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Background

The discontinuous Galerkin (DG) method is widely used to solve the
time-dependent hyperbolic equations:

Proposed firstly for linear equation by Reed and Hill (1973);
Developed to nonlinear equation, by Cockburn and Shu (1989)

the numerical flux at element interfaces;
the explicit (TVD/SSP) Runge-Kutta time-marching;
the slope limiter . . .

It is named the RKDG method.

The local discontinuous Galerkin (LDG) method is widely-used to solve
those PDEs with high order derivatives:

proposed firstly by Bassi and Rebay (1997) to solve the Navier-Stokes
equation;
developed and firstly analyzed by Cockburn and Shu (1998) for convection
diffusion equations;
extended to many PDEs with higher order derivatives: J. Yan(Iowa State U),
Y. Xu (USTC), . . .

Compared with wide applications, there is relatively less work on theory
analysis, even for simple model equation.
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Background

The semi-discrete DG method:
local cell entropy inequality (1994), and hence the L2-norm of the numerical
solution does not increase v.s. time.
optimal error estimate,
superconvergence analysis, and post-processing,
. . .

The fully-discrete RKDG method:
total-variation-diminishing in the means, with the strong-stability-preserving
(SSP) time-marching;
lower (time) order RKDG methods:

L2-norm stabilities for linear hyperbolic equation;
L2-norm error estimates for linear/nonlinear eqaution(s), with the sufficiently
smooth solution;
local analysis of L2-normerror estimates for the linear equation, when the initial
solution has a discontinuity.

arbitrary order RKDG method for linear equation (reported in this talk):
L2-norm stability for arbitrary RKDG methods;
optimal error estimate and superconvergence analysis.

. . .
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Semi-discrete DG method

Let us start from the 1d nonlinear hyperbolic equation

Ut + f (U)x = 0, (x, t) ∈ (0, 1)× (0,T], (1)

equipped with the periodic boundary condition. f : physical flux.

Let Ih = {Ii}N
i=1 be the quasi-uniform partition, where h is the maximum

length of every element.

The discontinuous finite element space is defined as the piecewise
polynomials of degree at most k ≥ 0, namely

Vh = {v : v ∈ L2(I), v|Ii ∈ Pk(Ii), i = 1, . . . ,N}.

jump and average at the interface point:

[[v]] = v+ − v−, {{v}} =
1
2

(v− + v+).
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The semi-discrete DG method

Ii Ii+1Ii−1

The semi-discrete DG method for the model equation is defined as
follows: find the map u : [0,T]→ Vh such that

(ut, v) = H(u, v), ∀ v ∈ Vh, t ∈ (0,T], (2)

with the initial solution u(x, 0) ∈ Vh.

Here (·, ·) is the usual L2 inner product, and the spatial DG discretization

H(u, v) =
∑

1≤i≤N

[∫
Ij

f (u)vx dx + f̂ (u−
i+ 1

2
, u+

i+ 1
2
)[[v]]i+ 1

2

]
(3)

involves the numerical flux f̂ (u−, u+).
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Numerical flux

Consistence: f̂ (p, p) = f (p);
Lip. continuous with two arguments;
Stability demand:

Monotone: f̂ (↑, ↓)

[f (p)− f̂ (u−, u+)][[u]] ≥ 0, ∀p ∈ inter{u−, u+}.

This ensures the local entropy inequality and hence the L2-norm stability.
Example: Lax-Fredrichs flux

f̂ (u−, u+) =
1
2
[f (u−) + f (u+)]− 1

2
C[[u]],

where C = max |f ′(u)|.
For linear case f (u) = βu, the numerical flux f̂ (u−, u+) is allowed to be
upwind-biased, namely

f̂ (u−, u+) = β{{u}}(θ) = β[θu− + (1− θ)u+],

where β(θ − 1/2) > 0. In general, it is not an monotone flux.
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Contents in this talk

The model equations is simple:
linear constant hyperbolic equation (and convection-diffusion equation);
periodic boundary condition;
the upwind-biased numerical flux (and generalized alternating numerical
flux);
the linear scheme without any nonlinear treatments.

Stability analysis and error estimates (in L2-norm) by energy technique:
semi-discrete DG/LDG method

property of DG discretization, GGR projection, multi-dimension, . . .

fully discrete RKDG method

stability performance, temporal differences of stage solutions, matrix
transferring process, reference function at stage time, incomplete cor-
rection function technique, . . .
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The semi-discrete DG method

Consider the 1d hyperbolic equation with nonzero constant β

Ut + βUx = 0, x ∈ (0, 1), t ∈ (0,T], (4)

equipped with the periodic boundary condition.

The DG method is defined as follows: find u : [0,T]→ Vh such that

(ut, v) = Hθ(u, v), ∀ v ∈ Vh, t ∈ (0,T], (5)

with u(x, 0) ∈ Vh approximating the initial solution.
The spatial DG discretization is given in the form

Hθ(u, v) =
∑

1≤i≤N

[∫
Ii

βuvx dx + β{{u}}(θ)
i+ 1

2
[[v]]i+ 1

2

]
, (6)

with the upwind-biased numerical flux, since β(θ − 1/2) > 0.
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Properties of DG discretization (arbitrary α)

accurate skew-symmetric

H1−α(ϕ,ψ) +Hα(ψ,ϕ) = 0.

approximating skew-symmetric

Hα(ψ,ϕ) +Hα(ϕ,ψ) = −(2α− 1)

N∑
i=1

[[ϕ]]i+ 1
2
[[ψ]]i+ 1

2
.

negative semidefinite

Hα(ϕ,ϕ) = −1
2

(2α− 1)

N∑
i=1

[[ϕ]]2i+ 1
2

= −1
2

(2α− 1)‖[[ϕ]]‖2
Γh
≤ 0.

boundedness in the finite element space

Hα(ϕ,ψ) ≤ Mh−1‖ϕ‖‖ψ‖.
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Stability analysis

Theorem 2.1
The DG method is stable in L2-norm, namely

‖u(t)‖ ≤ ‖u(0)‖.

The proof is trivial.
Taking v = u in (6) and using the negative semidefinite property, we have

1
2

d
dt
‖u‖2 +

1
2

(2θ − 1)‖[[u]]‖2
Γh
≤ 0,

which implies the above stability.
An additional stability mechanism is provided by the square of jumps,
which is better than the standard FEM.
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General framework of error estimate

Error splitting: let χ be a reference function in Vh, consider

e = u− U = ξ − η,

where ξ = u− χ ∈ Vh and η = U − χ.

Estimate ξ by η: for example, we can do it by using the error equation

(ξt, v)−Hθ(ξ, v) = (ηt, v)−Hθ(η, v), (7)

with the test function v = ξ.
The lower bound of LHS is usually given by the stability result.
Sharply estimate RHS by introducing a suitable χ, which is often defined as
a well-defined projection.

Applications of the Gronwall inequality and the triangular inequality.
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Quasi-optimal error estimate

Definition 1 (L2 projection)
Let w ∈ L2(I) be any given function. The L2 projection, denoted by Phw, is the
unique element in Vh such that

(w− Phw, v) = 0, ∀v ∈ Vh. (8)

The projection is well-defined, and
there holds the approximation property

‖P⊥h w‖+ h
1
2 ‖P⊥h w±‖Γh ≤ Chk+1‖w‖k+1.

Since Vh is discontinuous finite element space, (8) is equal to

(w− Phw, v)Ii = 0, ∀v ∈ Pk(Ii), i = 1, 2, . . . ,N.

Hence this projection is also called the local L2 projection.
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Quasi-optimal error estimate

Theorem 2.2
Assume that the initial solution U0 ∈ Hk+1(I), then for any t ∈ [0,T] we have

‖U(t)− u(t)‖ ≤ C‖U0‖k+1hk+ 1
2 ,

with suitable setting of the initial solution (e.g., the L2 projection).

By the help of the enhanced stability mechanism and the definition of L2

projection, we can get from (7) that

1
2

d
dt
‖ξ‖2 +

1
2

(2θ − 1)‖[[ξ]]‖2
Γh
≤ ‖[[ξ]]‖Γh‖{{η}}(θ)‖Γh

≤ 1
2

(2θ − 1)‖[[ξ]]‖2
Γh

+ C‖{{η}}(θ)‖2
Γh
.

By the approximation property of L2 projection, we can yield

‖ξ‖ ≤ ‖ξ(0)‖+ C‖U0‖k+1hk+ 1
2 . (9)

Noticing the initial setting, the triangular inequality ends the proof.
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Optimal error estimate?

However, the numerical experiments shows the optimal order. To obtain
the sharp error estimate, we have to introduce a better projection.
For θ = 0, 1:

Interpolation on the Gauss-Radau points:

P. LESAINT AND P. A. RAVIART, Mathematical Aspects of finite
elements in PDEs, 89-145 (1974)

Gauss-Radau projection:

P. CASTILLO AND B. COCKBURN, Math. Comp., 71, 455-478 (2002)

For general value of θ, the Generalized Gauss-Radau (GGR) projection is
introduced.

J. L. Bona and e.t.c., Math. Comp., 82, 1401-1432 (2013)

H. L. Liu and N. Polymaklam, Numer. Math., 129, 321-351 (2015)

X. Meng, C. -W. Shu and B. Y. Wu, Math. Comp., 85, 1225-1261 (2016)

Y. Cheng, X. Meng and Q. Zhang, Math. Comp., 86, 1233-1267 (2017)
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1d GGR projection

Definition 2 (1d GGR)

Assume that θ 6= 1/2. For any given periodic function w ∈ H1(Ih), the GGR
projection, denoted by Gθhw, is the unique element in Vh such that

((Gθh)⊥w, v)Ii = 0, ∀v ∈ Pk−1(Ii); {{(Gθh)⊥w}}(θ)
i+ 1

2
= 0,

for i = 1, 2, . . . ,N. Here (Gθh)⊥w = w−Gθhw is the projection error.

In general, the GGR projection is globally defined.

Lemma 2.1

The 1d GGR projection is well-defined, and satisfies

‖(Gθh)⊥z‖+ h
1
2 , ‖(Gθh)⊥z‖Γh ≤ C‖z‖k+1hk+1. (10)

Prove it later.
qzh@nju.edu.cn DG/LDG method July 27-28, 2020, USTC 18 / 58



Application of GGR projection

Theorem 2.3
Assume that the initial solution U0 ∈ Hk+2(I), then for any t ∈ [0,T] we have

‖U(t)− u(t)‖ ≤ C‖U0‖k+2hk+1,

with suitable setting of the initial solution (e.g., the L2/GGR projection).

The 1d GGR projection implies for any v ∈ Vh,

Hθ(η, v) =
∑

1≤i≤N

[∫
Ii

βηvx dx + β{{η}}(θ)
i+ 1

2
[[v]]i+ 1

2

]
= 0.

It follows from (7) and Lemma 2.1 that

1
2

d
dt
‖ξ‖2 +

1
2

(2θ − 1)‖[[ξ]]‖2
Γh

= (ηt, ξ) ≤ ‖ξ‖‖ηt‖ ≤ Chk+1‖ξ‖‖Ut‖k+1.

Integration and application the triangular inequality end the proof.
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Proof of Lemma 2.1

Let E = Gθhz− Phz, where Phz ∈ Vh is the local L2-projection.

Show below that E ∈ Vh exists uniquely and satisfies

‖E‖L2(Ωh) + h
1
2 ‖E‖L2(Γh) ≤ Chmin(k+1,s+1)‖z‖Hs+1(Ωh). (11)

These purposes can be achieved by direct manipulations through a linear
system, since ∫

Ii

Evdx = 0, ∀v ∈ Pk−1(Ii), i = 1, . . . ,N, (12a)

{{E}}(θ)
i+ 1

2
= {{z− Phz}}(θ)

i+ 1
2
≡ bi, i = 1, . . . ,N, (12b)

where bi is the projection error resulting from the L2-projection.
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Proof of Lemma 2.1

Due to the orthogonality of the rescaled Legendre polynomials, it is easy
to see from (12a) that

E(x) = αi,kLi,k(x) = αi,kL̂k(x̂),

in the element Ii, where x̂ = 2(x− xi)/hi ∈ [−1, 1] and

Li,l(x) ≡ L̂l

(2(x− xi)

hi

)
≡ L̂l(x̂).

Here L̂l(x̂) is the standard Legendre polynomial in [−1, 1] of degree l.

Since L̂k(±1) = (±1)k, it follows from (12b) that

θαi,k + θ̃(−1)kαi+1,k = bi, i = 1, · · · ,N. (13)

Note that αN+1,k = α1,k and θ̃ = 1− θ.
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Proof of Lemma 2.1

The unknowns ~αN = (α1,k, α2,k, . . . , αN,k)
> can be determined from the

following linear algebra system

AN~αN = ~bN , (14)

where ~bN = (b1, b2, . . . , bN)> and

AN =



θ θ̃

θ θ̃
. . . . . .

. . . . . .
θ̃ θ


. (15)

It is easy to work out that

det(AN) = θN(1− ζN) 6= 0, with ζ = (−1)k+1θ̃/θ 6= 1.

Hence E and Gθhz is determined uniquely.
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Proof of Lemma 2.1

Easy to see that A−1
N is a circulant matrix with the (i, j)-th entry

(A−1
N )ij =

1
θ(1− ζN)

ζmod(j−i,N).

Both the row-norm and the column-norm satisfy

‖A−1
N ‖1 = ‖A−1

N ‖∞ ≤
1

|θ||1− ζN |
|1− |ζ|N |
|1− |ζ||

≤ 1
|θ||1− |ζ||

,

hence the spectral norm is bounded above by

‖A−1
N ‖

2
2 ≤ ‖A−1

N ‖1‖A−1
N ‖∞ ≤

1
θ2(1− |ζ|)2 . (16)

Note that this inequality holds independently of the element number N.
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Proof of Lemma 2.1

Owing to the approximation property of L2-projection, we have

‖~αN‖2
2 = ‖A−1

N
~bN‖2

2 ≤ ‖A−1
N ‖

2
2‖~bN‖2

2

≤ C‖~bN‖2
2 ≤ C‖z− πhz‖2

Γh
≤ Ch2 min(k+1,s+1)−1‖z‖2

Hs+1(Ωh)
.

(17)

Finally, noticing the simple facts

‖E‖2
L2(Ωh)

=

N∑
i=1

α2
i,k‖Li,k(x)‖2

L2(Ii)
=

N∑
i=1

hiα
2
i,k

2k + 1
≤ Ch‖~αN‖2

2, (18a)

‖E‖2
L2(Γh)

=

N∑
i=1

α2
i,k = ‖~αN‖2

2, (18b)

as well as (17), we can obtain (11) and finish the proof.
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Remarks for θ = 1/2

Actually, θ = 1/2 can be also used in the semi-discrete DG method.

In general, the convergence order is k.

However, the convergence order can achieve k + 1 if the mesh is uniform
and the degree k is even.

It can be proved by the super-convergence attribution of mesh construction
and the L2 projection.
Also by using the GGR projection in some sense.

However, when directly taking θ = 1/2 in Definition 2, the GGR projection
uniquely exists only if

the degree k is even , and
the number of elements is odd.

Hence, the GGR projection for θ = 1/2 is defined to be the L2 projection,
namely

G
1
2
h w = Phw.
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Discontinuous finite element space

Consider the 2d linear constant hyperbolic equation

Ut + β1Ux + β2Uy = 0, (x, y, t) ∈ (0, 1)2 × (0,T], (19)

equipped with the periodic boundary condition.

Let Ωh = Ih × Jh = {Kij}
j=1,...,Ny
i=1,...,Nx

denote a quasi-uniform tessellation with
the rectangular element

Kij ≡ Ii × Jj ≡ (xi− 1
2
, xi+ 1

2
)× (yj− 1

2
, yj+ 1

2
),

of the length hx
i = xi+1/2 − xi−1/2 and the width hy

j = yj+1/2 − yj−1/2.
The associated finite element space is defined as

Vh ≡ V(2)
h ≡ {v ∈ L2(Ω) : v|K ∈ Qk(Kij),∀Kij ∈ Ωh}, (20)

where Qk(Kij) denotes the space of polynomials on Kij of degree at most
k ≥ 0 in each variable.
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Notations of averages and jumps

Similar to the one-dimensional case, we use

[[v]]i+1/2,y = v+
i+1/2,y − v−i+1/2,y, [[v]]x,j+1/2 = v+

x,j+1/2 − v−x,j+1/2 (21)

to denote the jumps on vertical and horizontal edges, where

v±
i+ 1

2 ,y
= lim

x→xi+ 1
2
±

v(x, y), v±
x,j+ 1

2
= lim

y→yj+ 1
2
±

v(x, y)

are the traces along two different directions.
The weighted averages on vertical and horizontal edges are respectively
denoted by

{{v}}θ1,y
i+ 1

2 ,y
= θ1v−

i+ 1
2 ,y

+ θ̃1v+
i+ 1

2 ,y
, {{v}}x,θ2

x,j+ 1
2

= θ2v−
x,j+ 1

2
+ θ̃2v+

x,j+ 1
2
, (22)

with the given parameters θ1 and θ2.

Here and below denote θ̃1 = 1− θ1 and θ̃2 = 1− θ2.
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The semi-discrete DG method

Similarly, the semi-discrete DG method is defined as follows: find the
map u : [0,T]→ Vh such that

(ut, v) = H(u, v), ∀ v ∈ Vh, t ∈ (0,T], (23)

with u(x, y, 0) ∈ Vh approximating the initial solution.
The spatial DG discretization in 2d case is given in the form

H(u, v) = H1,θ1(u, v) +H2,θ2(u, v),

with the DG discretization in two directions

H1,θ1(u, v) =
∑

1≤i≤Nx

∑
1≤j≤Ny

[∫
Kij

β1uvx dx dy +

∫
Jj

β1{{u}}θ1,y
i+ 1

2 ,y
[[v]]i+ 1

2 ,y
dy

]
,

H2,θ2(u, v) =
∑

1≤i≤Nx

∑
1≤j≤Ny

[∫
Kij

β2uvy dx dy +

∫
Ii

β2{{u}}x,θ2

x,j+ 1
2
[[v]]x,j+ 1

2
dx

]
.

Here βκ(θκ − 1/2) > 0 is demanded for κ = 1, 2.
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Optimal error estimate

Theorem 3.1 (multi-dimension)

Assume that the initial solution U0 ∈ Hk+2(Ω) ∩ C(Ω̄), then for any t ∈ [0,T] we
have

‖U(t)− u(t)‖ ≤ C‖U0‖k+2hk+1,

with suitable setting of the initial solution (e.g., the L2/GGR projection).

This theorem can be proved by applying two-dimensional GGR projection

Gθ1,θ2
h = Xθ1

h ⊗ Yθ2
h , (24)

where Xθ1
h and Yθ2

h are one-dimensional GGR projections, corresponding
the x- and y- direction respectively.

The detailed definitions of 2d GGR projection depend on the values of
parameters, denoted by γ1 and γ2 below.

For given function z, denote the GGR projection error by η = z−Gγ1,γ2
h z.
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Detailed definition (I)

γ1 6= 1/2 and γ2 6= 1/2: Let z ∈ H2(Ωh) be a given periodic function, there
holds for all i and j that∫

Kij

ηvdxdy = 0, ∀v ∈ Qk−1(Kij), (25a)∫
Jj

{{η}}γ1,y
i+ 1

2 ,y
vdy = 0, ∀v ∈ Pk−1(Jj), (25b)∫

Ii

{{η}}x,γ2

x,j+ 1
2
vdx = 0, ∀v ∈ Pk−1(Ii), (25c)

ηγ1,γ2

i+ 1
2 ,j+

1
2

= 0, (25d)

with the weighted average at the corner point of element

ηγ1,γ2 = γ1γ2η
−,− + γ1γ̃2η

−,+ + γ̃1γ2η
+,− + γ̃1γ̃2η

+,+.

This projection is firstly proposed and discussed in

X. MENG, C. -W. SHU AND B. Y. WU, Math. Comp., 85, 1225-1261 (2016)
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Detailed definition (II)

γ1 6= 1/2 and γ2 = 1/2: Let z ∈ H1(Ωh). There holds for all i and j that∫
Kij

ηv dx dy = 0, ∀v ∈ Pk−1(Ii)⊗ Pk(Jj), (26a)∫
Jj

{{η}}γ1,y
i+ 1

2 ,y
v dy = 0, ∀v ∈ Pk(Jj). (26b)

γ1 = 1/2 and γ2 6= 1/2: Let z ∈ H1(Ωh). There holds∫
Kij

ηv dx dy = 0, ∀v ∈ Pk(Ii)⊗ Pk−1(Jj), (27a)∫
Ii

{{η}}x,γ2

x,j+ 1
2
v dx = 0, ∀v ∈ Pk(Ii). (27b)

The above two projections have been proposed for γ1 = γ2 = 1 in

B. DONG AND C. -W. SHU, SINUM 47, 3240-3268(2009)

γ1 = γ2 = 1/2: we define it to be the 2d L2-projection.
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Properties of 2d GGR projection

As 1d case, we also have the optimal approximation result

Lemma 3.1 (Approximation property of 2d case)

For any γ1 and γ2, the 2d GGR projection is well-defined, and

‖(Gγ1,γ2
h )⊥w‖+ h

1
2 ‖(Gγ1,γ2

h )⊥w‖Γh ≤ C‖w‖k+1hk+1. (28)

The proof line is very similar as that for the 1d case.
Discuss each term on the RHS of the following decomposition

Gγ1,γ2
h w−G

1
2 ,

1
2

h w = Ex + Ey + Exy,

through the matrix analysis.

However, the 2d GGR projection can not completely eliminate the errors
emerged in the interior or on the boundary of every element.
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Superconvergence property

Fortunately, there holds the following superconvergence property.

Lemma 3.2 (θ1 6= 1/2 and θ2 6= 1/2)

Let ` = 1, 2 and U ∈ Hk+2(Ωh) ∩ C(Ω̄). For any v ∈ Vh, there holds∣∣∣∣∣∣
Nx∑

i=1

Ny∑
j=1

H`,θ`
ij

(
U −Gθ1,θ2

h U, v
)∣∣∣∣∣∣ ≤ Chk+1‖U‖Hk+2(Ωh)‖v‖,

on the quasi-uniform Cartesian mesh, where (for example)

H1,θ1
ij (w, z) =

∫
Kij

w
∂z
∂x

dx dy−
∫

Jj

[
(wθ1,yz−)i+ 1

2 ,y
− (wθ1,yz+)i− 1

2 ,y

]
dy.

By this result, it is easy to prove Theorem 3.1.
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Proof of Lemma 3.2

Main points:
New representation of LHS

Kernel space of new representation

Rough boundedness

More clear statements are given in this talk.

References:
P. CASTILLO AND B. COCKBURN, Math. Comp., 71, 455-478 (2002)

X. MENG, C. -W. SHU AND B. Y. WU, Math. Comp., 85, 1225-1261 (2016)

Y. CHENG, X. MENG AND Q. ZHANG, Math. Comp., 86, 1233-1267 (2017)

For notational simplicity, below we denote

Gθ1,θ2
h = Gh, Gθ1

h = Xh, Gθ2
h = Yh.
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Step1: new representation of LHS

Proposition 3.1
If the function U is continuous everywhere, then

{{GhU}}θ1,y
i+ 1

2 ,y
= YhU(xi+ 1

2
, ·), {{GhU}}x,θ2

x,j+ 1
2

= XhU(·, yj+ 1
2
).

Take the edge x = xi+1/2 as an example. Two items of the 2d GGR
projection imply for ∀j that∫

Jj

{{GhU}}θ1,y
i+ 1

2 ,y
v dy =

∫
Jj

U(xi+ 1
2
, ·)v dy, ∀v ∈ Pk−1(Jj),

{{GhU}}θ1,θ2

i+ 1
2 ,j+

1
2

= Ui+ 1
2 ,j+

1
2
.

The 1d GGR projection implies for any j that∫
Jj

YhU(xi+ 1
2
, ·)v dx =

∫
Jj

U(xi+ 1
2
, ·)v dy, ∀v ∈ Pk−1(Jj),

{{YhU(xi+ 1
2
, ·)}}x,θ2

i+ 1
2 ,j+

1
2

= Ui+ 1
2 ,j+

1
2
.

The uniqueness of 1d GGR projection yields the first conclusion.
qzh@nju.edu.cn DG/LDG method July 27-28, 2020, USTC 36 / 58



Step 1: new representation of LHS

Hence, for any continuous function U, we have

H1,θ1
ij (G⊥h U, v)

=

∫
Kij

G⊥h Uvx dx dy−
∫

Jj

(Y⊥h Uv−)i+ 1
2 ,y

dy +

∫
Jj

(Y⊥h Uv+)i− 1
2 ,y

dy

=

∫
Kij

G⊥h Uvx dx dy−
∫

Jj

(Y⊥h U−v−)i+ 1
2 ,y

dy +

∫
Jj

(Y⊥h U+v+)i− 1
2 ,y

dy

≡ E1
ij(U, v),

(29)

and similarly have

H2,θ2
ij (G⊥h U, v)

=

∫
Kij

G⊥h Uvy dx dy−
∫

Ii

(X⊥h U−v−)x,j+ 1
2

dx +

∫
Ii

(X⊥h U+v+)x,j− 1
2

dx

≡ E2
ij(U, v).

(30)

Extent the above representations to broken Sobolev space.
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Step 2: kernel space of new representation

Proposition 3.2

Note that Ωh = Ih × Jh. For any w ∈ Pk+1(Ωh), there holds

E`ij(w, v) = 0, ∀v ∈ Vh = Qk. (31)

Start the proof from the special function

w = p(x)q(y),

where p(x) ∈ H1(Ih) and q(y) ∈ H1(Jh). The definitions imply that

Ghw(x, y) = Xhp(x) · Yhq(y). (32)

Furthermore, it is easy to see have

X⊥h w(x, y±) = X⊥h p(x) · q(y±), (33a)

Y⊥h w(x±, y) = p(x±) · Y⊥h q(y). (33b)
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Step 2: kernel space of new representation

Now additionally assume q(y) ∈ Pk(Jh). Then (32) implies

G⊥h w = X⊥h p(x) · q(y). (34)

It follows from (33b) that Y⊥h w(x±i∓1/2, y) = 0. Together with (34), we have

E1
ij(w, v) = 0, ∀v ∈ Vh. (35)

since three terms are all equal to zero.

An application of integration by part along y-direction, together with (34)
and (33a), yield

E2
ij(w, v) = −

∫
Kij

X⊥p(x)qy(y)v(x, y) dx dy, ∀v ∈ Vh. (36)
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Step 2: kernel space of new representation

It is easy to see that (31) holds for any w ∈ Qk(Ωh), and hence we just
need to verify it for two kinds of functions

w = Li′,k+1(x)1K , w = Lj′,k+1(y)1K ,

where K = Ki′j′ goes through all elements.

Take the first type as an example. It is easy to see that

w(x, y) = p(x)q(y),

with the separation

p(x) = Li′,k+1(x)1Ii′ ∈ H1(Ih), q(y) = 1Jj′ ∈ Pk(Jh).

As a result, we can get (31) by using (35) and (36).

Now we can compete the proof of Proposition 3.2.
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Step 3: rough boundedness

Assume z ∈ H1(Ωh).

Using the inverse inequality and the approximations of GGR projections,
and we have

Nx∑
i=1

Ny∑
j=1

E`ij(z, v) ≤ Ch‖z‖H1(Ωh)‖∇v‖H1(Ωh) + Ch‖z±‖H1(Γh)‖v‖Γh

≤ C‖z‖H1(Ωh)‖v‖+ Ch‖z‖H2(Ωh)‖v‖.

(37)

Here we have used the trace inequality in each element

‖z‖H1(∂Kij) ≤ C‖z‖
1
2
H1(Kij)

‖z‖
1
2
H2(Kij)

≤ Ch−
1
2 ‖z‖H1(Kij) + Ch

1
2 ‖z‖H2(Kij),

where the bounding constant C is independent of h and Kij.
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Final proof of Lemma 3.2

Summing up the above three conclusions, we have

Nx∑
i=1

Ny∑
j=1

H`,θ`ij (U −Gθ1,θ2
h U, v)

=

Nx∑
i=1

Ny∑
j=1

E`ij(U, v)

=

Nx∑
i=1

Ny∑
j=1

E`ij
(

U − w, v
)

≤ C‖U − w‖H1(Ωh)‖v‖+ Ch‖U − w‖H2(Ωh)‖v‖,

for any w ∈ Pk+1(Ωh).
Now we can complete the proof by using the simple approximation
property.
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Convection diffusion equation

Consider the 1d linear constant convection diffusion equation

Ut + cUx = dUxx + f (x, t), (x, t) ∈ (0, 1)× (0,T], (38)

equipped with the periodic boundary condition. Here d ≥ 0 and
assume c ≥ 0 for simplicity.

Introduce the auxiliary variable P =
√

dUx, and U is called the prime
variable.

Consider the equivalent first-order system

∂U
∂t

+
∂hu

∂x
= f , P +

∂hp

∂x
= 0,

with the physical flux

(hu, hp) = (cU −
√

dP,−
√

dU).
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Semi-discrete LDG scheme

The semi-discrete scheme is defined in each element: find u and p in the
finite element space Vh, such that∫

Ii

∂u
∂t

vdx−
∫

Ii

hu
∂v
∂x

dx + (ĥuv−)i+ 1
2
− (ĥuv+)i− 1

2
=

∫
Ii

fvdx, (39a)∫
Ii

prdx−
∫

Ii

hp
∂r
∂x

dx + (ĥpr−)i+ 1
2
− (ĥpr+)i− 1

2
= 0, (39b)

hold for any i = 1, 2, . . . ,N and for any test function (v, r) ∈ Vh × Vh.

The generalized alternating numerical fluxes is defined as

(ĥu, ĥp) = (c{{u}}(θ) −
√

d{{p}}(γ̃),−
√

d{{u}}(γ)), (40)

where θ and γ are two given parameters.

Assume in addition θ ≥ 1
2 for upwind-biased.

γ = 1: the purely alternating numerical flux is used for diffusion.
θ = 1: the purely upwind flux is used for convection.
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Stability

Theorem 4.1 (stability)

The semi-discrete LDG scheme is stable in the L2-norm, namely

‖u(T)‖ ≤ ‖u(0)‖+

∫ T

0
‖f (t)‖dt. (41)

The proof is trivial and standard.
Note that the jumps of u and p do not provide for diffusion any stability
contribution.
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Proof of Theorem 4.1

Adding up two equations in (39) and summing them over all elements,
the LDG scheme (39) can be written in the form:∫

Ω

∂uh

∂t
vdx + Gh(u, p; v, r) =

∫
Ω

fvdx (42)

for any test function (v, r) ∈ Vh × Vh, where

Gh(u, p; v, r)

=

∫
Ω

prdx +

N∑
i=1

{
−cH(θ)

i (u, v) +
√

dH(θ̃)
i (p, v) +

√
dH(θ)

i (u, r)
} (43)

with the locally-defined functional for the given parameter α,

H(α)
i (w, z) =

∫
Ii

w
∂z
∂x

dx− {{w}}(α)

i+ 1
2
z−

i+ 1
2

+ {{w}}(α)

i− 1
2
z+

i− 1
2
. (44)
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Proof of Theorem 4.1

Using the negative semidefinite property and the skew-symmetric
property, we have the following identities:

Gh(u, p; u, p) = ‖p‖2 + c
(
θ − 1

2

)
‖[[uh]]‖2

Γh
. (45)

Taking the test function (v, r) = (u, p) in (42), and using (45) and
Cauchy–Schwarz inequality, we can easily get

1
2

d
dt
‖u‖2 ≤ ‖f‖‖u‖. (46)

The L2-norm stability (41) immediately follows by canceling ‖u‖ on both
sides and integrating the inequality with respect to the time.
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Error estimate

Theorem 4.2 (error estimate)

Assume u ∈ L∞(Hk+1) ∩ L2(Hk+2) and ∂u
∂t ∈ L2(Hk+1), then the LDG scheme

satisfies the optimal and uniform error estimate

‖u(T)− uh(T)‖ ≤ C(1 + T)
[
hk+1 +

√
c min

(√ch√
d
,

√
d√
ch
, 1
)
|γ − θ|hk+ 1

2

]
,

if the initial solution is good enough to ensure

‖U(0)− u(0)‖ ≤ Chk+1.

Here the bounding constant C > 0 is independent of mesh size h and the
reciprocal of the diffusion coefficient d.

A nice application of the GGR projection;
Do not adopt the dual technique or the elliptic projection.
Easily extended to 2d problem, by using the 2d GGR projection with the
modifications similar as below.
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Proof line

Denote the error with the decomposition

eu = u− u = (u− χu)− (u− χu) ≡ ηu − ξu, (47a)
ep = p− p = (p− χp)− (p− χp) ≡ ηp − ξp, (47b)

where χu and χp are the element in Vh.
The energy identity is given as∫

Ω

∂ξu

∂t
ξudx + Gh(ξu, ξp; ξu, ξp) =

∫
Ω

∂ηu

∂t
ξudx + Gh(ηu, ηp; ξu, ξp) (48)

where Gh(·, ·; ·, ·) are the LDG space discretization, and the left-hand side
satisfies the following inequality

LHS ≥ 1
2

d
dt
‖ξu‖2 + ‖ξp‖2 + c

(
θ − 1

2

) N∑
i=1

[[ξu]]2i+ 1
2
. (49)
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Proof line

The rest work is to establish the optimal boundedness for the right-hand
side of (48), with

Gh(ηu, ηp; v, r)

=

∫
Ω

ηprdx +

N∑
i=1

{
−cH(θ)

i (ηu, v) +
√

dH(γ̃)
i (ηp, v) +

√
dH(γ)

i (ηu, r)
}
.

(50)

Below we would like to adopt the GGR projection to simultaneously
eliminate the projection error in

H(α)
i (w, z) =

∫
Ii

w
∂z
∂x

dx− {{w}}(α)

i+ 1
2
z−

i+ 1
2

+ {{w}}(α)

i− 1
2
z+

i− 1
2
,

with w = ηu, ηp and α = θ, γ.
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Proof when parameters are the same

Let χu = GθhU and χp = Gθ̃hP. Since θ = γ, the GGR projection implies

H(θ)
i (ηu, ξu) = 0, H(θ̃)

i (ηp, ξu) = 0, H(θ)
i (ηu, ξp) = 0. (51)

Hence, due to the approximation property of GGR projection, we have

RHS =

∫
Ω

∂ηu

∂t
ξudx + Gh(ηu, ηp; ξu, ξp) =

∫
Ω

∂ηu

∂t
ξudx +

∫
Ω

ηpξpdx

≤ Chk+1
∥∥∥∥∂u
∂t

∥∥∥∥
Hk+1

‖ξu‖+ Chk+1‖p‖Hk+1‖ξp‖,

It follows from the energy equation (48) that

1
2

d
dt
‖ξu‖2 + ‖ξp‖2 + c

(
θ − 1

2

) N∑
i=1

[[ξu]]2i+ 1
2

≤ Chk+1
∥∥∥∥∂u
∂t

∥∥∥∥
Hk+1

‖ξu‖+ Chk+1‖p‖Hk+1‖ξp‖.

Application of the Gronwall’s inequality can complete the proof.
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Proof when parameters are not the same (cont.)

If θ 6= γ, the above treatment can not eliminate completely the projection
errors at the same time. For example, it follows from (51) that

H(γ)
i (ηu, ξp) 6= H(θ)

i (ηu, ξp) = 0.

Below we consider three treatments!

If we want to eliminate completely the boundary errors coming from the
diffusion part, we can define

ηu = U −Gγh U and ηp = P−Gγ̃h P,

Along the same line as before, we can obtain the error estimate

‖u(T)− u(T)‖ ≤ C(1 + T)
[
hk+1 +

√
c|γ − θ|hk+ 1

2

]
, (52)
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Proof when parameters are not the same (cont.)

If we want to eliminate completely the boundary errors coming from the
convection part, we can define

ηu = U −GθhU and ηp = P−Gθ̃hP.

Along the same analysis as before, we can easily see that the RHS of
error equation has a new term

N∑
i=1

√
d(γ − θ)([[ηp]][[ξu]]− [[ηu]][[ξp]])i+ 1

2
.

This term can be bounded by the stability and the approximation property,
with the help of Young’s inequality and the inverse inequality

N∑
i=1

[[ξp]]2i+ 1
2
≤ Ch−1‖ξp‖2.

An application of the Cauchy–Schwarz inequality and the Gronwall
inequality yields the error estimate

‖u(T)− u(T)‖ ≤ C(1 + T)
[
hk+1 +

√
d|γ − θ|hk

]
, (53)
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Proof when parameters are not the same (cont.)

A new GGR projection is needed!

Definition 3
For any vector-valued function z = (zu, zp) ∈ [C(Ω̄h)]2, define

Qθ,γh (zu, zp) = (Gγh zu,Gγ̃,?h zp) ∈ Vh × Vh, (54)

where
Gγh zu is the same as before, and

Gγ̃,?h zp depends on both zp and zu. For any i = 1, . . . ,N, there hold∫
Ii

(Gγ̃,?h zp)vdx =

∫
Ii

zpvdx, ∀v ∈ Pk−1(Ii), (55a)

{{Gγ̃,?h zp}}(γ̃)i+ 1
2
= {{z(γ̃)p }}i+ 1

2
− c√

d
(γ − θ)[[zu −Gγh zu]]i+ 1

2
. (55b)

Note that Gγ̃,?h zp = Gγ̃h zp if γ = θ.
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Proof when parameters are not the same

Similarly, we can derive the unique existence and

‖zp −Gγ̃,?h zp‖ ≤ Chk+1
(
‖zp‖Hk+1(Ωh) +

c√
d
|γ − θ| · ‖zu‖Hk+1(Ωh)

)
,

since zu −Gγh zu is already known to be of order hk+1.

In order that projection errors on the element boundaries are eliminated
completely and simultaneously, we define

ηu = U −Gγh U, ηp = P−Gγ̃,?h P,

which yields

Gh(ηu, ηp; ξu, ξp) =

∫
Ω

ηpξpdx.

Repeating the similar arguments as before, we can obtain

‖u(T)− u(T)‖ ≤ C(1 + T)

(
1 +

c√
d
|γ − θ|

)
hk+1. (56)

The proof is completed by (52), (53) and (56).
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Concluding remarks

Stability analysis and optimal error estimates in L2-norm are given in this
talk for the DG/LDG method.
The good stability comes from the numerical viscosity provided by the
square of jumps on the element interface.
In general, the strength of numerical viscosity is measured by

α(f̂ ; u−, u+) =


f ({{u}})− f̂ (u−, u+)

[[u]]
, [[u]] 6= 0,

1
2 |f
′({{u}})|, otherwise.

References about this issue:

Q. Zhang and C. -W. Shu, SINUM 42(2004), 641-666.

J. Luo, C. -W. Shu and Q. Zhang. ESAIM 49(2015), 991-1018
The GGR projection is good at obtaining the optimal error estimate.

Thanks for your attention!
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