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Hyperbolic balance laws

Hyperbolic balance laws (hyperbolic systems of conservation laws with source
terms arising from geometrical, reactive, biological or other considerations):

Ut + f(U)x = s(U, x)

Applications in different fields including chemistry, biology, fluid dynamics,
astrophysics, and meteorology.

Examples: pollutant transport, sediment transport, chemical reaction,
chemosensitive movement, shallow water flows, gas dynamics with gravity,
nearly hydrostatic flow in climate modeling, etc.
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Hyperbolic balance laws

Hyperbolic balance laws

Ut + f(U)x = s(U, x)

Steady state solution, i.e. solution of f(U)x = s(U, x).

Standard numerical schemes usually fail to capture the steady state well and
introduce spurious oscillations. The grid must be extremely refined to reduce
the size of these oscillations.

Well-balanced methods are developed to reduce the unnecessarily refined
mesh. They are specially designed to preserve exactly these steady-state
solutions up to machine error with relatively coarse meshes.
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A typical example of balance laws

Shallow water equations (SWEs) with a non-flat bottom topography:

ht + (hu)x = 0

(hu)t +

(
hu2 +

1

2
gh2

)
x

= −ghbx

h : water height; u : velocity;
b : bottom topography; g : gravitational constant.

Still water at rest steady state:

u = 0 and h+ b = const.

Moving water steady state:

hu = const and u2/2 + g(h+ b) = const.

Extensive well-balanced methods have been developed in the past two
decades.
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Numerical challenge

Figure: Numerical computation of Lake Rursee with 296 cells. Left: bottom topography
and still water level at time T = 0; Right: water level at time T = 0.2 (76 time steps) by
standard methods. Note the spurious oscillations on the right figure. (Credit: S. Noelle
et al.)
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Euler equations with a gravitational potential

Euler equations with a source term due to the static gravitational field:

ρt +∇ · (ρu) = 0,

(ρu)t +∇ · (ρu⊗ u + pId) = −ρ∇φ,
Et +∇ · ((E + p)u) = −ρu · ∇φ,

ρ : fluid density; u : velocity; p : pressure;
E = 1

2ρu
2 + p/(γ − 1) : non-gravitational energy.

φ = φ(x) : time independent gravitational potential.
A simple example is: φz = g.

The hydrostatic balance with a zero velocity:

ρ = ρ(x), u = 0, ∇p = −ρ∇φ,

where the flux produced by the pressure balances the gravitational source.
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Small perturbation of the 2D equilibrium solution

Figure: The 3D views of the velocity
(√
u2 + v2

)
. Left: well-balanced methods; Right:

non-well-balanced methods.
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Structure preserving methods



Structure preserving methods

Numerical partial differential equations (PDEs): Compute numerical
approximation to the solutions of PDEs.

Exact solutions of PDEs satisfy many continuum properties.
Numerical solutions satisfy these properties “approximately”, not exactly.

Structure/Feature Preserving methods:
Preserve the structure or other fundamental continuum property of the
underlying problems in the discrete level.

Goal:
(Hopefully) produce a more accurate numerical approximation than with
general-purpose methods, on relatively coarse meshes.
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Examples of structure preserving methods for PDEs

Mass conservation methods for conservation laws

Energy conserving, Hamiltonian conserving methods

Angular momentum, vorticity preserving methods

Bound preserving, positivity preserving methods

Symmetry preserving methods

Globally divergence free methods

Entropy stable, entropy consistent methods to satisfy the entropy condition

Asymptotic preserving methods to preserve the asymptotic limit

Well-balanced methods to preserve the equilibrium state

· · ·
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The main objective

Develop high order accurate structure-preserving discontinuous Galerkin schemes
for the hyperbolic balance laws, including the shallow water equations and Euler
equations with source terms, which have the key advantage

High order accuracy;

Well-balanced for the steady state solutions;

Positivity-preserving;

Entropy stable;

Good resolution for smooth and discontinuous solutions.

1: We expect well-balanced methods to be efficient for time dependent problems, which
are small perturbation of the steady state solutions.

2: Discontinuous Galerkin methods are presented in this talk, and most of the work have
been extended to high order finite difference/finite volume WENO methods.

Recent paper: Veiga, Abgrall, Teyssier (2018), Capturing near-equilibrium solutions: a

comparison between high-order discontinuous Galerkin methods and well-balanced

schemes
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Euler equations with a gravitational potential

Euler equations with a source term due to the static gravitational field:

ρt +∇ · (ρu) = 0,

(ρu)t +∇ · (ρu⊗ u + pId) = −ρ∇φ,
Et +∇ · ((E + p)u) = −ρu · ∇φ,

ρ : fluid density; u : velocity; p : pressure;
E = 1

2ρu
2 + p/(γ − 1) : non-gravitational energy.

φ = φ(x) : time independent gravitational potential.
A simple example is: φz = g.

The hydrostatic balance with a zero velocity:

ρ = ρ(x), u = 0, ∇p = −ρ∇φ,

where the flux produced by the pressure balances the gravitational source.
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Motivation and existing approaches

Motivation: core-collapse supernova simulation

Figure: Image credit: Left: Endeve, Mezzacappa et al. (ORNL); Right: TeraScale
Supernova Initiative.

Many astrophysical problems involve the hydrodynamical evolution in a
gravitational field. It is essential to correctly capture the effect of
gravitational force in the simulations.
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Motivation and existing approaches

Other applications:

1 Stellar “evolution”: Stars evolve mostly quietly, very close to a hydrostatic
state.

2 Waves in stellar atmospheres: The wave amplitude may be much smaller when
compared to the stratification from gravity...

3 Atmospheric flows: Atmospheric motions happen on a hydrostatic background.

Improper treatment of the gravitational force can introduce large spurious
oscillations, unless the grid is extremely refined.
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Motivation and existing approaches

Some attempts in designing well-balanced methods for the Euler equations.

LeVeque and Bale 1998
Botta, Klein, Langenberg and Lützenkirchen 2004
Xu and his collaborators 2007, 2010, 2011
Xing, Shu, Li, 2013, 2015, 2016, 2018
Käppeli and Mishra 2014, 2016
Chandrashekar, Klingenberg, Puppo et. al. 2015, 2017, 2018
Chertock, Cui, Kurganovz, Özcan and Tadmor 2018
Chen, Noelle 2018
Veiga, Abgrall, Teyssier 2018
· · ·
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Steady state solutions

The hydrostatic balance with a zero velocity:

ρ = ρ(x), u = 0, px = −ρφx,

where the flux produced by the pressure balances the gravitational source.

Two important special steady state are the constant entropy
(isentropic/polytropic) and constant temperature (isothermal) hydrostatic
equilibrium states

Isothermal equilibrium: For an ideal gas, we have p = ρRT . The equilibrium
(with constant temperature T0) becomes

ρ = ρ0 exp

(
− φ

RT0

)
, u = 0, p = RT0ρ = p0 exp

(
− φ

RT0

)
.

A special case with a linear gravitational potential field: φx = g is:

ρ = ρ0 exp(−gρ0x/p0), u = 0, p = p0 exp(−gρ0x/p0).
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Steady state solutions

Polytropic equilibrium:
p = Kργ ,

which will lead to the form of

ρ =

(
γ − 1

Kγ
(C − φ)

) 1
γ−1

, u = 0, p =
1

K
1

γ−1

(
γ − 1

γ
(C − φ)

) γ
γ−1

,

or equivalently,
h+ φ = const,

where h = e+p/ρ is the specific enthalpy and e is the specific internal energy.

A special case with a linear gravitational potential field: φx = g is:

p = p
1

γ−1

0

(
p0 −

γ − 1

γ
gρ0x

) γ
γ−1

, u = 0, ρ = ρ0

(
p

p0

) 1
γ

.

First and second order finite volume well-balanced methods for polytropic
equilibrium are designed by Käppeli and Mishra (2014).
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Key idea

Discretize the source terms using an approximation consistent with that of
approximating the flux derivative terms.

This idea has been used to design well-balanced methods for the
shallow-water equations by us.

The simple steady state

ρ = c exp(−gx), u = 0, p = c exp(−gx),

with φx = g will be used as an example to illustrate the idea.
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Equivalent form

Rewrite the equations as

ρt + (ρu)x = 0

(ρu)t + (ρu2 + p)x =
ρ

exp(−gx)
(exp(−gx))x

Et + ((E + p)u)x = −ρug,

Purpose: introduce the derivative term in the source term, which can be
treated in the similar way as the flux term.

Denote them by
Ut + F (U)x = S(U, φ).
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Semi-discrete DG scheme

Ut + F (U)x = S(U, φ).

The semi-discrete DG scheme∫
Ij

(Uh)tvdx−
∫
Ij

F (Uh)vxdx+ F̂j+ 1
2
v(x−

j+ 1
2
)− F̂j− 1

2
v(x+

j− 1
2
) =

∫
Ij

Svdx,

where
F̂j+ 1

2
= f(Uh(x−

j+ 1
2

, t), Uh(x+
j+ 1

2

, t)),

and f(a1, a2) is a numerical flux.

Lax-Friedrichs flux:

f(a1, a2) =
1

2
(F (a1) + F (a2)− α(a2 − a1)).
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Well-balanced source term approximation

We first decompose the integral of the source term in the second equation as∫
Ij

S2vdx =

∫
Ij

ρ exp(gx) (exp(−gx))x vdx =

∫
Ij

ρ

b
bxvdx

=
ρ(xj)

b(xj)

(
b(x−

j+ 1
2

)v(x−
j+ 1

2

)− b(x+
j− 1

2

)v(x+
j− 1

2

)−
∫
Ij

bvxdx

)
+

∫
Ij

(
ρ

b
−
ρ(xj)

b(xj)

)
bxvdx,

where b(x) = exp(−gx).

Let bh(x) be the projection of b(x) into V kh , approximate the integral by:∫
Ij

S2vdx ≈
∫
Ij

(
ρh

bh
−
ρh(xj)

bh(xj)

)
(bh)xvdx

+
ρh(xj)

bh(xj)

(
{bh}(xj+ 1

2
)v(x−

j+ 1
2

)− {bh}(xj− 1
2

)v(x+
j− 1

2

)−
∫
Ij

bhvxdx

)
.

Use quadrature rule to approximate the source term in the third equation∫
Ij

S3vdx ≈
∫
Ij

−(ρu)hgvdx.
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Well-balanced fix to the numerical flux

Lax-Friedrichs flux:

f(a1, a2) =
1

2
(F (a1) + F (a2)− α(a2 − a1)).

α(a2 − a1) contributes to the numerical viscosity term, but may destroy the
well-balanced property at the steady state.

Well-balanced modification:

F̂j+1/2 =
1

2

[
F
(
Uh(x−j+1/2)

)
+F

(
Uh(x+j+1/2)

)
−α′

(
Uh(x+j+1/2)

bh(x+j+1/2)
−
Uh(x−j+1/2)

bh(x−j+1/2)

)]
.

To maintain enough artificial numerical viscosity:

α′ = αmax
x

bh(x),

At the steady state, the numerical flux reduces to

f̂j+ 1
2

=
1

2

[
f
(
U(x−j+1/2)

)
+ f

(
U(x+

j+1/2

)]
.
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Main result

Proposition: For the Euler equations with the linear gravitational potential field,
the semi-discrete DG methods mentioned above can maintain the original high
order accuracy and are well-balanced for the steady state solution.

Proof: At the steady state, we have

ρh = cbh, u = 0, ph = cbh.

For the momentum equation, the source term approximation becomes∫
Ij

S2vdx ≈ c

(
{bh}(xj+ 1

2
)v(x−

j+ 1
2
)− {bh}(xj− 1

2
)v(x+

j− 1
2
)−

∫
Ij

bhvxdx

)
.

Since u = 0, the flux term F2 = ρu2 + p reduces to p = cb. Its numerical
approximation takes the form of

F̂2(xj+ 1
2
)v(x−

j+ 1
2
)− F̂2(xj− 1

2
)v(x+

j− 1
2
)−

∫
Ij

F2vxdx

=c{bh}(xj+ 1
2
)v(x−

j+ 1
2
)− c{bh}(xj− 1

2
)v(x+

j− 1
2
)−

∫
Ij

cbhvxdx.

Yulong Xing (OSU) DG methods for the hyperbolic balance laws Section: Euler equations



General steady state

ρ = ρ0 exp

(
− φ

RT0

)
, u = 0, p = RT0ρ = RT0ρ0 exp(− φ

RT0
).

We first rewrite the equations:

ρt + (ρu)x = 0,

(ρu)t +
(
ρu2 + p

)
x

= RT0ρ exp

(
φ

RT0

)(
exp

(
− φ

RT0

))
x

,

Et + ((E + p)u)x = −ρug,

Well-balanced source term approximation:∫
Ij

S2vdx ≈
∫
Ij

RT0

(
ρh
dh
− ρh(xj)

dh(xj)

)
(dh)xvdx

+RT0
ρh(xj)

dh(xj)

(
{dh}(xj+ 1

2
)v(x−

j+ 1
2
)− {dh}(xj− 1

2
)v(x+

j− 1
2
)−

∫
Ij

dhvxdx

)
,

where d(x) = exp
(
− φ
RT0

)
.

Well-balanced fix to the numerical flux.
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Multi-dimensional Euler equations

The Euler equations with a static gravitational field are

ρt +∇ · (ρu) = 0,

(ρu)t +∇ · (ρu⊗ u + pId) = −ρ∇φ,
Et +∇ · ((E + p)u) = −ρu · ∇φ,

Hydrostatic balance:

ρ = ρ0 exp

(
− φ

RT

)
, u = 0, p = RTρ = RTρ0 exp

(
− φ

RT

)
,

with constant temperature T .

A special case is:

ρ = ρ0 exp (−ρ0(g · x)/p0) , u = v = 0, p = p0 exp (−ρ0(g · x)/p0) ,

with a linear gravitational potential field: φ(x) = g · x.
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Well-balanced methods

ρ = ρ0 exp

(
− φ

RT

)
, u = 0, p = RTρ = RTρ0 exp(− φ

RT
).

We first rewrite the source term:

−ρ∇φ = RTρ exp

(
φ

RT

)
∇
(

exp

(
− φ

RT

))
=
RTρ

d
∇d.

Well-balanced source term approximation:∫
K

S2w dx ≈
∫
K

RT

(
ρh
dh
− ρh(x0

K)

dh(x0
K)

)
∇dh w dx

+RT
ρh(x0

K)

dh(x0
K)

(
m∑
i=1

∫
ei
K

{dh(x)}νiKw ds−
∫
K

dh∇w dx

)
,

where d(x) = exp
(
− φ
RT

)
.

Well-balanced fix to the numerical flux.

The same technique can be extended to the polytropic equilibrium state, and
other given equilibrium state.
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Well-balanced approach via hydrostatic reconstruction



Well-balanced methods for the polytropic balance

Key idea:

Decompose the solution into equilibrium and non-equilibrium parts, and treat
them differently.

Components:

Recovery of well-balanced states;

Decomposition of the solutions into equilibrium and non-equilibrium parts;

Numerical fluxes via hydrostatic reconstruction;

Novel source term approximation.

Use 1D Euler equation as example to demonstrate the algorithm.
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Recovery of well-balanced states

Suppose U(x, t = 0) = U0(x) are in perfect equilibrium, i.e.,

u0(x) = 0, h(x) + φ(x) = constC.

Initial condition for DG methods is the projection of these to V∆x.

Usually L2 projection is used. But it is difficult to retrieve the constant C
from the projected initial condition.

In our previous FV work for the shallow water equations, we define it as a
solution of a nonlinear equation and solve it using Newton’s iteration.
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Recovery of well-balanced states

Suppose U(x, t = 0) = U0(x) are in perfect equilibrium, i.e.,

u0(x) = 0, h(x) + φ(x) = constC.

DG methods are more flexible.
We define Projection P+

h ω as a projection of ω(x) into V∆x:∫
Ij

P+
h ωvdx =

∫
Ij

ωvdx,

for any v ∈ P k−1 on Ij , and

P+
h ω(x+

j− 1
2

) = ω(xj− 1
2
) at the left boundary xj− 1

2
.

We can verify this projection is optimal, i.e., ‖P+
h U(x)− U(x)‖ = O(hk+1),

plus we have

h(ph(xj− 1
2
), ρh(xj− 1

2
)) + φh(xj− 1

2
) = constC,

where Uh(x) = P+
h U(x), ρh(x) = P+

h ρ(x) etc.
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Decomposition into equilibrium and non-equilibrium parts

Key idea: decompose Uh into the sum of a reference equilibrium state Ueh
and the remaining part Urh .

Ueh(x)?

Let he(x) = h(ph(xj− 1
2
), ρh(xj− 1

2
)) + φh(xj− 1

2
)− φ(x). Recover ρe(x) and

pe(x) from he(x). For the ideal gas law, we have the polytropic form

ρe(x) =

(
1

K

γ − 1

γ
he(x)

) 1
γ−1

, ue(x) = 0, pe(x) =

(
1

K

) 1
γ−1

(
γ − 1

γ
he(x)

) γ
γ−1

.

We can compute Ue(x), and define Ueh(x) = P+
h U

e(x).

Urh = Uh(x)− Ueh(x).

Note that both Ueh and Urh are piecewise polynomials.

At the polytropic steady state, Urh(x) = 0.
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Well-balanced fluxes (Hydrostatic reconstruction)

The hydrostatic reconstructed cell boundary values are defined by:

U∗,±
j+ 1

2

= Ue
(
h(ph(xj), ρh(xj)) + φh(xj)−max(φ±

h,j+ 1
2
)
)

+ (Urh)±
j+ 1

2
,

In the case of polytropic equilibrium, U∗,+
j+ 1

2

= U∗,−
j+ 1

2

.

The left and right fluxes f̂ l
j+ 1

2

and f̂r
j− 1

2

are given by:

f̂ lj+ 1
2

= F (U∗,−
j+ 1

2

, U∗,+
j+ 1

2

) + f(U−
j+ 1

2
)− f(U∗,−

j+ 1
2

),

f̂rj− 1
2

= F (U∗,−
j− 1

2

, U∗,+
j− 1

2

) + f(U+

j− 1
2
)− f(U∗,+

j− 1
2

).
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Source term approximation

For −
∫

(ρu)h(φh)xvdx, we apply the Gaussian quadrature rule directly.

−ρh(φh)x is linear with respect to ρh, we have

−
∫
ρhφh,xvdx = −

∫
ρeh(φh)xvdx−

∫
ρrh(φh)xvdx,

which can be approximated by:

−
∫
ρh(φh)xvdx ≈ pe,−h,j+ 1

2

v(x−
j+ 1

2
)− pe,+

h,j− 1
2

v(x+
j− 1

2
)−

∫
Ij

pehvx dx−
∫
Ij

ρrh(φh)xv dx,

using the fact that Ueh is the equilibrium state.
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Well-balanced methods for polytropic balance

∫
Ij

∂tU
nvdx−

∫
Ij

f(Un)∂xvdx+ f̂ lj+ 1
2
v(x−

j+ 1
2
)− f̂rj− 1

2
v(x+

j− 1
2
) =

∫
Ij

s(hn, b)vdx,

Propoposition: The DG schemes described above maintain polytropic
equilibrium exactly.

Remarks

If there is no gravitation field, i.e., φx = 0, our well-balanced DG methods
become the traditional DG methods.

The first order version of our well-balanced methods reduces to the method
in (Käppeli and Mishra, JCP 2014).

The same technique can be extended to the isothermal equilibrium state (Li-X,
JCP 2018).
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Multi-dimensional Euler equations on unstructured meshes

The same four components: (details skipped)

Recovery of well-balanced states;

Decomposition of the solutions into equilibrium and non-equilibrium parts;

Numerical fluxes via hydrostatic reconstruction;

Novel source term approximation;
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Numerical results

The third order finite element DG schemes are implemented, for the flux and
the source terms.

Time discretization is by the third order TVD Runge-Kutta method:

U (1) = Un + ∆tF(Un)

U (2) =
3

4
Un +

1

4

(
U (1) + ∆tF(U (1))

)
Un+1 =

1

3
Un +

2

3

(
U (2) + ∆tF(U (2))

)
,

where F(U) is the spatial operator.

The CFL number is taken as 0.18.
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One dimensional polytropic equilibrium solution

The gravitational force, with g = φx = 1, acts in the negative x direction.

Consider a polytropic equilibrium solution

ρ(x) =

(
ργ−1

0 − 1

K0

γ − 1

γ
gx

) 1
γ−1

, u(x) = 0, p(x) = K0ρ(x)γ ,

in the domain [0, 2], with γ = 5/3, ρ0 = 1, p0 = 1 and K0 = p0/ρ
γ
0 .

Table: L1 errors for different precisions.

N Precision ρ ρu E
100 Single 1.01E-6 1.48E-7 8.27E-7

Double 1.33E-15 1.55E-16 8.75E-16
200 Single 4.53E-6 5.24E-7 2.83E-7

Double 3.34E-15 5.10E-15 2.67E-16
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Perturbation of the equilibrium solution

Impose a small perturbation to the velocity state at the bottom

u(0, t) = 10−6 sin(4πt)
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Figure: The pressure perturbations (left) and velocity (right) of a hydrostatic solution
with small perturbation. The results of the well-balanced method vs. non-well-balanced
method.
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Perturbation of the equilibrium solution

Impose a large perturbation to the velocity state at the bottom

u(0, t) = 10−1 sin(4πt)
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Figure: The pressure perturbations (left) and velocity (right) of a hydrostatic solution
with large perturbation. The results of the well-balanced method vs. non-well-balanced
method.
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One dimensional isothermal equilibrium solution

The gravitational force, with g = φx = 1, acts in the negative x direction.

Consider an isothermal equilibrium solution

ρ0(x) = p0(x) = exp(−x), and u0(x) = 0.

in the domain [0, 1].

Table: L1 errors for different precisions.

N Precision ρ ρu E
100 Single 2.38E-7 2.23E-7 4.55E-7

Double 1.76E-15 1.77E-15 1.24E-15
200 Single 3.13E-7 2.34E-7 4.31E-7

Double 2.99E-15 1.61E-15 1.84E-15
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Perturbation of the equilibrium solution

Impose a small perturbation to the initial pressure state

p(x, t = 0) = p0(x) + η exp(−100(x− 0.5)2),
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Figure: The pressure perturbation of a hydrostatic solution. The results of the
well-balanced method vs. non-well-balanced method. Left: η = 0.01; Right: η = 0.0001.
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One dimensional gas falling into a fixed external potential

The gravitational potential has the form of a sine wave,

φ(x) = −φ0
L

2π
sin

2πx

L
,

where L is the computational domain length and φ0 is the amplitude.

Consider an isothermal equilibrium solution

ρ = ρ0 exp

(
− φ

RT

)
, u = 0, p = RTρ0 exp

(
− φ

RT

)
,

with a constant temperature T .

Add a small perturbation to the steady state:

ρ = ρ0 exp

(
− φ

RT

)
, u = 0,

p = RTρ0 exp

(
− φ

RT

)
+ 0.001 exp

(
−10(x− 32)2

)
.

We run the simulation with 64 uniform cells for 1, 000, 000 time steps.
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One dimensional gas falling into a fixed external potential
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Figure: The numerical solutions of well-balanced method (solid line) and
non-well-balanced method (square box, denoted by non-wb).
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Two dimensional accuracy test

Consider a linear gravitational field φx = φy = 1, in a computational domain
[0, 2]× [0, 2].

A time dependent exact solution

ρ(x, y, t) = 1 + 0.2 sin(π(x+ y − t(u0 + v0))),

u(x, y, t) = u0, v(x, y, t) = v0,

p(x, y, t) = t(u0 + v0)− x− y + 0.2π cos(π(x+ y − t(u0 + v0))).

The exact solutions are used as the boundary condition. We compute up to
t = 0.1.
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Two dimensional accuracy test

Table: L1 errors and numerical orders of accuracy for the example (the error of ρv is
similar to ρu and is not listed here).

ρ ρu ECells
L1 error Order L1 error Order L1 error Order

8× 8 1.20E-04 1.09E-04 2.84E-04
16× 16 1.19E-05 3.33 1.13E-05 3.27 3.18E-05 3.16
32× 32 1.14E-06 3.39 1.17E-06 3.27 3.61E-06 3.14
64× 64 1.35E-07 3.07 1.58E-07 2.89 4.10E-07 3.14
128× 128 1.80E-08 2.91 2.15E-08 2.88 4.78E-08 3.10
256× 256 2.41E-09 2.90 2.94E-09 2.87 5.93E-09 3.01
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Two dimensional polytrope

An adiabatic gaseous sphere held together by self-gravitation, modeled by the
hydrostatic equilibrium

dp

dr
= −ρdφ

dr
,

and Poisson’s equation with r =
√
x2 + y2

1

r2

d

dr

(
r2 dφ

dr

)
= 4πgρ.

Use the polytropic relation p = Kργ , assume γ = 2 to obtain solutions:

ρ(r) = ρc
sin(αr)

αr
, p(r) = Kρ(r)2, (1)

with α =
√

4πg
2K , and the gravitational potential

φ(r) = −2Kρc
sin(αr)

αr
. (2)

The parameters K = g = ρc = 1 are used.
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Small perturbation of the 2D polytrope

Consider a small Gaussian hump perturbations to the initial pressure state

p(r) = Kρ(r)2 +A exp(−100r2),

where A is taken as 10−3.

Figure: Well-balanced methods: The contours of the pressure and velocity perturbation
of a two dimensional hydrostatic solution with 100× 100 cells at t = 0.2. Left: pressure
p. Right: velocity

√
u2 + v2.
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Small perturbation of the 2D polytrope

Consider a small Gaussian hump perturbations to the initial pressure state

p(r) = Kρ(r)2 +A exp(−100r2),

where A is taken as 10−3.

Figure: Non-well-balanced methods: The contours of the pressure and velocity
perturbation of a two dimensional hydrostatic solution with 100× 100 cells at t = 0.2.
Left: pressure p. Right: velocity

√
u2 + v2. Notice the different contour range.
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Small perturbation of the 2D equilibrium solution

Figure: The 3D views of the velocity
(√
u2 + v2

)
. Left: well-balanced methods; Right:

non-well-balanced methods.
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Two-dimensional Explosion Problem

Linear gravitational field with φx = 0, φy = g = 0.118, an ideal gas (γ = 1.4)

On the domain [0, 3]× [0, 3], initial conditions

ρ(x, y, t = 0) = 1,
u(x, y, t = 0) = 0,
v(x, y, t = 0) = 0,

p(x, y, t = 0) = 1− gy +

{
0.005, if (x− 1.5)2 + (y − 1.5)2 < 0.01,
0, otherwise.

This test can also be viewed as a small perturbation of the steady state
solution. But the underline steady state does not have the form of polytropic
nor isothermal balance.
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Two-dimensional Explosion Problem
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Figure: Velocity
√
u2 + v2 at times t = 1.2 (left), t = 1.8 (middle) and t = 2.4 (right).

Top: well-balanced. Bottom: non-well-balanced. Ten uniformly spaced contour lines
from 0.2829 to 0.2838.
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Positivity preserving (PP) methods



Existing work on PP DG methods for Euler equations

ρt +∇ · (ρu) = 0,

(ρu)t +∇ · (ρu⊗ u + pId) = −ρ∇φ,
Et +∇ · ((E + p)u) = −ρu · ∇φ,

Density ρ and internal energy e should stay non-negative

Many existing works available on PP methods for Euler equations, here we
focus on Zhang-Shu JCP 2011 for Euler equations with source terms

Define the set of physically admissible states

G :=

{
U = (ρ,m, E)> : ρ > 0, E(U) := ρE − |m|

2

2
> 0

}
,

G is a convex set.

Yulong Xing (OSU) DG methods for the hyperbolic balance laws Section: Euler equations



PP methods for Euler equations by Zhang-Shu JCP 2011

(Without source term) to achieve high order & positivity

Un
h(x) ∈ G DG update−−−−−−→

step 1
Un+1
h (x) with U

n+1

h,j ∈ G
limiter−−−→
step 2

Un+1
h (x) ∈ G

Step 1: proven analytically under the CFL condition α∆t/∆x ≤ ŵ1

Step 2: obtained via a simple PP limiter on density ρ

ρ̃nj (x) = θ
(
ρnj (x)− ρnj

)
+ ρnj , θ = min

{
1,

ρnj
ρnj −mj

}
,

with
mj = min

x∈Ij
ρnj (x).

Similar limiter can be applied on the internal energy e (different definition of
θ)

This limiter does not affect the high order accuracy and mass conservation.
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PP methods for Euler equations by Zhang-Shu JCP 2011

(With source term s(U, x)) to achieve high order & positivity

Un
h(x) ∈ G DG update−−−−−−→

step 1
Un+1
h (x) with U

n+1

h,j ∈ G
limiter−−−→
step 2

Un+1
h (x) ∈ G

Step 1: proven analytically under the CFL condition

α∆t/∆x ≤ ŵ1/2, and ∆t ≤ As(Uh, x),

where ∆t ≤ As(Uh, x) is chosen such that U + 2∆ts(U, x) ∈ G.

When the gravitational source −ρφx is considered, the extra CFL condition is:

∆t ≤
√

2e

φx
,

Step 2: SAME PP limiter.
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PP well-balanced methods (step 1)

Combining these PP techniques with the proposed well-balanced methods

PP result

Assume that Uh,j ∈ G and Uh(x̂
(ν)
j ) ∈ G, 1 ≤ ν ≤ L, ∀j. Then under the CFL-type condition

∆t


αj+ 1

2
ρe,max

j+ 1
2

∆xŵ1ρeh(x−
j+ 1

2

)

 βj+ 1
2

βh(x−
j+ 1

2

)
+

 βj+ 1
2

βh(x−
j+ 1

2

)
− 1

 |u−j+ 1
2

|2

2e−
j+ 1

2

+ amax
j + aj

 ≤ 1

with βh = ph/ρh, βj+ 1
2

= max(βh(x−
j+ 1

2

), βh(x+
j+ 1

2

)),

amax
j := max

1≤µ≤N

 |(peh)x(x
(µ)
j |)

ρeh(x
(µ)
j )

√
2eh(x

(µ)
j )

 , aj :=

|peh(x+
j+ 1

2

)− peh(x−
j− 1

2

)|

∆x(ρeh)
j

√
2ej

,

one has
Uj + ∆tLj(Uh) ∈ G, ∀j.

Restrictive CFL condition due to the modification of the numerical viscosity in the
well-balanced LF flux
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Modification of the well-balanced numerical fluxes

The HLLC numerical flux defined by

Fhllc(UL,UR) =


F(UL), if 0 ≤ SL,
F∗L, if SL ≤ 0 ≤ S∗,
F∗R, if S∗ ≤ 0 ≤ SR,
F(UR), if 0 ≥ SR,

has the following contact property and positivity-preserving property:

For any two states UL = (ρL, 0, p/(γ − 1))> and UR = (ρR, 0, p/(γ − 1))>,

Fhllc(UL,UR) = (0, p, 0)>.

Shown in Chandrashekar-Klingenberg SISC 2015

Let R(x/t,UL,UR) be the approximate HLLC solution of the Riemann
problem between the states UL and UR, Then, R(x/t,UL,UR) ∈ G,
provided that UL and UR ∈ G.
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Modification of the well-balanced numerical fluxes

Modified well-balanced numerical fluxes:

F̂j+ 1
2

= Fhllc

 pe,?
j+ 1

2

peh(x−
j+ 1

2

)
U−
j+ 1

2

,

pe,?
j+ 1

2

peh(x+
j+ 1

2

)
U+

j+ 1
2

 ,

where U±
j+ 1

2

:= Uh(x±
j+ 1

2

), and pe,?
j+ 1

2

= max

{
peh(x−

j+ 1
2

), peh(x+
j+ 1

2

)

}
.

PP result (step 1 only)

Assume that Uh,j ∈ G and Uh(x̂
(ν)
j ) ∈ G, 1 ≤ ν ≤ L, ∀j. Then under the CFL-type condition

∆t


2pe,?
j± 1

2

∆xω̂1peh(x∓
j± 1

2

)
α∞ + amax

j + aj

 ≤ 1, ∀j,

with α∞ := maxα(U±
j± 1

2

) and

amax
j := max

1≤µ≤N

 |(peh)x(x
(µ)
j )|

ρeh(x
(µ)
j )

√
2eh(x

(µ)
j )

 , aj :=

|peh(x+
j+ 1

2

)− peh(x−
j− 1

2

)|

∆x(ρeh)
j

√
2ej

,

one has
Uj + ∆tLj(Uh) ∈ G, ∀j.
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Rarefraction test with low density and low pressure

A quadratic potential φ(x) = 1
2x

2 centered around x = 0

Consider an initial condition

ρ(x, 0) = 7, p(x, 0) = 0.2, u(x, 0) =

{
−1, x < 0,

1, x > 0.
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Figure: Density (left) and pressure (right) for the rarefraction test at t = 0.6 obtained by
the positivity-preserving WB scheme with 800 and 1600 cells.
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Leblanc problem in linear gravitational field

A linear potential φ(x) = x with the initial condition

(ρ, u, p)(x, 0) =

{
(2, 0, 109), x < 5,

(10−3, 0, 1), x > 5.

This problem is highly challenging due to the presence of the strong jumps in the
initial density and pressure.
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Figure: The log plot of density (left), the velocity (middle) and the log plot of pressure
(right) for the extended Leblanc problem at t = 0.00004 obtained by the
positivity-preserving WB scheme with 1600 and 6400 cells.
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Two-dimensional blast problem

The initial data is obtained by adding a huge jump to the pressure term of a
polytropic equilibrium.
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Figure: The contour plots of the density ρ (left) and the pressure logarithm log(p)
(middle) at t = 0.005, and the plot of p (right) along the line y = x within the scaled
interval [−0.5, 0.5], obtained by the positivity-preserving well-balanced DG scheme with
400× 400 cells.
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Introduction

Blood flow models have been extensively used to mathematically understand and
numerically simulate the human cardiovascular system.

History of Arterial Blood Flow Models:
Euler (1775) derived a 1D model of arterial system from mass/momentum
conservation.
Young (1808) was the first to identify blood flow with wave-like behavior, and
simplify the model.
Lighthill (1978) and Pedley (1980) first understood pulsatile wave flow (a flow
with periodic variations) for blood.

1D or 3D model:
Low computational cost, thus able study the wave effects within the vascular
system as well as isolated segments of an artery.
Ability to study the effects of arterial modifications, such as placements of
stents and prostheses, on pulse waves.
Easily coupled with lumped parameter models and 3D fluid-structure models.
System comparison of 1D vs 3D model was conducted. Good agreement
between the two models, especially during the diastolic phase of the cycle.
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Blood flow model

The one-dimensional blood flow:At +Qx = 0,

Qt +
(Q2

A

)
x

+
A

ρ
px = 0,

A(x, t) = πR(x, t)2: cross-sectional area,
Q(x, t) = A(x, t)u(x, t): discharge,
u(x, t): flow velocity,
p: pressure, ρ:blood density.

Additional equation to define the pressure: a simple law describing the elastic
behavior of the arterial wall

p = pext +K(R−R0), or equivalently, p = pext +
K√
π

(√
A−

√
A0

)
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Blood flow model

The one-dimensional blood flow: ∂tU + ∂xf(U) = S(U,A0)

U =

(
A
Q

)
︸ ︷︷ ︸

Conservative Variables

, f(U) =

(
Q

Q2

A + β
3A

3
2

)
︸ ︷︷ ︸

Flux Terms

, S(U,A0) =

(
0

βA
2
√
A0

(A0)x

)
︸ ︷︷ ︸

Source Terms

A(x, t) = πR(x, t)2: cross-sectional area
Q(x, t) = A(x, t)u(x, t): discharge
u(x, t): flow velocity
A0(x) = πR0(x)2: cross-sectional area at rest
β = K

ρ
√
π

, K: arterial wall stiffness (constant)

ρ: blood density (constant)
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The Well-Balanced Property

Steady States:
Man-at-Eternal-Rest (u = 0)(

u,
√
A−

√
A0

)
= (0, constant) or (u,A) = (0, A0)

Living-Man (u 6= 0)(
Q,

Q2

2A2
+ β

(√
A−

√
A0

))
= (constant, constant)
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Discretization & Fluxes

Mesh Discretization:

Discretize the domain I into cells
Ij = [xj− 1

2
, xj+ 1

2
]

Width of jth cell: ∆xj
τ = maxj ∆xj

Function Discretization & Projection:
We seek an approximation Uτ that is a polynomial of degree k in each cell Ij .
Project the cross-sectional area at rest A0 into polynomial space as well.
Project the functions so that U(xj+ 1

2
) = Uτ (xj+ 1

2
) and A0(xj+ 1

2
) = (A0)τ (xj+ 1

2
).

Fluxes:
A flux takes information from both sides of the cell interface.
We use the Lax-Friedrichs flux:
f̂j+ 1

2
= 1

2

(
f(U+

j+ 1
2

) + f(U−
j+ 1

2

)− α
(
U+

j+ 1
2

− U−
j+ 1

2

))
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DG Numerical Scheme

Begin with the balance law:

∂tU + ∂xf(U) = S(U,A0)

Derive the standard DG methods∫
Ij

∂t(Uτ )(vτ ) dx−
∫
Ij

f(Uτ )∂x(vτ ) dx+f̂j+ 1
2
vτ (x−

j+ 1
2
)−f̂j− 1

2
vτ (x+

j− 1
2
) =

∫
Ij

S(Uτ , (A0)τ )vτ dx

Well-balanced methods for the Man-at-Eternal-Rest steady state solution(
u,
√
A−

√
A0

)
= (0, constant) or (u,A) = (0, A0)

can be easily designed, following the approach for the shallow water equations.

Next, we focus on the living-man equilibrium state(
Q,

Q2

2A2
+ β

(√
A−

√
A0

))
= (constant, constant)
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Modified Numerical Scheme

Numerical Scheme in Cell Ij:∫
Ij

∂tU
nv dx−

∫
Ij

f(Un)∂xv dx+ f̂j+ 1
2
v(x−

j+ 1
2

)− f̂j− 1
2
v(x+

j− 1
2

)

=

∫
Ij

S(Un, A0)v dx+ (f̂j+ 1
2
− f̂ lj+ 1

2
)v(x−

j+ 1
2

)− (f̂j− 1
2
− f̂rj− 1

2
)v(x+

j− 1
2

)

which is equivalent to∫
Ij

∂tU
nv dx−

∫
Ij

f(Un)∂xv dx+ f̂ lj+ 1
2
v(x−

j+ 1
2

)− f̂rj− 1
2
v(x+

j− 1
2

)

=

∫
Ij

S(Un, A0)v dx

with numerical flux: f̂j+ 1
2

= F
(
U+
j+ 1

2

, U−
j+ 1

2

)
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Decomposition of U

Transform the conservative variables U into equilibrium variables V :

U =

(
A
Q

)
⇒ V =

(
m
E

)
=

(
Q

Q2

2A2 + β(
√
A−
√
A0).

)
Decompose U :

The equilibrium part (Ueτ ):

V̂j =

(
m̂j

Êj

)
=

(
m(xj+ 1

2
)

E(xj+ 1
2
)

)
⇒ Ueτ (x) = PτU(V̂ , A0(x))

The remaining part (Urτ ): Urτ = Uτ − Ueτ
Important: At a steady state: Ueτ = Uτ and Urτ = 0
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Numerical Fluxes via Hydrostatic Reconstruction

Define the updated boundary values:

U∗,−
j+ 1

2

= U−
j+ 1

2

+ Ur,−
j+ 1

2

U∗,+
j+ 1

2

= U−
j+ 1

2

+ Ur,+
j+ 1

2

Compute the well-balanced numerical fluxes:

f̂ lj+ 1
2

= F (U∗,−
j+ 1

2

, U∗,+
j+ 1

2

) + f(U−
j+ 1

2

)− f(U∗,−
j+ 1

2

)

f̂rj− 1
2

= F (U∗,−
j− 1

2

, U∗,+
j− 1

2

) + f(U+
j− 1

2

)− f(U∗,+
j− 1

2

)

where F (a, b) = 1
2

(
f(a) + f(b)− α(b− a)

)
is the Lax-Friedrichs numerical flux.

At the well-balanced state:

U∗,+
j± 1

2

= U∗,−
j± 1

2

f̂ lj+ 1
2

= f(U−
j+ 1

2

) f̂rj− 1
2

= f(U+
j− 1

2

)
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The Source Term Approximation

Decompose the source term: S(U,A0) = βA
2
√
A0

(A0)x = βA(
√
A0)x∫

S(U,A0)v dx =

∫
S(Ue, A0)v dx+

∫
S(Ur, A0)v dx

The remainder part: compute directly with quadrature rule

The equilibrium part: approximate

Source term approximation:∫
Ij

S(U,A0)v dx ≈ −
∫
Ij

f(Ue)vx dx+ f(Ue,−
j+ 1

2

)v−
j+ 1

2

− f(Ue,+
j− 1

2

)v+
j− 1

2

+

∫
Ij

S(Ur, A0)v dx
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Verification of Well-Balanced Scheme

The well balanced property is obtained if the residue, R, is zero:

R = −
∫
Ij

f(U)∂xv dx+ f̂ lj+ 1
2
v(x−

j+ 1
2
)− f̂rj− 1

2
v(x+

j− 1
2
)

−

(∫
Ij

S
(
(Ue)n, A0

)
v dx+

∫
Ij

S
(
(Ur)n, A0

)
v dx

)

= −
∫
Ij

f(U)∂xv dx+ f
(
U−
j+ 1

2
)v(x−

j+ 1
2
)− f

(
U+

j− 1
2
)v(x+

j− 1
2
)

−
∫
Ij

S
(
(Ue)n, A0

)
v dx

= 0

where

The second equality holds by the consistency of LF flux, design of f̂ l and f̂r,
and Ur = 0 at the steady state.

The third equality is due to the source term approximation.
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High-Order Temporal Update Scheme

Scheme: Third order total variation diminishing (TVD) Runge-Kutta time
discretization

U (1) = Un + ∆tF(Un),

U (2) =
3

4
Un +

1

4

(
U (1) + ∆tF(U (1))

)
Un+1 =

1

3
Un +

2

3

(
U (2) + ∆tF(U (2))

)
where F is the spatial operator.

Advantages:

Increased temporal accuracy

Stability
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Tests for Well-Balanced Property

Initial Conditions: A(x, 0) and Q(x, 0) are
determined from the equilibrium variables of the
steady state and the cross-sectional area at rest A0

for an artery of length L:

Qs = Qin, Es =
Q2
in

2(Aout)2
+β
(√

Aout −
√

(A0(L)
)
,

Boundary Conditions: Qin at the inlet & Aout at
the outlet

Inlet & Outlet Constants:
Cross-Sectional Area:
Ain = A0(0)[1+0.5]2, Aout = A0(L)[1+0.5]2

Discharge: Qin = Ain × (0.5Cin)
Moens-Kowerteg Wave Coefficient:

Cin =
√

K
√
Ain

2ρ
√
pi

Figure: An aneurysm (top),
stenosis (middle), a decreasing
step (bottom).
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Tests for Well-Balanced Property: Numerical Errors

Living-Man Well-Balanced Scheme

Aneurysm Stenosis Decreasing Step
L1 Error L∞ Error L1 Error L∞ Error L1 Error L∞ Error

A 7.360e-15 6.272e-11 8.610e-15 7.420e-11 8.097e-15 6.599e-11
Q 9.851e-15 7.699e-11 1.050e-14 8.203e-11 1.088e-14 8.506e-11

Non-Well-Balanced Scheme

Aneurysm Stenosis Decreasing Step
L1 Error L∞ Error L1 Error L∞ Error L1 Error L∞ Error

A 1.168e-09 1.603e-04 7.212e-12 7.312e-07 2.351e-07 4.416e-02
Q 2.045e-09 2.082e-04 6.580e-12 4.830e-07 2.927e-07 2.915e-02

Table: Relative errors for the well-balanced problems at time t = 5.
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Tests for Well-Balanced Property: Error Plots

(a) Aneurysm: Well-balanced (left),
non-well-balanced (right)

(b) Stenosis: Well-balanced (left),
non-well-balanced (right)

(c) Decreasing Step: Well-balanced
(left), non-well-balanced (right)

Figure: Plot of the errors for the cross-sectional area A.
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Perturbation to A for Artery with an Aneurysm

Perturbed Initial Conditions of A: Apert(x, 0) = A(x, 0) + πp(x)2, with

p(x) =

{
5× 10−5 sin

(
100
10Lπ

(
x− 45L

100

))
, if x ∈

[
45L
100 ,

55L
100

]
,

0, otherwise

Expected Behavior:
The perturbation will split into two waves moving in opposite directions.
Non-inverted reflection waves will appear when the perturbation pulses move
into the region of the artery with smaller area.

(a) Well-balanced (b) Non well-balanced
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Inflow Pulse to Q for an Artery with a Step

Initial Conditions: Same as in the steady state problems for the step problem.
Perturbed Boundary Conditions: The boundary condition for Q at the inlet:

Q̃in(t) =

{
Qin

(
1 + 0.02 sin

(
2π t

T

))
if t ≤ T

2 ,

Qin otherwise,

(c) Well-balanced (d) Non well-balanced
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Ripa Model

The Ripa Model (Shallow water equations with horizontal temperature
gradients): introduced by Pedro Ripa in 1993

ht + (hu)x = 0,

(hu)t + (hu2 + 1
2gh

2Θ)x = −ghΘbx

(hΘ)t + (hΘu)x = 0

Variables:

h(x, t) ≥ 0 height of the water
u(x, t) ∈ R depth-averaged velocity
Θ(x, t) > 0 potential temperature field

b(x) bottom topography function
g gravitational constant
hu water discharge

1
2
gh2Θ pressure that is dependent on the water temperature
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Ripa Model

tsunami and ocean current modeling, river flooding and dam break modeling,
atmospheric and planetary flows
Let Θ = 1, the shallow water equations (SWEs) are recovered

Why to add temperature field Θ?

The SWEs assume that the density is constant. Multi-layer SWEs available,
when several layers with different constant densities.
However, many numerical challenges: complicated eigenstructure,
non-conservative terms, and conditional hyperbolicity, etc.

The Ripa model obtained by vertically averaging over all layers.
Lose the information of the interface between layers, but easier in both PDE
and numerics
The horizontal temperature gradients are introduced to represent the
variations in the fluid density.
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Steady State Solutions

Moving water steady state: u 6= 0:
hu = constant
u2

2 + gΘ(h+ b) = constant

Θ = constant

Still water steady state: u = 0:{
u = 0

∂x

(
1
2h

2Θ
)

= −hΘbx

includes three cases:
still-water steady state (

u, θ, h+ b
)

=
(
0, C1, C2

)
isobaric steady state (

u, b, h2θ
)

=
(
0, C1, C2

)
constant water height steady state(

u, h, b+
1

2
h ln θ

)
=
(
0, C1, C2

)
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Well-balanced DG methods

Well-balanced methods for the still-water steady state solution(
u, θ, h+ b

)
=
(
0, C1, C2

)
can be easily designed, following the approach for the SWEs

Similarly, well-balanced methods for the moving-water steady state solution
hu = constant
u2

2 + gΘ(h+ b) = constant

Θ = constant

can be designed, following the approach for the SWEs and blood flow (slightly
complication due to the third variable)

Well-balanced methods for the constant water height and isobaric equilibria,
follow the proposed framework to balance the moving-water equilibrium, with
some complications detailed in Britton-Xing JSC 2020.
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Test for Accuracy

Initial Conditions: 
h(x, 0) = 5 + esin(2πx),

(hu)(x, 0) = sin(cos(2πx)),

θ(x, 0) = sin(2πx) + 2,

Bottom Function: b(x) = sin2(πx)

Boundary Conditions: Periodic

h hu hΘ

No. Cells L1Error Order L1Error Order L1Error Order

25 7.3659e-04 6.7798e-03 7.8134e-04
50 1.1235e-04 2.7129 9.0751e-04 2.9013 1.1063e-04 2.8201

100 1.5781e-05 2.8317 1.1708e-04 2.9544 1.8243e-05 2.6004
200 2.0662e-06 2.9331 1.5041e-05 2.9606 2.7879e-06 2.7101
400 2.5592e-07 3.0132 1.8865e-06 2.9951 3.8607e-07 2.8522
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Tests for Well-Balanced Property

Bottom Function: b(x) = max
{

0, 0.2− 0.05(x− 10)2
}

Case 1: Subcritical Flow
Initial Conditions:

m = 4.42×
√

5

E = 22.06605× 5

Θ = 5

Boundary conditions:{
m = 4.42×

√
5 at upstream

h = 2 at downstream

h hu hΘ

L1 Error 3.9850e-13 6.0707e-13 4.0459e-13
L∞ Error 1.5654e-13 4.2100e-13 1.5965e-13

Case 2: Transcritical Flow
Initial Conditions:

m = 1.53×
√

5

E = 11.09098731433671× 5

Θ = 5

Boundary conditions:{
m = 1.53×

√
5 at upstream

h = 0.405737258401203 at downstream

h hu hΘ

L1 Error 7.2879e-14 3.0429e-13 7.2849e-14
L∞ Error 8.0269e-14 1.8407e-13 7.6161e-14
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Tests for Perturbations

Perturbed Equations:(
hp, (hu)p, (hθ)p

)
(x, 0) =

(
h, hu, hθ

)
(x, 0) + [0.0001, 0, 0.0005]χ[5.75,6.25]

.

Figure: Plot of errors for the perturbation to the subcritical (top row) and transcritical
(bottom row) flow problems at time t = 0.75.
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Tests for Discontinuous Initial Conditions

Initial Conditions:

h(x, 0) + b(x) =

{
20 x < 300

15 x ≥ 300
, (hu)(x, 0) =

{
1 x < 300

5 x ≥ 300
, θ(x, 0) =

{
10 x < 300

5 x ≥ 300

Bottom Function: b(x) =

{
8 for |x− 300| < 75

0 otherwise

Figure: Numerical solution at time t = 3 with a non-constant bottom b.
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Chemosensitive Movement Model

Hyperbolic models for chemotaxis{
nt + (nu)x = 0

(nu)t + (nu2 + n)x = nχ′(c)
∂c

∂x
− σnu

with the chemical concentration c = c(x, t)

∂c

∂t
−Dc4c = n− c.

n(x, t): cell density, nu(x, t): population flux, σ: friction coefficient.

Modelling that cells change their direction reacting to a chemical substance,
approaching chemically favorable environments and avoiding unfavorable ones.

Steady state solution with a zero population flux

nχ′(c)cx − nx = 0, nu = 0.

where c = c(x) does not depend on t.
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Nozzle Flow

Balance laws for a quasi one-dimensional nozzle flow through a duct of varying
cross-section 

(ρA)t + (ρuA)x = 0
(ρuA)t +

(
(ρu2 + p)A

)
x

= pA′(x)
(EA)t + ((E + p)uA)x = 0

with the chemical concentration c = c(x, t)

∂c

∂t
−Dc4c = n− c.

ρ: density, u: velocity, p: pressure, E = 1
2ρu

2 + p
γ−1 : total energy

A = A(x): the area of the cross section

Steady state solution

ρ(x, t) = ρ̄(x), p(x, t) = p̄, and u(x, t) = 0

where ρ̄(x) is an arbitrary function in x and p̄ is a constant.
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Non-equilibrium flow problems

Balance laws for non-equilibrium flow problems containing finite-rate chemistry or
combustion

Ut + F (U)x = S(U)

with

U = (ρ1, · · · , ρn, ρu, ρe0)T ,

F (U) = (ρ1u, · · · , ρnu, ρu2 + p, ρue0 + up)T ,

S(U) = (s1, · · · , sn, 0, 0)T .

with the source term si describing the chemical reactions occurring in gas flows
(leading to changes in the amount of mass of each chemical species),

si = Mi

J∑
j=1

(v′′i,j − v′i,j)

[
kf,jΠ

n
s=1

(
ρs
Ms

)v′s,j
− kb,jΠn

s=1

(
ρs
Ms

)v′′s,j]
,

for the reaction of the form

v′1,jX1 + v′2,jX2 + · · ·+ v′n,jXn 
 v′′1,jX1 + v′′2,jX2 + · · ·+ v′′n,jXn

Zero-Velocity Steady state solution
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Hydrodynamic equations with general free energy

Balance laws for hydrodynamic models with attractive-repulsive interaction forces
and linear or nonlinear damping effects (including: phase transitions in collective
behavior, Keller-Segel model, and models in chemotaxis, astrophysics, dynamic
density functional theories)

ρt + (ρu)x = 0

(ρu)t + (ρu2 + p(ρ))x = −ρH(x, p)x − γρu− ρ
∫
R
φ(x− y)(u(x)− u(y))ρ(y)dy

ρ: density, u(x, t): velocity, P (ρ): pressure,
φ(x): communication function in the Cucker-Smale model
H(x, ρ): attratice-repulsive effects from external V or interaction potential W :

H(x, ρ) = V (x) +W (x) ? ρ

Zero-Velocity Steady state solution:

Π′(ρ) +H(x, ρ) = constant on each connected component of supp(ρ)

where ρΠ′′(ρ) = P ′(ρ).
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Summary

Constructed and tested structure-preserving DG methods for the hyperbolic
balance laws

Well-balanced and positivity-preserving methods for the Euler equations with
gravity:

1 Isothermal equilibrium state,
2 Polytropic equilibrium state,
3 Positivity-preserving limiter, with HLLC flux.

One dimensional blood flow model

Shallow water equations with horizontal temperature gradients

Examples of other hyperbolic balance laws

High order finite difference and finite volume WENO methods can also be
designed for these models.
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Thank you!
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