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Space-Time Discontinuous Galerkin Finite Element Methods

Motivation of research

• In many applications one encounters moving and deforming time-dependent flow
domains:

I Aerodynamics: helicopters, maneuvering aircraft, wing control, surfaces

I Fluid structure interaction,

I Multi-Fluid flows,

I Free surface problems,

I Local time-stepping (not discussed).

• A key requirement for these applications is to obtain an accurate and conservative
discretization on moving and deforming meshes.
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Motivation of Research

Other requirements

• Improved capturing of vortical structures and flow discontinuities, such as shocks
and interfaces, using hp-adaptation.

• Capability to deal with complex geometries.

• Excellent computational efficiency for unsteady flow simulations.

These requirements have been the main motivation to develop a space-time
discontinuous Galerkin method.
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Overview of Lecture II

• Space-time discontinuous Galerkin finite element discretization for compressible
Navier-Stokes equations

• Applications in aerodynamics

• Concluding remarks
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Geometry of Space-Time Domain for Three-Dimensional
Time-Dependent Problems

• Consider an open domain E ⊂ R4.

• A point x ∈ E has coordinates x = (x0, x̄) with x0 = t , t time, and x̄ the spatial
coordinates.

• The flow domain Ω(t) at time t is defined as

Ω(t) := {x ∈ E | x0 = t , t0 < t < T}.

• The space-time domain boundary ∂E consists of the hypersurfaces

Ω(t0) :={x ∈ ∂E | x0 = t0},
Ω(T ) :={x ∈ ∂E | x0 = T},
Q :={x ∈ ∂E | t0 < x0 < T}.
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Definition of Space-Time Slab

• Consider a partitioning of the time interval (t0,T ): {tn}N
n=0, and set In = (tn, tn+1).

• Define a space-time slab as In := {x ∈ E | x0 ∈ In}.

• Split the space-time slab into non-overlapping elements Kn
j .

• We will also use the notation K n
j = Kn

j ∩ {tn} and K n+1
j = Kn

j ∩ {tn+1} and

Qn
j = ∂Kn

j \ (K n
j ∪ K n+1

j ).
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Space-Time Slab
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Compressible Navier-Stokes Equations

• Compressible Navier-Stokes equations in space-time domain E

∂Ui

∂x0
+
∂F e

k (U)

∂xk
−
∂F v

k (U,∇U)

∂xk
= 0.

• Conservative variables U ∈ R5 and inviscid fluxes F e ∈ R5×3

U =

 ρ
ρuj
ρE

 , F e
k =

 ρuk
ρuj uk + pδjk
(ρE + p)uk

 .
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Compressible Navier-Stokes Equations

• Viscous flux F v ∈ R5×3

F v
k =

 0
τjk

τkj uj − qk

 ,
with the total stress tensor τ is defined as

τjk = λ
∂ui

∂xi
δjk + µ(

∂uj

∂xk
+
∂uk

∂xj
).

• The dynamic viscosity coefficient µ given by Sutherland’s law

µ

µ∞
=

T∞ + TS

T + TS

(
T

T∞

)3/2
,

where T is the temperature, TS a constant and (·)∞ denotes free-stream values.

• The second viscosity coefficient λ is related to µ following the Stokes hypothesis
3λ+ 2µ = 0.
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Compressible Navier-Stokes Equations

• The heat flux vector q is defined as

qk = −κ
∂T
∂xk

,

with κ the thermal conductivity coefficient.

• The system is closed using the equations of state for a calorically perfect gas.

p = (γ − 1)(ρE −
1
2

ui ui ), T =
1
cv

(E −
1
2

ui ui ),

with γ = cp/cv .
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Compressible Navier-Stokes Equations

• The viscous flux F v is homogeneous with respect to the gradient of the
conservative variables ∇U

F v
ik (U,∇U) = Aikrs(U)

∂Ur

∂xs
,

with the homogeneity tensor A ∈ R5×3×5×3 defined as

Aikrs(U) :=
∂F v

ik (U,∇U)

∂(∇U)
.
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Geometry of Space-Time Element
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Space-Time Element Definition
• Definition of the mapping Gn

K , which the connects the space-time element Kn to
the reference element K̂ = [−1, 1]4

Gn
K : [−1, 1]4 → Kn : ξ 7−→ x ,

with

(x0, x̄) =
(

1
2 (tn + tn+1) + 1

2 (tn − tn+1)ξ0,

1
2 (1− ξ0)F n

K (ξ̄) + 1
2 (1 + ξ0)F n+1

K (ξ̄)
)
.

• Here F n
K : [−1, 1]3 → K n, F n+1

K : [−1, 1]3 → K n+1 are the mappings for the
space elements, with

F n
K : K̂ → K n : ξ̄ 7→ x̄ =

8∑
i=1

xi (K n)χi (ξ̄),

with xi (K n) ∈ R3, 1 ≤ i ≤ 8, the spatial coordinates of the vertices of the
hexahedron K n at time tn.

• For F n+1
K we have a similar expression using the vertices at t = tn+1.
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Space-Time Element Definition

• The space-time tessellation is now defined as

T n
h := {K = Gn

k (K̂) |K ∈ T̄ n
h },

with T̄ n
h the tessellation of Ω(tn).

• The space-time normal vector at an element boundary point moving with velocity
v is given by

n =


(1, 0, 0, 0) at K (t−n+1),

(−1, 0, 0, 0) at K (t+
n ),

(−vk n̄k , n̄) at Qn.
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Approximation Spaces

• The finite element space associated with the tessellation Th is given by

Wh :=
{

W ∈ (L2(Eh))5 : W |K ◦ GK ∈ (Pk (K̂))5, ∀K ∈ Th
}
.

• We will also use the space

Vh :=
{

V ∈ (L2(Eh))5×3 : V |K ◦ GK ∈ (Pk (K̂))5×3, ∀K ∈ Th
}
.

• Note the fact that ∇hWh ⊂ Vh is essential for the discretization.
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Trace Operators

• The jump of f in the Cartesian coordinate direction k is defined at internal faces as

[[f ]]k = f LnL
k + f RnR

k .

• The average of f is defined at internal faces as

{{f}} = 1
2 (f L + f R).

• The jump operator satisfies the following product rule at internal faces

[[gi fik ]]k = {{gi}}[[fik ]]k + [[gi ]]k{{fik}},

• Relation between element boundary and face integrals∑
K∈T n

h

∫
Q

gL
i f L

ik n̄L
k dQ =

∑
S∈Sn

I

∫
S

[[gi fik ]]k dS +
∑
S∈Sn

B

∫
S

gL
i f L

ik n̄L
k dS.

16 / 96



Space-Time Formulation Compressible Navier-Stokes Equations

• The compressible Navier-Stokes equations in the domain E ⊂ R4 can be
expressed as 

Ui,0 +
∂Fe

ik
∂xk
− ∂

∂xk

(
Aikrs

∂Ur
∂xs

)
= 0 on E,

U = U0 on Ω(t0),

U = B(U,Ub) on Q,

for i, r = 1, . . . , 5 and k , s = 1, . . . , 3.

• The initial flow field is denoted by U0 : Ω(t0)→ R5, with U0 the initial condition.

• The boundary operator is denoted by B : R5×5 → R5 and is a function of the
internal data U and the boundary data Ub derived from the boundary conditions.

• At the far-field boundary, suitable in- and out-flow conditions can be derived using
local characteristics.
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First Order System

• Rewrite the compressible Navier-Stokes equations as a first-order system using
the auxiliary variable Θ

∂Ui

∂x0
+
∂F e

ik (U)

∂xk
−
∂Θik (U)

∂xk
= 0,

Θik (U)− Aikrs(U)
∂Ur

∂xs
= 0.

• Note, this results in 5× 3 additional equations for auxiliary variables Θ, which will
be eliminated later using a lifting operator.
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Weak Formulation

• Weak formulation for the compressible Navier-Stokes equations

Find a U ∈ Wh, Θ ∈ Vh, such that for all W ∈ Wh and V ∈ Vh, the following holds

−
∑
K∈Th

∫
K

(∂Wi

∂x0
Ui +

∂Wi

∂xk
(F e

ik −Θik )
)

dK

+
∑
K∈Th

∫
∂K

W L
i (Ûi + F̂ e

ik − Θ̂ik )nL
k d(∂K) = 0,

∑
K∈T n

h

∫
K

Vik Θik dK =
∑
K∈T n

h

∫
K

Vik Aikrs
∂Ur

∂xs
dK

+
∑
K∈T n

h

∫
Q

V L
ik AL

ikrs(Ûr − UL
r )n̄L

s dQ.
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Transformation to Arbitrary Lagrangian Eulerian form

• The space-time normal vector on a grid moving with velocity ~v is

n =


(1, 0, 0, 0)T at K (t−n+1),

(−1, 0, 0, 0)T at K (t+
n ),

(−vk n̄k , n̄)T at Qn.

• The boundary integral then transforms into

∑
K∈Th

∫
∂K

W L
i (Ûi + F̂ e

ik − Θ̂ik )nL
k d(∂K)

=
∑

K∈Th

(∫
K (t−n+1)

W L
i Ûi dK +

∫
K (t+

n )
W L

i Ûi dK
)

+
∑

K∈Th

∫
Q

W L
i (F̂ e

ik − Ûi vk − Θ̂ik )n̄L
k dQ.
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Numerical Fluxes

• The numerical flux Û at K (t−n+1) and K (t+
n ) is defined as an upwind flux to ensure

causality in time

Û =

{
UL at K (t−n+1),

UR at K (t+
n ).

• At the space-time faces Q we introduce the HLLC approximate Riemann solver
as numerical flux

n̄k (F̂ e
ik − Ûi vk )(UL,UR) = HHLLC

i (UL,UR , v , n̄)
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HLLC Flux on Moving Meshes

• The HLLC scheme was proposed by Toro (Shock Waves 4(1994), 25) and Batten
e.a. (SIAM J. Sci. Stat. Comput. 18(1997), 1553), but only for non-moving
meshes.

• The extension to moving meshes is most easily accomplished by considering the
structure of the wave pattern in the Riemann problem that is assumed in the
HLLC scheme.
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HLLC Flux on Moving Meshes
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HLLC Flux on Moving Meshes

• The HLLC scheme assumes we have two averaged intermediate states U∗L and
U∗R in the star region, which is the region bounded by the waves with the slowest
and fastest signal speeds SL and SR , respectively.

• The star region is divided into two parts by a contact wave, which moves with
velocity SM .

• Outside the star region the solution still is at its initial values at time tm, which are
denoted UL and UR and are equal to the traces U−h (tm) and U+

h (tm), respectively.

• In the time interval [tm, tm +4t) the solution UHLLC at an element face which
moves with the velocity v then is equal to

UHLLC =


UL ≡ U−h (tm) if SL > v ,
U∗L if SL ≤ v < SM ,

U∗R if SM ≤ v < SR ,

UR ≡ U+
h (tm) if SR ≤ v ,

where depending on the grid velocity v we have to consider four different cases.

• The time interval4t is chosen such that there is no interaction with waves
coming from other Riemann problems.
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HLLC Flux on Moving Meshes
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HLLC Flux on Moving Meshes

• Assume that SL < v , SR > v , and SM ≥ v , then we can calculate the flux
HHLLC(UL,UR) in the time interval [tm, tm +4t) by integrating the Euler equations
over the control volumes 2DEFC and 2EABF .
Using Gauss’ theorem we obtain for the control volume 2DEFC the relation∫ SL4t

xL

UL dx +

∫ v4t

SL4t
Uh(x , tm +4t) dx

=

∫ 0

xL

Uh(x , tm) dx +

∫ tm+4t

tm
F̂ (Uh(xL, t)) dt −

∫ tm+4t

tm
F̂ (U−h (vt , t)) dt , (2)

and for the control volume 2EABF∫ SM4t

v4t
Uh(x , tm +4t) dx +

∫ SR4t

SM4t
Uh(x , tm +4t) dx +

∫ xR

SR4t
UR dx

=

∫ xR

0
Uh(x , tm) dx +

∫ tm+4t

tm
F̂ (U+

h (vt , t))dt −
∫ tm+4t

tm
F̂ (Uh(xR , t)) dt , (3)

with F̂ (Uh) = n̄KF̄ (Uh).
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HLLC Flux on Moving Meshes

• If we introduce the averaged solutions U∗L and U∗R , which are defined as

U∗L =
1

(SM − SL)4t

∫ SM4t

SL4t
Uh(x , tm +4t)dx ,

U∗R =
1

(SR − SM )4t

∫ SR4t

SM4t
Uh(x , tm +4t)dx .

• Use the fact that U±h is constant along the line x = vt in the Riemann problem
then we obtain after subtracting (2) from (3) the following expression for the HLLC
flux at the interface in the time interval [tm, tm +4t)

HHLLC(UL,UR) = 1
2 (F̂ (UL) + F̂ (UR) + ((SL − v) + (SM − v))U∗L +

((SR − v)− (SM − v))U∗R − SLUL − SRUR).

• For the other three cases: (SL < v ,SR > v ,SM ≤ v), (SL < v ,SR < v ,SM < v),
and (SL > v ,SR > v ,SM > v) a similar analysis can be made.
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HLLC Flux on Moving Meshes

• If we combine the four cases then we obtain the following expression for the HLLC
flux at a moving interface in the time interval [tm, tm +4t)

HHLLC(UL,UR) = 1
2

(
F̂ (UL) + F̂ (UR)− (|SL − v | − |SM − v |)U∗L +

(|SR − v | − |SM − v |)U∗R + |SL − v |UL − |SR − v |UR−

v(UL + UR)
)
.

• In order to completely define the HLLC flux we still need to define the star states
U∗L and U∗R , and the wave speeds SL, SR and SM .

• This can be done in various ways, but since there is no difference with the HLLC
scheme for non-moving meshes, we only state the final results.
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HLLC Flux on Moving Meshes

• We will follow the approach of Batten e.a. (SIAM J. Sci. Stat. Comput. 18(1997),
1553) which assumed that

SM = û∗L = û∗R = û∗,
with ûL,R = n̄K · uL,R , and û∗ the normal velocity calculated from the HLL
approximation.

• This results in the following expression for SM

SM =
ρR ûR(SR − ûR)− ρLûL(SL − ûL) + pL − pR

ρR(SR − ûR)− ρL(SL − ûL)
.

• The star states are obtained using the Rankine-Hugoniot relations across the
waves moving with the velocities SL and SR

U∗L =
SL − ûL

SL − SM
UL +

1
SL − SM

 0
(p∗ − pL)n̄K
p∗SM − pLûL

 ,

with an identical relation for U∗R , only with L replaced with R.
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HLLC Flux on Moving Meshes

• The intermediate pressures are equal to

p∗L = ρL(SL − ûL)(SM − ûL) + pL,

p∗R = ρR(SR − ûR)(SM − ûR) + pR .

• The definition of SM ensures that p∗L = p∗R = p∗, as is required for a contact
discontinuity.

• The wave speeds SL and SR are computed according as

SL = min(ûL − aL, ûR − aR), SR = max(ûL + aL, ûR + aR),

with a =
√
γp/ρ the speed of sound.
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ALE Weak Formulation

• The ALE flux formulation of the compressible Navier-Stokes equations transforms
now into

Find a U ∈ Wh, such that for all W ∈ Wh, the following holds

−
∑
K∈T n

h

∫
K

(∂Wi

∂x0
Ui +

∂Wi

∂xk
(F e

ik −Θik )
)

dK

+
∑

K∈T n
h

(∫
K (t−n+1)

W L
i UL

i dK −
∫

K (t+
n )

W L
i UR

i dK
)

+
∑
K∈T n

h

∫
Q

W L
i (HHLLC

i (UL,UR , v , n̄)− Θ̂ik n̄L
k ) dQ = 0.
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Auxiliary Equation for Θ

• Recall the auxiliary equation for Θ.

Find a Θ ∈ Vh, such that for all V ∈ Vh the following holds

∑
K∈T n

h

∫
K

Vik Θik dK =
∑
K∈T n

h

∫
K

Vik Aikrs
∂Ur

∂xs
dK

+
∑
K∈T n

h

∫
Q

V L
ik AL

ikrs(Ûr − UL
r )n̄L

s dQ.
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• The following relation holds for the element boundary integrals

∑
K∈T n

h

∫
Q

gL
i f L

ik n̄L
k dQ =

∑
S∈Sn

I

∫
S

[[gi fik ]]k dS +
∑
S∈Sn

B

∫
S

gL
i f L

ik n̄L
k dS.

• Transform the element boundary integrals into face integrals in the auxiliary
equation

∑
K∈T n

h

∫
Q

V L
ik AL

ikrs(Ûr − UL
r )n̄L

s dQ =
∑
S∈Sn

I

∫
S

[[Vik Aikrs(Ûr − Ur )]]s dS

+
∑
S∈Sn

B

∫
S

V L
ik AL

ikrs(Ûr − UL
r )n̄L

s dS.
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Numerical Fluxes in Auxiliary Equation

• Introduce the numerical flux proposed by Bassi and Rebay

Û =

{
{{U}} at internal faces,

Ub at boundary faces.

• Use the relation
[[gi fik ]]k = {{gi}}[[fik ]]k + [[gi ]]k{{fik}},

then we obtain
[[Vik Aikrs(Ûr − Ur )]]s = −{{Vik Aikrs}}[[Ur ]]s.

• The weak formulation for the auxiliary variable Θ then becomes

∑
K∈T n

h

∫
K

Vik Θik dK =
∑
K∈T n

h

∫
K

Vik Aikrs
∂Ur

∂xs
dK−

∑
S∈Sn

I

∫
S
{{Vik Aikrs}}[[Ur ]]s dS

−
∑
S∈Sn

B

∫
S

V L
ik AL

ikrs(UL
r − Ub

r )n̄L
s dS.
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Lifting Operator

• Introduce the global lifting operator R ∈ R5×3, defined in a weak sense as

Find an R ∈ Vh, such that for all V ∈ Vh∑
K∈T n

h

∫
K

VikRik dK =
∑
S∈Sn

I

∫
S
{{Vik Aikrs}}[[Ur ]]s dS

+
∑
S∈Sn

B

∫
S

V L
ik AL

ikrs(UL
r − Ub

r )n̄L
s dS.

• The weak formulation for the auxiliary variable is now transformed into

∑
K∈T n

h

∫
K

Vik Θik dK =
∑
K∈T n

h

∫
K

Vik (Aikrs
∂Ur

∂xs
−Rik ) dK, ∀V ∈ Vh.
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Θ Equation

• The primal formulation can be obtained by eliminating the auxiliary variable Θ
using

Θik = Aikrs
∂Ur

∂xs
−Rik , a.e. in En

h .

• Note, this is possible since ∇hWh ⊂ Vh.
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ALE Weak Formulation for Primal Variables

• Recall the ALE flux formulation of the compressible Navier-Stokes equations

Find a U ∈ Wh, such that for all W ∈ Wh, the following holds

−
∑
K∈T n

h

∫
K

(∂Wi

∂x0
Ui +

∂Wi

∂xk
(F e

ik −Θik )
)

dK

+
∑

K∈T n
h

(∫
K (t−n+1)

W L
i UL

i dK −
∫

K (t+
n )

W L
i UR

i dK
)

+
∑
K∈T n

h

∫
Q

W L
i (HHLLC

i (UL,UR , v , n̄)− Θ̂ik n̄L
k ) dQ = 0.
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Numerical Fluxes for Θ

• The numerical flux Θ̂ in the primary equation is defined following Brezzi as a
central flux Θ̂ = {{Θ}}

Θ̂ik (UL,UR) =

{{Aikrs
∂Ur
∂xs
− ηRSik}} for internal faces,

Ab
ikrs

∂Ub
r

∂xs
− ηRSik for boundary faces,

• The local lifting operator RS ∈ R5×3 is defined as follows

Find an RS ∈ Vh, such that for all V ∈ Vh

∑
K∈T n

h

∫
K

VikRSik dK =


∫
S
{{Vik Aikrs}}[[Ur ]]s dS for internal faces,∫
S

V L
ik AL

ikrs(UL
r − Ub

r )n̄s dS for external faces.
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Space-Time Formulation for Compressible Navier-Stokes Equations

Find a U ∈ Wh, such that for all W ∈ Wh

−
∑
K∈T n

h

∫
K

(∂Wi

∂x0
Ui +

∂Wi

∂xk
(F e

ik − Aikrs
∂Ur

∂xs
+Rik )

)
dK

+
∑

K∈T n
h

(∫
K (t−n+1)

Wi UL
i dK −

∫
K (t+

n )
Wi UR

i dK
)

+
∑
S∈Sn

IB

∫
S

(W L
i −W R

i )Hi (UL,UR , v , n̄L) dS

−
∑
S∈Sn

I

∫
S

[[Wi ]]k{{Aikrs
∂Ur

∂xs
− ηRSik}} dS

−
∑
S∈Sn

B

∫
S

W L
i
(
Ab

ikrs
∂Ub

r

∂xs
− ηRSik

)
n̄L

k dS = 0,
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Basis Functions

• The basis functions are polynomials of degree k to represent the trial function U
and the test function W in each element K ∈ T n

h :

Ui (t , x̄)|K = Ûimψm(t , x̄),

Wl (t , x̄)|K = ψl (t , x̄).

with ψ the basis functions.

• The basis functions are defined such that the test and trial functions are split into
an element mean at time tn+1 and a fluctuating part.

• This construction facilitates the definition of the artificial dissipation operator and
of the multigrid convergence acceleration method.

• The basis functions ψ are given by

ψm = 1, m = 0,

= φm(t , x̄)−
1

|Kj (t−n+1)|

∫
Kj (t−n+1)

φm(t , x̄) dK , m = 1, . . . ,N,

where the basis functions φ are given by

φm = φ̂m ◦ G−1
K with φ̂m(ξ) ∈ Pk (K̂),

with ξ the local coordinates in the master element K̂.
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Lifting operators

• The DG coefficients of global and local lifting operators need to be expressed in
terms of the DG coefficients of the primal variable U.

• Recall the expression for the lifting operator∑
K∈T n

h

∫
K

Wi,kRik dK =
∑
S∈Sn

I

∫
S
{{Wi,k Aikrs}}[[Ur ]]s dS

+
∑
S∈Sn

B

∫
S

W L
i,k AL

ikrs(UL
r − Ub

r )n̄L
s dS.

• The face integrals can be directly computed by replacing the test and trial
functions by their polynomial expansions.
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Lifting operators

• The local lifting are similarly expressed as

RS(t , x̄)|K = R̂jψj (t , x̄).

and a small linear system must be solved for the expansion coefficients R̂j .

• The local lifting operator is only non-zero on the two elements KL and KR

connected to the face S ∈ Sn
I , hence∫

KR
VikRSik dK+

∫
KL

VikRSik dK =

∫
S
{{Vik Aikrs}}[[Ur ]]s dS.

• This is equivalent with the two following equations:∫
KL,R

VikRSik dK = 1
2

∫
S

V L,R
ik AL,R

ikrs [[Ur ]]s dS,

where the superscript L,R refers to the traces from either the left or right element.
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Lifting operators

• Replacing RS by its polynomial approximation leads to two systems of linear
equations for the expansion coefficients R̂ikj of RSik on S ∈ SI :

R̂L,R
ikj

∫
KL,R

ψlψj dK = 1
2

∫
S
ψL,R

l AL,R
ikrs [[Ur ]]s dS.

• The element mass matrices on the l.h.s. are denoted by ML,R
lj and can easily be

inverted leading to following expression for the expansion coefficients of the local
lifting operator on S ∈ SI :

R̂L,R
ikj = 1

2 (M−1)L,R
jl

∫
S
ψL,R

l AL,R
ikrs [[Ur ]]s dS.

• Similarly, the expression for the expansion coefficients of the local lifting operator
for the faces S ∈ SB is:

R̂L
ikj = (M−1)L

jl

∫
S
ψL

l AL
ikrs(UL

r − Ub
r )n̄L

s dS.

• The expressions for the local lifting operator can now be introduced into the DG
formulation, resulting in the primal formulation without auxiliary variables.
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