Space-Time Discontinuous Galerkin Finite Element Methods

Part II Compressible Navier-Stokes Equations

Jaap van der Vegt
Numerical Analysis and Computational Science Group

Department of Applied Mathematics
Universiteit Twente

Enschede, The Netherlands

Joint work with Christiaan Klaij and Harmen van der Ven (NLR)

USTC Summer School, August 31 - September 4, 2020

Space-Time Discontinuous Galerkin Finite Element Methods

Motivation of research

- In many applications one encounters moving and deforming time-dependent flow domains:
- Aerodynamics: helicopters, maneuvering aircraft, wing control, surfaces
- Fluid structure interaction,
- Multi-Fluid flows,
- Free surface problems,
- Local time-stepping (not discussed).
- A key requirement for these applications is to obtain an accurate and conservative discretization on moving and deforming meshes.

Motivation of Research

Other requirements

- Improved capturing of vortical structures and flow discontinuities, such as shocks and interfaces, using $h p$-adaptation.
- Capability to deal with complex geometries.
- Excellent computational efficiency for unsteady flow simulations.

These requirements have been the main motivation to develop a space-time discontinuous Galerkin method.

Overview of Lecture II

- Space-time discontinuous Galerkin finite element discretization for compressible Navier-Stokes equations
- Applications in aerodynamics
- Concluding remarks

Geometry of Space-Time Domain for Three-Dimensional Time-Dependent Problems

- Consider an open domain $\mathcal{E} \subset \mathbb{R}^{4}$.
- A point $x \in \mathcal{E}$ has coordinates $x=\left(x_{0}, \bar{x}\right)$ with $x_{0}=t, t$ time, and \bar{x} the spatial coordinates.
- The flow domain $\Omega(t)$ at time t is defined as

$$
\Omega(t):=\left\{x \in \mathcal{E} \mid x_{0}=t, t_{0}<t<T\right\} .
$$

- The space-time domain boundary $\partial \mathcal{E}$ consists of the hypersurfaces

$$
\begin{aligned}
\Omega\left(t_{0}\right) & :=\left\{x \in \partial \mathcal{E} \mid x_{0}=t_{0}\right\}, \\
\Omega(T) & :=\left\{x \in \partial \mathcal{E} \mid x_{0}=T\right\}, \\
\mathcal{Q} & :=\left\{x \in \partial \mathcal{E} \mid t_{0}<x_{0}<T\right\} .
\end{aligned}
$$

Definition of Space-Time Slab

- Consider a partitioning of the time interval $\left(t_{0}, T\right):\left\{t_{n}\right\}_{n=0}^{N}$, and set $I_{n}=\left(t_{n}, t_{n+1}\right)$.
- Define a space-time slab as $\mathcal{I}_{n}:=\left\{x \in \mathcal{E} \mid x_{0} \in I_{n}\right\}$.
- Split the space-time slab into non-overlapping elements \mathcal{K}_{j}^{n}.
- We will also use the notation $K_{j}^{n}=\mathcal{K}_{j}^{n} \cap\left\{t_{n}\right\}$ and $K_{j}^{n+1}=\mathcal{K}_{j}^{n} \cap\left\{t_{n+1}\right\}$ and $\mathcal{Q}_{j}^{n}=\partial \mathcal{K}_{j}^{n} \backslash\left(K_{j}^{n} \cup K_{j}^{n+1}\right)$.

Space-Time Slab

Compressible Navier-Stokes Equations

- Compressible Navier-Stokes equations in space-time domain \mathcal{E}

$$
\frac{\partial U_{i}}{\partial x_{0}}+\frac{\partial F_{k}^{e}(U)}{\partial x_{k}}-\frac{\partial F_{k}^{v}(U, \nabla U)}{\partial x_{k}}=0
$$

- Conservative variables $U \in \mathbb{R}^{5}$ and inviscid fluxes $F^{e} \in \mathbb{R}^{5 \times 3}$

$$
U=\left[\begin{array}{c}
\rho \\
\rho u_{j} \\
\rho E
\end{array}\right], \quad F_{k}^{e}=\left[\begin{array}{c}
\rho u_{k} \\
\rho u_{j} u_{k}+p \delta_{j k} \\
(\rho E+p) u_{k}
\end{array}\right] .
$$

Compressible Navier-Stokes Equations

- Viscous flux $F^{\vee} \in \mathbb{R}^{5 \times 3}$

$$
F_{k}^{v}=\left[\begin{array}{c}
0 \\
\tau_{j k} \\
\tau_{k j} u_{j}-q_{k}
\end{array}\right]
$$

with the total stress tensor τ is defined as

$$
\tau_{j k}=\lambda \frac{\partial u_{i}}{\partial x_{i}} \delta_{j k}+\mu\left(\frac{\partial u_{j}}{\partial x_{k}}+\frac{\partial u_{k}}{\partial x_{j}}\right) .
$$

- The dynamic viscosity coefficient μ given by Sutherland's law

$$
\frac{\mu}{\mu_{\infty}}=\frac{T_{\infty}+T_{S}}{T+T_{S}}\left(\frac{T}{T_{\infty}}\right)^{3 / 2}
$$

where T is the temperature, T_{S} a constant and $(\cdot)_{\infty}$ denotes free-stream values.

- The second viscosity coefficient λ is related to μ following the Stokes hypothesis $3 \lambda+2 \mu=0$.

Compressible Navier-Stokes Equations

- The heat flux vector q is defined as

$$
q_{k}=-\kappa \frac{\partial T}{\partial x_{k}}
$$

with κ the thermal conductivity coefficient.

- The system is closed using the equations of state for a calorically perfect gas.

$$
p=(\gamma-1)\left(\rho E-\frac{1}{2} u_{i} u_{i}\right), \quad T=\frac{1}{c_{v}}\left(E-\frac{1}{2} u_{i} u_{i}\right)
$$

with $\gamma=c_{p} / c_{V}$.

Compressible Navier-Stokes Equations

- The viscous flux F^{v} is homogeneous with respect to the gradient of the conservative variables ∇U

$$
F_{i k}^{V}(U, \nabla U)=A_{i k r s}(U) \frac{\partial U_{r}}{\partial x_{s}}
$$

with the homogeneity tensor $A \in \mathbb{R}^{5 \times 3 \times 5 \times 3}$ defined as

$$
A_{i k r s}(U):=\frac{\partial F_{i k}^{\nu}(U, \nabla U)}{\partial(\nabla U)} .
$$

Geometry of Space-Time Element

Geometry of 2D space-time element in both computational and physical space.

Space-Time Element Definition

- Definition of the mapping G_{K}^{n}, which the connects the space-time element \mathcal{K}^{n} to the reference element $\hat{\mathcal{K}}=[-1,1]^{4}$

$$
G_{K}^{n}:[-1,1]^{4} \rightarrow \mathcal{K}^{n}: \xi \longmapsto x
$$

with

$$
\begin{aligned}
\left(x_{0}, \bar{x}\right)= & \left(\frac{1}{2}\left(t_{n}+t_{n+1}\right)+\frac{1}{2}\left(t_{n}-t_{n+1}\right) \xi_{0},\right. \\
& \left.\frac{1}{2}\left(1-\xi_{0}\right) F_{K}^{n}(\bar{\xi})+\frac{1}{2}\left(1+\xi_{0}\right) F_{K}^{n+1}(\bar{\xi})\right) .
\end{aligned}
$$

- Here $F_{K}^{n}:[-1,1]^{3} \rightarrow K^{n}, F_{K}^{n+1}:[-1,1]^{3} \rightarrow K^{n+1}$ are the mappings for the space elements, with

$$
F_{K}^{n}: \hat{K} \rightarrow K^{n}: \bar{\xi} \mapsto \bar{x}=\sum_{i=1}^{8} x_{i}\left(K^{n}\right) \chi_{i}(\bar{\xi})
$$

with $x_{i}\left(K^{n}\right) \in \mathbb{R}^{3}, 1 \leq i \leq 8$, the spatial coordinates of the vertices of the hexahedron K^{n} at time t_{n}.

- For F_{K}^{n+1} we have a similar expression using the vertices at $t=t_{n+1}$.

Space-Time Element Definition

- The space-time tessellation is now defined as

$$
\mathcal{T}_{h}^{n}:=\left\{\mathcal{K}=G_{k}^{n}(\hat{\mathcal{K}}) \mid K \in \overline{\mathcal{T}}_{h}^{n}\right\}
$$

with $\overline{\mathcal{T}}_{h}^{n}$ the tessellation of $\Omega\left(t_{n}\right)$.

- The space-time normal vector at an element boundary point moving with velocity v is given by

$$
n= \begin{cases}(1,0,0,0) & \text { at } K\left(t_{n+1}^{-}\right), \\ (-1,0,0,0) & \text { at } K\left(t_{n}^{+}\right), \\ \left(-v_{k} \bar{n}_{k}, \bar{n}\right) & \text { at } Q^{n} .\end{cases}
$$

Approximation Spaces

- The finite element space associated with the tessellation \mathcal{T}_{h} is given by

$$
W_{h}:=\left\{W \in\left(L^{2}\left(\mathcal{E}_{h}\right)\right)^{5}:\left.W\right|_{\mathcal{K}} \circ G_{\mathcal{K}} \in\left(P^{k}(\hat{\mathcal{K}})\right)^{5}, \quad \forall \mathcal{K} \in \mathcal{T}_{h}\right\} .
$$

- We will also use the space

$$
V_{h}:=\left\{V \in\left(L^{2}\left(\mathcal{E}_{h}\right)\right)^{5 \times 3}:\left.V\right|_{\mathcal{K}} \circ G_{\mathcal{K}} \in\left(P^{k}(\hat{\mathcal{K}})\right)^{5 \times 3}, \quad \forall \mathcal{K} \in \mathcal{T}_{h}\right\}
$$

- Note the fact that $\nabla_{h} W_{h} \subset V_{h}$ is essential for the discretization.

Trace Operators

- The jump of f in the Cartesian coordinate direction k is defined at internal faces as

$$
\llbracket f \rrbracket_{k}=f^{L} n_{k}^{L}+f^{R} n_{k}^{R}
$$

- The average of f is defined at internal faces as

$$
\{f\}=\frac{1}{2}\left(f^{L}+f^{R}\right) .
$$

- The jump operator satisfies the following product rule at internal faces

$$
\llbracket g_{i} f_{i k} \rrbracket_{k}=\left\{\left\{g_{i}\right\} \llbracket f_{i k} \rrbracket_{k}+\llbracket g_{i} \rrbracket_{k}\left\{\left\{f_{i k}\right\},\right.\right.
$$

- Relation between element boundary and face integrals

$$
\sum_{\mathcal{K} \in \mathcal{T}_{h}^{n}} \int_{\mathcal{Q}} g_{i}^{L} f_{i k}^{L} \bar{n}_{k}^{L} d \mathcal{Q}=\sum_{\mathcal{S} \in \mathcal{S}_{l}^{n}} \int_{\mathcal{S}} \llbracket g_{i} f_{i k} \rrbracket_{k} d \mathcal{S}+\sum_{\mathcal{S} \in \mathcal{S}_{B}^{n}} \int_{\mathcal{S}} g_{i}^{L} f_{i k}^{L} \bar{n}_{k}^{L} d \mathcal{S} .
$$

Space-Time Formulation Compressible Navier-Stokes Equations

- The compressible Navier-Stokes equations in the domain $\mathcal{E} \subset \mathbb{R}^{4}$ can be expressed as

$$
\begin{cases}U_{i, 0}+\frac{\partial F_{i k}^{e}}{\partial x_{k}}-\frac{\partial}{\partial x_{k}}\left(A_{i k r s} \frac{\partial U_{r}}{\partial x_{s}}\right)=0 & \text { on } \mathcal{E} \\ U=U_{0} & \text { on } \Omega\left(t_{0}\right) \\ U=\mathcal{B}\left(U, U^{b}\right) & \text { on } \mathcal{Q}\end{cases}
$$

for $i, r=1, \ldots, 5$ and $k, s=1, \ldots, 3$.

- The initial flow field is denoted by $U_{0}: \Omega\left(t_{0}\right) \rightarrow \mathbb{R}^{5}$, with U_{0} the initial condition.
- The boundary operator is denoted by $\mathcal{B}: \mathbb{R}^{5 \times 5} \rightarrow \mathbb{R}^{5}$ and is a function of the internal data U and the boundary data U^{b} derived from the boundary conditions.
- At the far-field boundary, suitable in- and out-flow conditions can be derived using local characteristics.

First Order System

- Rewrite the compressible Navier-Stokes equations as a first-order system using the auxiliary variable Θ

$$
\begin{array}{r}
\frac{\partial U_{i}}{\partial x_{0}}+\frac{\partial F_{i k}^{e}(U)}{\partial x_{k}}-\frac{\partial \Theta_{i k}(U)}{\partial x_{k}}=0 \\
\Theta_{i k}(U)-A_{i k r s}(U) \frac{\partial U_{r}}{\partial x_{s}}=0
\end{array}
$$

- Note, this results in 5×3 additional equations for auxiliary variables Θ, which will be eliminated later using a lifting operator.

Weak Formulation

- Weak formulation for the compressible Navier-Stokes equations

Find a $U \in W_{h}, \Theta \in V_{h}$, such that for all $W \in W_{h}$ and $V \in V_{h}$, the following holds

$$
\begin{aligned}
-\sum_{\mathcal{K} \in \mathcal{T}_{h}} \int_{\mathcal{K}}\left(\frac{\partial W_{i}}{\partial x_{0}} U_{i}+\right. & \left.\frac{\partial W_{i}}{\partial x_{k}}\left(F_{i k}^{e}-\Theta_{i k}\right)\right) d \mathcal{K} \\
& +\sum_{\mathcal{K} \in \mathcal{T}_{h}} \int_{\partial \mathcal{K}} W_{i}^{L}\left(\widehat{U}_{i}+\widehat{F}_{i k}^{e}-\widehat{\Theta}_{i k}\right) n_{k}^{L} d(\partial \mathcal{K})=0 \\
\sum_{\mathcal{K} \in \mathcal{T}_{h}^{n}} \int_{\mathcal{K}} V_{i k} \Theta_{i k} d \mathcal{K}= & \sum_{\mathcal{K} \in \mathcal{T}_{h}^{n}} \int_{\mathcal{K}} V_{i k} A_{i k r s} \frac{\partial U_{r}}{\partial x_{s}} d \mathcal{K} \\
& +\sum_{\mathcal{K} \in \mathcal{T}_{h}^{n}} \int_{\mathcal{Q}} V_{i k}^{L} A_{i k r s}^{L}\left(\widehat{U}_{r}-U_{r}^{L}\right) \bar{n}_{s}^{L} d \mathcal{Q}
\end{aligned}
$$

Transformation to Arbitrary Lagrangian Eulerian form

- The space-time normal vector on a grid moving with velocity \vec{v} is

$$
n= \begin{cases}(1,0,0,0)^{T} & \text { at } K\left(t_{n+1}^{-}\right) \\ (-1,0,0,0)^{T} & \text { at } K\left(t_{n}^{+}\right), \\ \left(-v_{k} \bar{n}_{k}, \bar{n}\right)^{T} & \text { at } Q^{n}\end{cases}
$$

- The boundary integral then transforms into

$$
\begin{aligned}
\sum_{\mathcal{K} \in \mathcal{T}_{h}} \int_{\partial \mathcal{K}} W_{i}^{L} & \left(\widehat{U}_{i}+\widehat{F}_{i k}^{e}-\widehat{\Theta}_{i k}\right) n_{k}^{L} d(\partial \mathcal{K}) \\
& =\sum_{K \in \mathcal{T}_{h}}\left(\int_{K\left(t_{n+1}^{-}\right)} W_{i}^{L} \widehat{U}_{i} d K+\int_{K\left(t_{n}^{+}\right)} W_{i}^{L} \widehat{U}_{i} d K\right) \\
& +\sum_{K \in \mathcal{T}_{h}} \int_{\mathcal{Q}} W_{i}^{L}\left(\widehat{F}_{i k}^{e}-\widehat{U}_{i} v_{k}-\widehat{\Theta}_{i k}\right) \bar{n}_{k}^{L} d \mathcal{Q}
\end{aligned}
$$

Numerical Fluxes

- The numerical flux \widehat{U} at $K\left(t_{n+1}^{-}\right)$and $K\left(t_{n}^{+}\right)$is defined as an upwind flux to ensure causality in time

$$
\widehat{U}= \begin{cases}U^{L} & \text { at } K\left(t_{n+1}^{-}\right), \\ U^{R} & \text { at } K\left(t_{n}^{+}\right) .\end{cases}
$$

- At the space-time faces \mathcal{Q} we introduce the HLLC approximate Riemann solver as numerical flux

$$
\bar{n}_{k}\left(\widehat{F}_{i k}^{e}-\widehat{U}_{i} v_{k}\right)\left(U^{L}, U^{R}\right)=H_{i}^{\text {HLLC }}\left(U^{L}, U^{R}, v, \bar{n}\right)
$$

HLLC Flux on Moving Meshes

- The HLLC scheme was proposed by Toro (Shock Waves 4(1994), 25) and Batten e.a. (SIAM J. Sci. Stat. Comput. 18(1997), 1553), but only for non-moving meshes.
- The extension to moving meshes is most easily accomplished by considering the structure of the wave pattern in the Riemann problem that is assumed in the HLLC scheme.

HLLC Flux on Moving Meshes

HLLC Flux on Moving Meshes

- The HLLC scheme assumes we have two averaged intermediate states U_{L}^{*} and U_{R}^{*} in the star region, which is the region bounded by the waves with the slowest and fastest signal speeds S_{L} and S_{R}, respectively.
- The star region is divided into two parts by a contact wave, which moves with velocity S_{M}.
- Outside the star region the solution still is at its initial values at time t_{m}, which are denoted U_{L} and U_{R} and are equal to the traces $U_{h}^{-}\left(t_{m}\right)$ and $U_{h}^{+}\left(t_{m}\right)$, respectively.
- In the time interval $\left[t_{m}, t_{m}+\triangle t\right)$ the solution $U_{H L L C}$ at an element face which moves with the velocity v then is equal to

$$
U_{H L L C}= \begin{cases}U_{L} \equiv U_{h}^{-}\left(t_{m}\right) & \text { if } S_{L}>v, \\ U_{L}^{*} & \text { if } S_{L} \leq v<S_{M} \\ U_{R}^{*} & \text { if } S_{M} \leq v<S_{R} \\ U_{R} \equiv U_{h}^{+}\left(t_{m}\right) & \text { if } S_{R} \leq v,\end{cases}
$$

where depending on the grid velocity v we have to consider four different cases.

- The time interval Δt is chosen such that there is no interaction with waves coming from other Riemann problems.

HLLC Flux on Moving Meshes

HLLC Flux on Moving Meshes

- Assume that $S_{L}<v, S_{R}>v$, and $S_{M} \geq v$, then we can calculate the flux $H_{H L L C}\left(U_{L}, U_{R}\right)$ in the time interval $\left[t_{m}, t_{m}+\triangle t\right)$ by integrating the Euler equations over the control volumes $\square D E F C$ and $\square E A B F$.
Using Gauss' theorem we obtain for the control volume $\square D E F C$ the relation

$$
\begin{align*}
& \int_{x_{L}}^{S_{L} \Delta t} U_{L} d x+\int_{S_{L} \Delta t}^{v \Delta t} U_{h}\left(x, t_{m}+\Delta t\right) d x \\
& =\int_{x_{L}}^{0} U_{h}\left(x, t_{m}\right) d x+\int_{t_{m}}^{t_{m}+\Delta t} \hat{F}\left(U_{h}\left(x_{L}, t\right)\right) d t-\int_{t_{m}}^{t_{m}+\Delta t} \hat{F}\left(U_{h}^{-}(v t, t)\right) d t \tag{2}
\end{align*}
$$

and for the control volume $\square E A B F$

$$
\begin{align*}
& \int_{v \Delta t}^{S_{M} \Delta t} U_{h}\left(x, t_{m}+\Delta t\right) d x+\int_{S_{M} \Delta t}^{S_{R} \Delta t} U_{h}\left(x, t_{m}+\Delta t\right) d x+\int_{S_{R} \Delta t}^{x_{R}} U_{R} d x \\
& =\int_{0}^{x_{R}} U_{h}\left(x, t_{m}\right) d x+\int_{t_{m}}^{t_{m}+\Delta t} \hat{F}\left(U_{h}^{+}(v t, t)\right) d t-\int_{t_{m}}^{t_{m}+\Delta t} \hat{F}\left(U_{h}\left(x_{R}, t\right)\right) d t, \tag{3}
\end{align*}
$$

with $\hat{F}\left(U_{h}\right)=\bar{n}_{\mathcal{K}} \bar{F}\left(U_{h}\right)$.

HLLC Flux on Moving Meshes

- If we introduce the averaged solutions U_{L}^{*} and U_{R}^{*}, which are defined as

$$
\begin{aligned}
& U_{L}^{*}=\frac{1}{\left(S_{M}-S_{L}\right) \Delta t} \int_{S_{L} \Delta t}^{S_{M} \Delta t} U_{h}\left(x, t_{m}+\Delta t\right) d x \\
& U_{R}^{*}=\frac{1}{\left(S_{R}-S_{M}\right) \Delta t} \int_{S_{M} \Delta t}^{S_{R} \Delta t} U_{h}\left(x, t_{m}+\Delta t\right) d x .
\end{aligned}
$$

- Use the fact that $U_{h}^{ \pm}$is constant along the line $x=v t$ in the Riemann problem then we obtain after subtracting (2) from (3) the following expression for the HLLC flux at the interface in the time interval $\left[t_{m}, t_{m}+\Delta t\right)$

$$
\begin{aligned}
H_{H L L C}\left(U_{L}, U_{R}\right)= & \frac{1}{2}\left(\hat{F}\left(U_{L}\right)+\hat{F}\left(U_{R}\right)+\left(\left(S_{L}-v\right)+\left(S_{M}-v\right)\right) U_{L}^{*}+\right. \\
& \left.\left(\left(S_{R}-v\right)-\left(S_{M}-v\right)\right) U_{R}^{*}-S_{L} U_{L}-S_{R} U_{R}\right) .
\end{aligned}
$$

- For the other three cases: $\left(S_{L}<v, S_{R}>v, S_{M} \leq v\right),\left(S_{L}<v, S_{R}<v, S_{M}<v\right)$, and $\left(S_{L}>v, S_{R}>v, S_{M}>v\right)$ a similar analysis can be made.

HLLC Flux on Moving Meshes

- If we combine the four cases then we obtain the following expression for the HLLC flux at a moving interface in the time interval $\left[t_{m}, t_{m}+\triangle t\right)$

$$
\begin{aligned}
H_{H L L C}\left(U_{L}, U_{R}\right)= & \frac{1}{2}\left(\hat{F}\left(U_{L}\right)+\hat{F}\left(U_{R}\right)-\left(\left|S_{L}-v\right|-\left|S_{M}-v\right|\right) U_{L}^{*}+\right. \\
& \left(\left|S_{R}-v\right|-\left|S_{M}-v\right|\right) U_{R}^{*}+\left|S_{L}-v\right| U_{L}-\left|S_{R}-v\right| U_{R}- \\
& \left.v\left(U_{L}+U_{R}\right)\right) .
\end{aligned}
$$

- In order to completely define the HLLC flux we still need to define the star states U_{L}^{*} and U_{R}^{*}, and the wave speeds S_{L}, S_{R} and S_{M}.
- This can be done in various ways, but since there is no difference with the HLLC scheme for non-moving meshes, we only state the final results.

HLLC Flux on Moving Meshes

- We will follow the approach of Batten e.a. (SIAM J. Sci. Stat. Comput. 18(1997), 1553) which assumed that

$$
S_{M}=\hat{u}_{L}^{*}=\hat{u}_{R}^{*}=\hat{u}^{*},
$$

with $\hat{u}_{L, R}=\bar{n}_{\mathcal{K}} \cdot u_{L, R}$, and \hat{u}^{*} the normal velocity calculated from the HLL approximation.

- This results in the following expression for S_{M}

$$
S_{M}=\frac{\rho_{R} \hat{u}_{R}\left(S_{R}-\hat{u}_{R}\right)-\rho_{L} \hat{u}_{L}\left(S_{L}-\hat{u}_{L}\right)+p_{L}-p_{R}}{\rho_{R}\left(S_{R}-\hat{u}_{R}\right)-\rho_{L}\left(S_{L}-\hat{u}_{L}\right)} .
$$

- The star states are obtained using the Rankine-Hugoniot relations across the waves moving with the velocities S_{L} and S_{R}

$$
U_{L}^{*}=\frac{S_{L}-\hat{u}_{L}}{S_{L}-S_{M}} U_{L}+\frac{1}{S_{L}-S_{M}}\left(\begin{array}{c}
0 \\
\left(p^{*}-p_{L}\right) \bar{n}_{\mathcal{K}} \\
p^{*} S_{M}-p_{L} \hat{u}_{L}
\end{array}\right)
$$

with an identical relation for U_{R}^{*}, only with L replaced with R.

HLLC Flux on Moving Meshes

- The intermediate pressures are equal to

$$
\begin{aligned}
& p_{L}^{*}=\rho_{L}\left(S_{L}-\hat{u}_{L}\right)\left(S_{M}-\hat{u}_{L}\right)+p_{L}, \\
& p_{R}^{*}=\rho_{R}\left(S_{R}-\hat{u}_{R}\right)\left(S_{M}-\hat{u}_{R}\right)+p_{R} .
\end{aligned}
$$

- The definition of S_{M} ensures that $p_{L}^{*}=p_{R}^{*}=p^{*}$, as is required for a contact discontinuity.
- The wave speeds S_{L} and S_{R} are computed according as

$$
S_{L}=\min \left(\hat{u}_{L}-a_{L}, \hat{u}_{R}-a_{R}\right), \quad S_{R}=\max \left(\hat{u}_{L}+a_{L}, \hat{u}_{R}+a_{R}\right),
$$

with $a=\sqrt{\gamma P / \rho}$ the speed of sound.

ALE Weak Formulation

- The ALE flux formulation of the compressible Navier-Stokes equations transforms now into

Find a $U \in W_{h}$, such that for all $W \in W_{h}$, the following holds

$$
\begin{aligned}
& -\sum_{\mathcal{K} \in \mathcal{T}_{h}^{n}} \int_{\mathcal{K}}\left(\frac{\partial W_{i}}{\partial x_{0}} U_{i}+\frac{\partial W_{i}}{\partial x_{k}}\left(F_{i k}^{e}-\Theta_{i k}\right)\right) d \mathcal{K} \\
& +\sum_{K \in \mathcal{T}_{h}^{n}}\left(\int_{K\left(t_{n+1}^{-}\right)} W_{i}^{L} U_{i}^{L} d K-\int_{K\left(t_{n}^{+}\right)} W_{i}^{L} U_{i}^{R} d K\right) \\
& +\sum_{\mathcal{K} \in \mathcal{T}_{h}^{n}} \int_{\mathcal{Q}} W_{i}^{L}\left(H_{i}^{\mathrm{HLLC}}\left(U^{L}, U^{R}, v, \bar{n}\right)-\widehat{\Theta}_{i k} \bar{n}_{k}^{L}\right) d \mathcal{Q}=0 .
\end{aligned}
$$

Auxiliary Equation for Θ

- Recall the auxiliary equation for Θ.

Find a $\Theta \in V_{h}$, such that for all $V \in V_{h}$ the following holds

$$
\begin{aligned}
\sum_{\mathcal{K} \in \mathcal{T}_{h}^{n}} \int_{\mathcal{K}} V_{i k} \Theta_{i k} d \mathcal{K} & =\sum_{\mathcal{K} \in \mathcal{T}_{h}^{n}} \int_{\mathcal{K}} V_{i k} A_{i k r s} \frac{\partial U_{r}}{\partial x_{s}} d \mathcal{K} \\
& +\sum_{\mathcal{K} \in \mathcal{T}_{h}^{n}} \int_{\mathcal{Q}} V_{i k}^{L} A_{i k r s}^{L}\left(\widehat{U}_{r}-U_{r}^{L}\right) \bar{n}_{s}^{L} d \mathcal{Q}
\end{aligned}
$$

- The following relation holds for the element boundary integrals

$$
\sum_{\mathcal{K} \in \mathcal{T}_{h}^{n}} \int_{\mathcal{Q}} g_{i}^{L} f_{i k}^{L} \bar{n}_{k}^{L} d \mathcal{Q}=\sum_{\mathcal{S} \in \mathcal{S}_{1}^{n}} \int_{\mathcal{S}} \llbracket g_{i} f_{i k} \rrbracket_{k} d \mathcal{S}+\sum_{\mathcal{S} \in \mathcal{S}_{B}^{n}} \int_{\mathcal{S}} g_{i}^{L} f_{i k}^{L} \bar{n}_{k}^{L} d \mathcal{S} .
$$

- Transform the element boundary integrals into face integrals in the auxiliary equation

$$
\begin{aligned}
\sum_{\mathcal{K} \in \mathcal{T}_{h}^{n}} \int_{\mathcal{Q}} V_{i k}^{L} A_{i k r s}^{L}\left(\widehat{U}_{r}-U_{r}^{L}\right) \bar{n}_{s}^{L} d \mathcal{Q} & =\sum_{\mathcal{S} \in \mathcal{S}_{1}^{n}} \int_{\mathcal{S}} \llbracket V_{i k} A_{i k r s}\left(\widehat{U}_{r}-U_{r}\right) \rrbracket_{s} d \mathcal{S} \\
& +\sum_{\mathcal{S} \in \mathcal{S}_{B}^{n}} \int_{\mathcal{S}} V_{i k}^{L} A_{i k r s}^{L}\left(\widehat{U}_{r}-U_{r}^{L}\right) \bar{n}_{s}^{L} d \mathcal{S} .
\end{aligned}
$$

Numerical Fluxes in Auxiliary Equation

- Introduce the numerical flux proposed by Bassi and Rebay

$$
\widehat{U}= \begin{cases}\{U\} & \text { at internal faces } \\ U^{b} & \text { at boundary faces. }\end{cases}
$$

- Use the relation

$$
\left.\llbracket g_{i} f_{i k} \rrbracket_{k}=\left\{g_{i}\right\} \llbracket f_{i k} \rrbracket_{k}+\llbracket g_{i} \rrbracket_{k} \llbracket f_{i k}\right\}
$$

then we obtain

$$
\llbracket V_{i k} A_{i k r s}\left(\widehat{U}_{r}-U_{r}\right) \rrbracket_{s}=-\left\{V_{i k} A_{i k r s}\right\} \llbracket U_{r} \rrbracket_{s}
$$

- The weak formulation for the auxiliary variable Θ then becomes

$$
\begin{aligned}
\sum_{\mathcal{K} \in \mathcal{T}_{h}^{n}} \int_{\mathcal{K}} V_{i k} \Theta_{i k} d \mathcal{K} & =\sum_{\mathcal{K} \in \mathcal{T}_{h}^{n}} \int_{\mathcal{K}} V_{i k} A_{i k r s} \frac{\partial U_{r}}{\partial x_{s}} d \mathcal{K}-\sum_{\mathcal{S} \in \mathcal{S}_{1}^{n}} \int_{\mathcal{S}}\left\{V_{i k} A_{i k r s}\right\} \rrbracket U_{r} \rrbracket_{s} d \mathcal{S} \\
& -\sum_{\mathcal{S} \in \mathcal{S}_{B}^{n}} \int_{\mathcal{S}} V_{i k}^{L} A_{i k r s}^{L}\left(U_{r}^{L}-U_{r}^{b}\right) \bar{n}_{s}^{L} d \mathcal{S}
\end{aligned}
$$

Lifting Operator

- Introduce the global lifting operator $\mathcal{R} \in \mathbb{R}^{5 \times 3}$, defined in a weak sense as Find an $\mathcal{R} \in V_{h}$, such that for all $V \in V_{h}$

$$
\begin{aligned}
\sum_{\mathcal{K} \in \mathcal{T}_{h}^{n}} \int_{\mathcal{K}} V_{i k} \mathcal{R}_{i k} d \mathcal{K} & =\sum_{\mathcal{S} \in \mathcal{S}_{l}^{n}} \int_{\mathcal{S}}\left\{V_{i k} A_{i k r s}\right\} \llbracket U_{r} \rrbracket_{s} d \mathcal{S} \\
& +\sum_{\mathcal{S} \in \mathcal{S}_{B}^{n}} \int_{\mathcal{S}} V_{i k}^{L} A_{i k r s}^{L}\left(U_{r}^{L}-U_{r}^{b}\right) \bar{n}_{s}^{L} d \mathcal{S} .
\end{aligned}
$$

- The weak formulation for the auxiliary variable is now transformed into

$$
\sum_{\mathcal{K} \in \mathcal{T}_{h}^{n}} \int_{\mathcal{K}} V_{i k} \Theta_{i k} d \mathcal{K}=\sum_{\mathcal{K} \in \mathcal{T}_{h}^{n}} \int_{\mathcal{K}} V_{i k}\left(A_{i k r s} \frac{\partial U_{r}}{\partial x_{s}}-\mathcal{R}_{i k}\right) d \mathcal{K}, \quad \forall V \in V_{h}
$$

Θ Equation

- The primal formulation can be obtained by eliminating the auxiliary variable Θ using

$$
\Theta_{i k}=A_{i k r s} \frac{\partial U_{r}}{\partial x_{s}}-\mathcal{R}_{i k}, \quad \text { a.e. in } \mathcal{E}_{h}^{n} .
$$

- Note, this is possible since $\nabla_{h} W_{h} \subset V_{h}$.

ALE Weak Formulation for Primal Variables

- Recall the ALE flux formulation of the compressible Navier-Stokes equations

Find a $U \in W_{h}$, such that for all $W \in W_{h}$, the following holds

$$
\begin{aligned}
& -\sum_{\mathcal{K} \in \mathcal{T}_{h}^{n}} \int_{\mathcal{K}}\left(\frac{\partial W_{i}}{\partial x_{0}} U_{i}+\frac{\partial W_{i}}{\partial x_{k}}\left(F_{i k}^{e}-\Theta_{i k}\right)\right) d \mathcal{K} \\
& +\sum_{K \in \mathcal{T}_{h}^{n}}\left(\int_{K\left(t_{n+1}^{-}\right)} W_{i}^{L} U_{i}^{L} d K-\int_{K\left(t_{n}^{+}\right)} W_{i}^{L} U_{i}^{R} d K\right) \\
& +\sum_{\mathcal{K} \in \mathcal{T}_{h}^{n}} \int_{\mathcal{Q}} W_{i}^{L}\left(H_{i}^{\mathrm{HLLC}}\left(U^{L}, U^{R}, v, \bar{n}\right)-\widehat{\Theta}_{i k} \bar{n}_{k}^{L}\right) d \mathcal{Q}=0 .
\end{aligned}
$$

Numerical Fluxes for Θ

- The numerical flux $\widehat{\Theta}$ in the primary equation is defined following Brezzi as a central flux $\widehat{\Theta}=\{\{\Theta\}$

$$
\widehat{\Theta}_{i k}\left(U^{L}, U^{R}\right)= \begin{cases}\left\{A_{i k r s} \frac{\partial U_{r}}{\partial x_{s}}-\eta \mathcal{R}_{i k}^{\mathcal{S}}\right\} & \text { for internal faces } \\ A_{i k r s}^{b} \frac{\partial U_{r}^{b}}{\partial x_{s}}-\eta \mathcal{R}_{i k}^{\mathcal{S}} & \text { for boundary faces }\end{cases}
$$

- The local lifting operator $\mathcal{R}^{\mathcal{S}} \in \mathbb{R}^{5 \times 3}$ is defined as follows

Find an $\mathcal{R}^{\mathcal{S}} \in V_{h}$, such that for all $V \in V_{h}$

$$
\sum_{\mathcal{K} \in \mathcal{T}_{h}^{n}} \int_{\mathcal{K}} V_{i k} \mathcal{R}_{i k}^{\mathcal{S}} d \mathcal{K}= \begin{cases}\int_{\mathcal{S}}\left\{V_{i k} A_{i k r s}\right\} \llbracket U_{r} \rrbracket_{s} d \mathcal{S} & \text { for internal faces } \\ \int_{\mathcal{S}} V_{i k}^{L} A_{i k r s}^{L}\left(U_{r}^{L}-U_{r}^{b}\right) \bar{n}_{s} d \mathcal{S} & \text { for external faces. }\end{cases}
$$

Space-Time Formulation for Compressible Navier-Stokes Equations

Find a $U \in W_{h}$, such that for all $W \in W_{h}$

$$
\begin{aligned}
& -\sum_{\mathcal{K} \in \mathcal{T}_{h}^{n}} \int_{\mathcal{K}}\left(\frac{\partial W_{i}}{\partial x_{0}} U_{i}+\frac{\partial W_{i}}{\partial x_{k}}\left(F_{i k}^{e}-A_{i k r s} \frac{\partial U_{r}}{\partial x_{s}}+\mathcal{R}_{i k}\right)\right) d \mathcal{K} \\
& +\sum_{K \in \mathcal{T}_{h}^{n}}\left(\int_{K\left(t_{n+1}^{-}\right)} W_{i} U_{i}^{L} d K-\int_{K\left(t_{n}^{+}\right)} W_{i} U_{i}^{R} d K\right) \\
& +\sum_{\mathcal{S} \in \mathcal{S}_{l B}^{n}} \int_{\mathcal{S}}\left(W_{i}^{L}-W_{i}^{R}\right) H_{i}\left(U^{L}, U^{R}, v, \bar{n}^{L}\right) d \mathcal{S} \\
& -\sum_{\mathcal{S} \in \mathcal{S}_{l}^{n}} \int_{\mathcal{S}} \llbracket W_{i} \rrbracket_{k} \llbracket\left\{A_{i k r s} \frac{\partial U_{r}}{\partial x_{s}}-\eta \mathcal{R}_{i k}^{\mathcal{S}} \rrbracket d \mathcal{S}\right. \\
& -\sum_{\mathcal{S} \in \mathcal{S}_{B}^{n}} \int_{\mathcal{S}} W_{i}^{L}\left(A_{i k r s}^{b} \frac{\partial U_{r}^{b}}{\partial x_{S}}-\eta \mathcal{R}_{i k}^{\mathcal{S}}\right) \bar{n}_{k}^{L} d \mathcal{S}=0,
\end{aligned}
$$

Basis Functions

- The basis functions are polynomials of degree k to represent the trial function U and the test function W in each element $\mathcal{K} \in \mathcal{T}_{h}^{n}$:

$$
\begin{aligned}
\left.U_{i}(t, \bar{x})\right|_{\mathcal{K}} & =\hat{U}_{i m} \psi_{m}(t, \bar{x}), \\
\left.W_{l}(t, \bar{x})\right|_{\mathcal{K}} & =\psi_{l}(t, \bar{x}) .
\end{aligned}
$$

with ψ the basis functions.

- The basis functions are defined such that the test and trial functions are split into an element mean at time t_{n+1} and a fluctuating part.
- This construction facilitates the definition of the artificial dissipation operator and of the multigrid convergence acceleration method.
- The basis functions ψ are given by

$$
\begin{aligned}
\psi_{m} & =1, & & m=0 \\
& =\phi_{m}(t, \bar{x})-\frac{1}{\left|K_{j}\left(t_{n+1}^{-}\right)\right|} \int_{K_{j}\left(t_{n+1}^{-}\right)} \phi_{m}(t, \bar{x}) d K, & & m=1, \ldots, N,
\end{aligned}
$$

where the basis functions ϕ are given by

$$
\phi_{m}=\hat{\phi}_{m} \circ G_{\mathcal{K}}^{-1} \quad \text { with } \quad \hat{\phi}_{m}(\xi) \in P^{k}(\hat{\mathcal{K}})
$$

with ξ the local coordinates in the master element $\hat{\mathcal{K}}$.

Lifting operators

- The DG coefficients of global and local lifting operators need to be expressed in terms of the DG coefficients of the primal variable U.
- Recall the expression for the lifting operator

$$
\begin{aligned}
\sum_{\mathcal{K} \in \mathcal{T}_{h}^{n}} \int_{\mathcal{K}} W_{i, k} \mathcal{R}_{i k} d \mathcal{K} & =\sum_{\mathcal{S} \in \mathcal{S}_{l}^{n}} \int_{\mathcal{S}}\left\{W_{i, k} A_{i k r s}\right\} \llbracket U_{r} \rrbracket_{s} d \mathcal{S} \\
& +\sum_{\mathcal{S} \in \mathcal{S}_{B}^{n}} \int_{\mathcal{S}} W_{i, k}^{L} A_{i k r s}^{L}\left(U_{r}^{L}-U_{r}^{b}\right) \bar{n}_{s}^{L} d \mathcal{S}
\end{aligned}
$$

- The face integrals can be directly computed by replacing the test and trial functions by their polynomial expansions.

Lifting operators

- The local lifting are similarly expressed as

$$
\left.\mathcal{R}^{\mathcal{S}}(t, \bar{x})\right|_{\mathcal{K}}=\hat{R}_{j} \psi_{j}(t, \bar{x}) .
$$

and a small linear system must be solved for the expansion coefficients \hat{R}_{j}.

- The local lifting operator is only non-zero on the two elements \mathcal{K}^{L} and \mathcal{K}^{R} connected to the face $\mathcal{S} \in \mathcal{S}_{l}^{n}$, hence

$$
\int_{\mathcal{K}^{R}} V_{i k} \mathcal{R}_{i k}^{\mathcal{S}} d \mathcal{K}+\int_{\mathcal{K}^{L}} V_{i k} \mathcal{R}_{i k}^{\mathcal{S}} d \mathcal{K}=\int_{\mathcal{S}}\left\{\left\{V_{i k} A_{i k r s}\right\} \llbracket U_{r} \rrbracket_{S} d \mathcal{S} .\right.
$$

- This is equivalent with the two following equations:

$$
\int_{\mathcal{K}^{L, R}} V_{i k} \mathcal{R}_{i k}^{\mathcal{S}} d \mathcal{K}=\frac{1}{2} \int_{\mathcal{S}} V_{i k}^{L, R} A_{i k r s}^{L, R} \llbracket U_{r} \rrbracket_{S} d \mathcal{S},
$$

where the superscript L, R refers to the traces from either the left or right element.

Lifting operators

- Replacing $\mathcal{R}^{\mathcal{S}}$ by its polynomial approximation leads to two systems of linear equations for the expansion coefficients $\hat{R}_{i k j}$ of $\mathcal{R}_{i k}^{\mathcal{S}}$ on $\mathcal{S} \in \mathcal{S}_{l}$:

$$
\hat{R}_{i k j}^{L, R} \int_{\mathcal{K}^{L, R}} \psi_{l} \psi_{j} d \mathcal{K}=\frac{1}{2} \int_{\mathcal{S}} \psi_{l}^{L, R} A_{i k r s}^{L, R} \llbracket U_{r} \rrbracket_{S} d S .
$$

- The element mass matrices on the I.h.s. are denoted by $M_{l j}^{L, R}$ and can easily be inverted leading to following expression for the expansion coefficients of the local lifting operator on $\mathcal{S} \in \mathcal{S}_{l}$:

$$
\hat{R}_{i k j}^{L, R}=\frac{1}{2}\left(M^{-1}\right)_{j l}^{L, R} \int_{\mathcal{S}} \psi_{l}^{L, R} A_{i k r s}^{L, R} \llbracket U_{r} \rrbracket_{s} d S .
$$

- Similarly, the expression for the expansion coefficients of the local lifting operator for the faces $\mathcal{S} \in \mathcal{S}_{B}$ is:

$$
\hat{R}_{i k j}^{L}=\left(M^{-1}\right)_{j l}^{L} \int_{\mathcal{S}} \psi_{l}^{L} A_{i k r s}^{L}\left(U_{r}^{L}-U_{r}^{b}\right) \bar{n}_{s}^{L} d \mathcal{S} .
$$

- The expressions for the local lifting operator can now be introduced into the DG formulation, resulting in the primal formulation without auxiliary variables.

