• There is no boundary condition imposed on Γ+.

47 / 80

Space-Time Slab

I n
t n+1
tn

t0

Qn
n

n+1

y

x

t
K

Space-time slab En with space-time element K.

48 / 80

Finite Element Spaces

• To each element K we assign a pair of nonnegative integers pK = (pt,K, ps,K) as
local polynomial degrees

• Define Qpt,K,ps,K (K̂) as the set of tensor-product polynomials on K̂ of degree
pt,K in the time direction and degree ps,K in each spatial coordinate direction

• Define the finite element spaces of discontinuous piecewise polynomial functions
as:

V (pt ,ps)
h := {v ∈ L2(E) : v |K ◦ GK ∈ Q(pt,K,ps,K)(K̂),∀K ∈ Th}

Σ
(pt ,ps)
h := {τ ∈ L2(E)d+1 : τ |K ◦ GK ∈ [Q(pt,K,ps,K)(K̂)]d+1, ∀K ∈ Th}

49 / 80

Trace Operators

• The so called traces of v ∈ V (pt ,ps)
h on ∂K are defined as:

v±K = lim
ε↓0

v(x ± εnK)

• The traces of τ ∈ Σ
(pt ,ps)
h are defined similarly.

• Note that functions v ∈ V (pt ,ps)
h and τ ∈ Σ

(pt ,ps)
h are in general multivalued on a

face S ∈ Fint.

50 / 80

Average and Jump Operators

• Introduce the functions vi := v |Ki , τi := τ |Ki , ni := n|∂Ki

• The average operator on S ∈ Fint is defined as:

{{v}} =
1
2

(v−i + v−j), {{τ}} =
1
2

(τ−i + τ−j), on S ∈ Fint,

• The jump operator on S ∈ Fint is defined as:

[[v]] = v−i ni + v−j nj , [[τ]] = τ−i · ni + τ−j · nj , on S ∈ Fint,

with i and j the indices of the elements Ki and Kj which connect to the face
S ∈ Fint.

51 / 80

Average and Jump Operators

• On a face S ∈ Fbnd, the average and jump operators on S ∈ Fbnd are defined as:

{{v}} = v−, {{τ}} = τ−,

[[v]] = v− n, [[τ]] = τ− · n

• Note that the jump [[v]] is a vector parallel to the normal vector n and the jump [[τ]]
is a scalar quantity.

• We also need the spatial jump operator 〈〈·〉〉 for functions v ∈ V (pt ,ps)
h , which is

defined as:

〈〈v〉〉 = v−i n̄i + v−j n̄j , on S ∈ Fint, 〈〈v〉〉 = v− n̄, on S ∈ Fbnd.

52 / 80

Space-Time DG Discretization

• Introduce an auxiliary variable σ = A∇u to obtain the following system of first
order equations:

σ = A∇u,

−∇ · (−F(u) + σ) = 0.

53 / 80

Weak Formulation for Auxiliary Variable

• Multiply the auxiliary equation with an arbitrary test function τ ∈ Σ
(pt ,ps)
h and

integrate over an element K ∈ Th∫
K
σ · τ dK =

∫
K

A∇u · τ dK, ∀τ ∈ Σ
(pt ,ps)
h

• Substitute σ and u with their numerical approximation and integrate by parts twice
and sum over all elements:∫

E
σh · τ dE =

∫
E

A∇huh · τ dE +
∑
K∈Th

∫
∂K

A(ûh − u−h)n · τ− d∂K

• The variable ûh is the numerical flux that must be introduced to account for the
multivalued trace on ∂K.

54 / 80

Weak Formulation for Auxiliary Variable

• The following relation holds for vectors τ and scalars φ, piecewise smooth on Th:

∑
K∈Th

∫
∂K

(τ · n)φ d∂K =
∑
S∈F

∫
S
{{τ}} · [[φ]] dS +

∑
S∈Fint

∫
S

[[τ]]{{φ}} dS

• Using the symmetry of the matrix A, the last contribution in the auxiliary equation
then results in

∑
K∈Th

∫
∂K

A(ûh − u−h)n · τ− d∂K

=
∑
S∈F

∫
S
{{Aτ}} · [[ûh − uh]] dS +

∑
S∈Fint

∫
S
{{ûh − uh}}[[Aτ]] dS

55 / 80

Numerical Fluxes for Auxiliary Equation

• The following numerical fluxes result in a consistent and conservative scheme
with a sparse matrix:

ûh = {{uh}} on S ∈ Fint,

ûh = gD on S ∈ ∪nSn
D ,

ûh = u−h elsewhere.

• Note that on faces S ∈ Sn
S , which are the element boundaries K n and K n+1, the

normal vector n has values n = (±1, 0, . . . , 0︸ ︷︷ ︸
d ×

) and thus An = (0, . . . , 0︸ ︷︷ ︸
(d+1) ×

). Hence

there is no coupling between the space-time slabs.

56 / 80

Numerical Fluxes for Auxiliary Equation

• Substitute the numerical flux into the auxiliary equation and use that A contains
continuous functions, we obtain for each space-time slab En:

∑
K∈T n

h

∫
∂K

A(ûh − u−h)n · τ− d∂K

= −
∑

S∈Sn
ID

∫
S

[[uh]] · A{{τ}} dS +
∑

S∈Sn
D

∫
S

gDn · Aτ dS.

• Summing over all space-time slabs and using the symmetry of matrix A we can
introduce the lifting operator to obtain

∑
K∈Th

∫
∂K

A(ûh − u−h)n · τ− d∂K =

∫
E

ARID([[uh]]) · τ dE

57 / 80

Lifting Operators

• Define the global lifting operator RID : (L2(∪nSn
ID))d+1 → Σ

(pt ,ps)
h as:

RID(φ) = R(φ)− R(PgDn)

• Define the global lifting operator R : (L2(∪nSn
ID))d+1 → Σ

(pt ,ps)
h as:∫

E
R(φ) · q dE = −

∑
S

∫
S
φ · {{q}} dS, ∀q ∈ Σ

(pt ,ps)
h , ∀S ∈ ∪nSn

ID .

58 / 80

Lifting Operators

• Using the symmetry of the matrix A, the lifting operator RID satisfies the relation:

∫
E

ARID([[uh]]) · τ dE

= −
∑

S∈∪nSn
ID

∫
S

A[[uh]] · {{τ}} dS +
∑

S∈∪nSn
D

∫
S

AgDn · τ dS

59 / 80

Numerical Fluxes for Auxiliary Equation

• Combine all terms, then we obtain for all τ ∈ Σ
(pt ,ps)
h :∫

E
σh · τ dE =

∫
E

A∇huh · τ dE +

∫
E

ARID([[uh]]) · τ dE,

• This implies that we can express σh ∈ Σ
(pt ,ps)
h as:

σh = A∇huh + ARID([[uh]]) a.e. ∀x ∈ E.

60 / 80

Weak Formulation for Parabolic Scalar Conservation Laws

• The weak formulation for parabolic scalar conservation laws can be expressed as:

Find a uh ∈ V (pt ,ps)
h , such that ∀v ∈ V (pt ,ps)

h the following relation is satisfied:∫
E

(−F(uh) + σh) · ∇hv dE −
∑
K∈Th

∫
∂K

(−F̂h + σ̂h) · nv− d∂K = 0.

• Here we replaced F(uh), σh on ∂K with the numerical fluxes F̂h, σ̂h, to account
for the multivalued traces on ∂K.

61 / 80

Numerical Fluxes

• Separate the numerical fluxes into an convective flux F̂h and a diffusive flux σ̂h.

• For the convective flux, the obvious choice is an upwind flux. Here we use the
Local Lax-Friedrichs flux for convenience:

F̂h(u−h , u
+
h) = {{F(uh)}}+ CS [[uh]]

• The parameter CS is chosen as:

CS = max
u∈[u−h ,u

+
h]

|λ(u)| on S ∈ Fint

with λ(u) = d
du (F(u) · n).

62 / 80

Convective Numerical Fluxes

• After summation over all elements we obtain:

∑
K∈Th

∫
∂K

({{F(uh)}}+ CS [[uh]]) · nv− d∂K

=
∑

S∈Fint

∫
S

({{F(uh)}}+ CS [[uh]]) · [[v]] dS +
∑

S∈Fbnd

∫
S
F(uh) · nv dS

63 / 80

Numerical Fluxes for Auxiliary Variable

• Introduce, the diffusive flux σ̂h = {{σh}}, then after summation over all elements
we obtain:

∑
K∈Th

∫
∂K
{{σ̂h}} · nv− d∂K =

∑
S∈F

∫
S
{{σh}} · [[v]] dS

• Recall also the relation

σh = A∇huh + ARID([[uh]]) a.e. ∀x ∈ E.

64 / 80

DG Discretization for Primal Variable

• Combining all terms and eliminating σh, we obtain the DG formulation for uh:

∫
E

(
−F(uh) + A∇huh + ARID([[uh]])

)
· ∇hv dE

+
∑

S∈Fint

∫
S

({{F(uh)}}+ CS [[uh]]) · [[v]] dS +
∑

S∈Fbnd

∫
S
Fh(uh) · nv dS

−
∑
S∈F

∫
S

(
A{{∇huh}}+ A{{RID([[uh]])}}

)
· [[v]] dS = 0

65 / 80

Simplifying the DG Discretization

• The DG discretization can be simplified using the following steps.

• Recall the lifting operator RID satisfies the relation

∫
E

ARID([[uh]]) · ∇hv dE

= −
∑

S∈∪nSn
ID

∫
S

A[[uh]] · {{∇hv}} dS +
∑

S∈∪nSn
D

∫
S

AgDn · ∇hv dS

• The lifting operator RID has nonzero values only on faces S ∈ Sn
ID .

66 / 80

Simplifying the DG Discretization

• Using the lifting operators R and RID we obtain:

−
∑
S∈F

∫
S

A{{RID([[uh]])}} · [[v]] dS

=

∫
E

AR([[uh]]) · R([[v]]) dE −
∫
E

AR(PgDn) · R([[v]]) dE

67 / 80

Lifting Operators

• Define the local lifting operator rS : (L2(S))d+1 → Σ
(pt ,ps)
h as:∫

E
rS(φ) · q dE = −

∫
S
φ · {{q}} dS, ∀q ∈ Σ

(pt ,ps)
h ,∀S ∈ ∪nSn

ID .

• The support of the operator rS is limited to the element(s) that share the face S.

68 / 80

Simplifying the DG Discretization

• Following the approach of Brezzi we replace each global lifting operator with the
local lifting operators rS , and make the following simplifications:

∫
E

AR([[uh]]) · R([[v]]) dE ∼=
∑

S∈∪nSn
ID

∑
K∈Th

ηK

∫
K

ArS([[uh]]) · rS([[v]]) dK,

∫
E

AR(PgDn) · R([[v]]) dE ∼=
∑

S∈∪nSn
D

∑
K∈Th

ηK

∫
K

ArS(PgDn) · rS([[v]]) dK

• A sufficient condition for the constant ηK to guarantee a stable and unique
solution is ηK > nf , with nf the number of faces of an element.

• The advantage of this replacement is that the discretization matrix is considerably
sparser than when the global lifting operators are used.

69 / 80

DG Discretization for Parabolic Scalar Conservation Laws

• Define the form aa : V (pt ,ps)
h × V (pt ,ps)

h → R ad : V (pt ,ps)
h × V (pt ,ps)

h → R:

aa(uh, v) =−
∫
E
F(uh) · ∇hv dE +

∑
S∈Fint

∫
S

({{F(uh)}}+ CS [[uh]]) · [[v]] dS

+
∑

S∈(∪nSn
MDSp∪Γ+)

∫
S
F(uh) · nv dS,

70 / 80

DG Discretization for Parabolic Scalar Conservation Laws

• Define the bilinear form ad : V (pt ,ps)
h × V (pt ,ps)

h → R:

ad (uh, v) =

∫
E

D∇huh · ∇hv dE

−
∑

S∈∪nSn
ID

∫
S

(
D〈〈uh〉〉 · {{∇hv}}+ D{{∇huh}} · 〈〈v〉〉

)
dS

+
∑

S∈∪nSn
ID

∑
K∈Th

ηK

∫
K

Dr̄S([[uh]]) · r̄S([[v]]) dK

+
∑

S∈∪nSn
M

∫
S
αuhv dS,

71 / 80

DG Discretization for Parabolic Scalar Conservation Laws

• Define ` : V (pt ,ps)
h → R as:

`(v) = −
∑

S∈∪nSn
D

∫
S

gDDn̄ · ∇hv dS

+
∑

S∈∪nSn
D

∑
K∈Th

ηK

∫
K

Dr̄S(PgDn) · r̄S([[v]]) dK+
∑

S∈∪nSn
M

∫
S

gM v dS

−
∑

S∈∪nSn
DBSm

∫
S
F(gD) · nv dS +

∫
Ω0

c0v dΩ.

72 / 80

DG Discretization for Parabolic Scalar Conservation Laws

• Note, we introduced the following boundary and initial conditions in the DG
discretization:

D∇huh · n̄ = gM − αuh on S ∈ ∪nSn
M ,

uh = gD on S ∈ ∪nSn
DBSm,

uh = u0 on Ω0,

• The space-time DG discretization for the parabolic scalar conservation law can
now be formulated as:

Find a uh ∈ V (pt ,ps)
h , such that ∀v ∈ V (pt ,ps)

h the following relation is satisfied:

a(uh, v) = `(v)

73 / 80

ALE DG Formulation

• On faces S ∈ Sn
S , the space-time normal vector is equal to:

n = (±1, 0, . . . , 0︸ ︷︷ ︸
d ×

)

and is not affected by the mesh velocity.

• On the faces S ∈ Sn
I the space-time normal vector depends on the mesh velocity

ug :

n = (−ug · n̄, n̄),

which also holds on the boundary faces S ∈ Fbnd \ (Ω0 ∪ ΩT).

74 / 80

ALE DG Formulation

• On S ∈ ∪nSn
I , the flux can be written in the ALE formulation as:

{{F(uh)}} · [[v]] = {{f (uh)− uguh}} · 〈〈v〉〉,

• All other contributions are not affected by the mesh velocity.

75 / 80

ALE DG Formulation

• The form aa(·, ·) in the ALE formulation is now equal to:

aa(uh, v) =−
∫
E
F(uh)·∇hv dE

+
∑

S∈∪nSn
I

∫
S

({{f (uh)− uguh}}·〈〈v〉〉+ CS [[uh]] · [[v]]) dS

+
∑

S∈∪nSn
S

∫
S

({{F(uh)}}+ CS [[uh]]) · [[v]] dS

+
∑

S∈(∪nSn
MDSp∪Γ+)

∫
S

(f (uh)− uguh) · n̄v dS,

76 / 80

ALE DG Formulation

• The linear form `(·) in the ALE formulation is now equal to:

`(v) = −
∑

S∈∪nSn
D

∫
S

gDDn̄ · ∇hv dS

+
∑

S∈∪nSn
D

∑
K∈Th

ηK

∫
K

Dr̄S(PgDn) · r̄S([[v]]) dK+
∑

S∈∪nSn
M

∫
S

gM v dS

−
∑

S∈∪nSn
DBSm

∫
S

(f (gD)− gDug) · n̄v dS +

∫
Ω0

c0v dΩ,

• The bilinear form ad (·, ·) is not influenced by the mesh velocity.

77 / 80

Conclusions

The main properties of space-time discontinuous Galerkin finite elements methods can
be summarized as:

• The space-time discontinuous Galerkin finite element method results in a very
local, element wise discretization, which has as benefits:

I the space-time discretization automatically satisfies the geometric
conservation law for deforming elements

I efficient grid adaptation using local grid refinement, no complications caused
by hanging nodes and gradient reconstruction

I combines very well with unstructured grids

I boundary conditions can be easily implemented

78 / 80

Conclusions

I no special numerical treatment is required to achieve higher order accuracy

I no interpolation is necessary after remeshing or local mesh refinement, only time
fluxes need to be transferred

I maintains accuracy on irregular grids

I efficient parallelization

79 / 80

References

1. J.J.W. van der Vegt and H. van der Ven, Space-time discontinuous Galerkin finite
element method with dynamic grid motion for inviscid compressible flows. Part I.
General formulation., J. Comput. Phys. 182, pp. 546-585 (2002).

2. J.J. Sudirham, J.J.W. van der Vegt and R.M.J. van Damme, Space-time
discontinuous Galerkin method for advection-diffusion problems on
time-dependent domains, Applied Numerical Mathematics, 56, pp. 1491-1518
(2006).

80 / 80

