Stability analysis and error estimates of
discontinuous Galerkin methods for linear

hyperbolic and convection-diffusion equations:
semi-discrete

Qiang Zhang
Department of Mathematics, Nanjing University

Lectures series on high-order numerical methods
July 27-28, 2020, USTC

qzh@nju.edu.cn DG/LDG method July 27-28, 2020, USTC



Background

@ The discontinuous Galerkin (DG) method is widely used to solve the
time-dependent hyperbolic equations:
e Proposed firstly for linear equation by Reed and Hill (1973);
@ Developed to nonlinear equation, by Cockburn and Shu (1989)

@ the numerical flux at element interfaces;
@ the explicit (TVD/SSP) Runge-Kutta time-marching;
@ the slope limiter . ..

It is named the RKDG method.

@ The local discontinuous Galerkin (LDG) method is widely-used to solve
those PDEs with high order derivatives:

o proposed firstly by Bassi and Rebay (1997) to solve the Navier-Stokes
equation;

e developed and firstly analyzed by Cockburn and Shu (1998) for convection
diffusion equations;

o extended to many PDEs with higher order derivatives: J. Yan(lowa State U),
Y. Xu (USTC), ...

@ Compared with wide applications, there is relatively less work on theory
analysis, even for simple model equation.
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Background

@ The semi-discrete DG method:
o local cell entropy inequality (1994), and hence the L2-norm of the numerical
solution does not increase v.s. time.
e optimal error estimate,
@ superconvergence analysis, and post-processing,
o

@ The fully-discrete RKDG method:
e total-variation-diminishing in the means, with the strong-stability-preserving
(SSP) time-marching;
o lower (time) order RKDG methods:

@ L2-norm stabilities for linear hyperbolic equation;

@ L2-norm error estimates for linear/nonlinear eqaution(s), with the sufficiently
smooth solution;

@ local analysis of L2-normerror estimates for the linear equation, when the initial
solution has a discontinuity.

e arbitrary order RKDG method for linear equation (reported in this talk):

@ L2-norm stability for arbitrary RKDG methods;
@ optimal error estimate and superconvergence analysis.
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@ Quick review on the DG method

9 The DG method: 1d hyperbolic equation

e The DG method: 2d hyperbolic equation

e The LDG method for convection-diffusion equation

e Concluding remarks
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@ Quick review on the DG method
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Semi-discrete DG method

Let us start from the 1d nonlinear hyperbolic equation

U +fU),=0, (x1)¢€(0,1)x(0,T], (1)

equipped with the periodic boundary condition. f: physical flux.

@ Let 7, = {I;}Y_, be the quasi-uniform partition, where A is the maximum
length of every element.

@ The discontinuous finite element space is defined as the piecewise
polynomials of degree at most k > 0, namely

V= {v:ve*(I),v|;, € PX(I),i=1,...,N}.

@ jump and average at the interface point:

pl=vt—v, {v}= %(v_ +vF).
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The semi-discrete DG method

[ \ 7 [ \

@ The semi-discrete DG method for the model equation is defined as
follows: find the map u: [0, T] — V;, such that

(ur,v) = H(u,v), Yvev, re(0,T], (2)
with the initial solution u(x, 0) € V.
@ Here (-, -) is the usual L? inner product, and the spatial DG discretization
H(u,v) = Z [/f(“)vxdx JFJ}(”;;”;:_%)[[V]]A% 3)
1<i<N |74

involves the numerical flux f(u—, u™).
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Numerical flux

@ Consistence: f(p,p) =f(p);
@ Lip. continuous with two arguments;
@ Stability demand:
e Monotone: f(1, )
[F(p) —Fu™,u)][u] >0, Vpeinter{u ,u"}.

This ensures the local entropy inequality and hence the L2-norm stability.
Example: Lax-Fredrichs flux

_ 1 _ 1
Fm ) = S +7wh)] - 5 Clal,

where C = max |f (u)|. R
e For linear case f(u) = Bu, the numerical flux f(u~,u™") is allowed to be

upwind-biased, namely
Fu™) = B{u}? = Blou” + (1 — O)u™],

where 3(6 — 1/2) > 0. In general, it is not an monotone flux.
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Contents in this talk

@ The model equations is simple:
e linear constant hyperbolic equation (and convection-diffusion equation);
e periodic boundary condition;
e the upwind-biased numerical flux (and generalized alternating numerical
flux);
o the linear scheme without any nonlinear treatments.

@ Stability analysis and error estimates (in L2-norm) by energy technique:
e semi-discrete DG/LDG method

property of DG discretization, GGR projection, multi-dimension, . ..

o fully discrete RKDG method

stability performance, temporal differences of stage solutions, matrix
transferring process, reference function at stage time, incomplete cor-
rection function technique, ...
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9 The DG method: 1d hyperbolic equation
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The semi-discrete DG method

Consider the 1d hyperbolic equation with nonzero constant 5

U+pU,=0, x€(0,1), re(0,T], (4)

equipped with the periodic boundary condition.

@ The DG method is defined as follows: find u: [0, 7] — V}, such that
(ur,v) = H(u,v), YveVv, te(0,T], (5)
with u(x,0) € V,, approximating the initial solution.

@ The spatial DG discretization is given in the form

H (u,v) = Z [/Iﬂuvxdx—l—ﬁﬁu}}fz)é[[v]]i% ) (6)

1<i<N

i

with the upwind-biased numerical flux, since 5(6 — 1/2) > 0.
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Properties of DG discretization (arbitrary «)

@ accurate skew-symmetric

H'"*(p, %) + H* (¥, ) = 0.

@ approximating skew-symmetric
N
H (W, 0) + H (0, 9) = =2 = 1) Y [0lip s [¥]is3-
i=1
@ negative semidefinite

HE (i, p) = 20471 Z[[ga}]l+l =— 204*1)”[[80]]”1“, <0.

@ boundedness in the finite element space

H (o, 9) < ME~ |l [[9].
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Stability analysis

The DG method is stable in L>-norm, namely

[u(@)]] < [u(0)]-

@ The proof is trivial.
@ Taking v = u in (6) and using the negative semidefinite property, we have

1d, ., 1 5
—— —(20 — <
5 el + 520 = DI}, <o,
which implies the above stability.

@ An additional stability mechanism is provided by the square of jumps,
which is better than the standard FEM.
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General framework of error estimate

@ Error splitting: let x be a reference function in V,, consider
e=u—U=¢—n,
where{ =u—xy e Vy,andn=U — x.
@ Estimate £ by n: for example, we can do it by using the error equation
(&) = HO(&v) = (n,,v) = H' (n,v), (7)

with the test function v = &.
@ The lower bound of LHS is usually given by the stability result.

e Sharply estimate RHS by introducing a suitable x, which is often defined as
a well-defined projection.

@ Applications of the Gronwall inequality and the triangular inequality.
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Quasi-optimal error estimate

Definition 1 (L2 projection)

Let w € L*(I) be any given function. The L? projection, denoted by P,w, is the
unique element in V;, such that

(w—Pw,v) =0, YveV, (8)

@ The projection is well-defined, and
@ there holds the approximation property

B wil + 2 B w e, < CHF [wller
@ Since Vj, is discontinuous finite element space, (8) is equal to
(w—Pw,v), =0, WwePXI), i=1,2,...,N.

Hence this projection is also called the local L* projection.
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Quasi-optimal error estimate

Assume that the initial solution U, € H*T'(I), then for any t € [0, T| we have

1U@1) — u()|| < Cl|Uplls1hH2,

with suitable setting of the initial solution (e.g., the L*> projection).

@ By the help of the enhanced stability mechanism and the definition of L2
projection, we can get from (7) that

1d 1
5 g lIEIP + 520 = DIENR, < NNl {n} @,

2 dt
1
<50 - DI, + Iy I, -
@ By the approximation property of L? projection, we can yield

€]l < 1161 + CllUolles 1. (9)

@ Noticing the initial setting, the triangular inequality ends the proof.
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Optimal error estimate?

@ However, the numerical experiments shows the optimal order. To obtain
the sharp error estimate, we have to introduce a better projection.
@ For6=0,1:

@ Interpolation on the Gauss-Radau points:

@ P. LESAINT AND P. A. RAVIART, Mathematical Aspects of finite
elements in PDEs, 89-145 (1974)
o Gauss-Radau projection:

[3 P. CASTILLO AND B. COCKBURN, Math. Comp., 71, 455-478 (2002)

@ For general value of 4, the Generalized Gauss-Radau (GGR) projection is
introduced.

[3 J.L.Bonaand e.t.c., Math. Comp., 82, 1401-1432 (2013)

@ H. L. Liu and N. Polymaklam, Numer. Math., 129, 321-351 (2015)

@ X. Meng, C. -W. Shu and B. Y. Wu, Math. Comp., 85, 1225-1261 (2016)
@ Y. Cheng, X. Meng and Q. Zhang, Math. Comp., 86, 1233-1267 (2017)
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1d GGR projection

Definition 2 (1d GGR)

Assume that 6 = 1/2. For any given periodic function w € H'(1,), the GGR
projection, denoted by Gw, is the unique element in V;, such that

(G tw,v), =0, W e PH(1); (6w, =0,
2

fori=1,2,...,N. Here (G¢)*w = w — G/w is the projection error.

@ In general, the GGR projection is globally defined.

The 1d GGR projection is well-defined, and satisfies

I(GH) 2ll + 42, (G zlle, < Cllllepa k. (10)

@ Prove it later.
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Application of GGR projection

Assume that the initial solution Uy € H**2(I), then for any t € [0, T] we have

1U(5) = u(®)ll < Cl|Uoles2h ",

with suitable setting of the initial solution (e.g., the L>/GGR projection).

@ The 1d GGR projection implies for any v € V,,,

Ho (n,v) = /ﬁnvxderﬂﬁn}}(a) Dis| =

1<i<N |:

@ |t follows from (7) and Lemma 2.1 that

i&lléll2 DIENR, = (e, €) < lIElllmnl < CHFHIEN Ul

@ Integration and application the triangular inequality end the proof.
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Proof of Lemma 2.1

@ Let E = GYz — Pyz, where P,z € Vj, is the local L2-projection.

@ Show below that E € V), exists uniquely and satisfies

3 min s
IEl| 20,y + h2 | Ell 2,y < CARRG+LsHD) 2

HH(Q)- (11)
@ These purposes can be achieved by direct manipulations through a linear
system, since

/Evdsz, weP=NL), i=1,...,N, (12a)
I;

i

(e}, = fz—Puc} =bi, i=1,....N, (12b)
2 2

where b; is the projection error resulting from the L2-projection.
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Proof of Lemma 2.1

@ Due to the orthogonality of the rescaled Legendre polynomials, it is easy

to see from (12a) that
E(x) = ai,kLi7k(x) = ()é,‘7kzk(5c),

in the element 1;, where x = 2(x — x;)/h; € [-1,1] and

2(x —x,-))

i

Li(%).

Li(x) = Zl(

Here I,(%) is the standard Legendre polynomial in [—1, 1] of degree /.

@ Since L;(£1) = (1), it follows from (12b) that

90&1'7k+§(71)k04i+17k:bi, l: 17 ,N (13)

Note that ay4ix = o1, and 0=1-—0.

21/58
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Proof of Lemma 2.1

@ The unknowns ay = (ajx, @24, ---,ayk) ' can be determined from the
following linear algebra system

Andly = by, (14)

where by = (b, bs, ...,by)T and

0 0
9 0

Ay

|
—

—

S
Z

@ ltis easy to work out that
det(Ay) =0V (1 —¢V) #£0, with ¢ = (=1)¥19/6 # 1.

Hence E and G{z is determined uniquely.
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Proof of Lemma 2.1

@ Easy to see that Ay is a circulant matrix with the (i,)-th entry

1y 1 mod(j—i,N)
(AN )l]_ H(I*CN)Q- 0

@ Both the row-norm and the column-norm satisfy

N P
BT =& TT—I¢ll =~ Tel — 11T

hence the spectral norm is bounded above by

1A% T = A7 oo <

_ g = 1
AN T3 < 1A T IIAY e < o

(1—1ch>

@ Note that this inequality holds independently of the element number N.

(16)
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Proof of Lemma 2.1

@ Owing to the approximation property of L2-projection, we have

a3 = A Buli3 < AR 13 1Bw13

r min s — (17)
< Cllbwl3 < Cllz = mazlF, < CR™ DTN ZR 0 00)-
@ Finally, noticing the simple facts
11l ) = Za,knL,k )z, 2k < Chllaylz,  (18a)
IENZr,) = Za e = llanl, (18b)

as well as (17), we can obtain (11) and finish the proof.
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Remarks for 6 = 1/2

@ Actually, # = 1/2 can be also used in the semi-discrete DG method.

@ In general, the convergence order is k.

@ However, the convergence order can achieve k + 1 if the mesh is uniform
and the degree & is even.

@ It can be proved by the super-convergence attribution of mesh construction
and the L* projection.
@ Also by using the GGR projection in some sense.

@ However, when directly taking # = 1/2 in Definition 2, the GGR projection
uniquely exists only if
o the degree k is even , and
o the number of elements is odd.
Hence, the GGR projection for § = 1/2 is defined to be the L? projection,
namely

1
Gﬁ w = Phw.
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e The DG method: 2d hyperbolic equation
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Discontinuous finite element space

Consider the 2d linear constant hyperbolic equation

Ul +/81Ux +62Uy - Oa (x7y7t) S (Oa 1)2 X (07 T]v (19)

equipped with the periodic boundary condition.

i=1,...,

o LetQ,=1,xJ,= {K,-j}ﬂzlv___xi denote a quasi-uniform tessellation with
the rectangular element

Kij=1 xJj= (xi—%’xwr%) . (yj,%,yH%),

Of the |ength hf = xi+1/2 - )Ci_]/z and the width h]y = )’j+l/2 - yj—1/2'
@ The associated finite element space is defined as

Vi =V = {v e LX(Q) : vk € QX(K;), YKy € Q) (20)

where O%(K;;) denotes the space of polynomials on K; of degree at most
k > 0 in each variable.
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Notations of averages and jumps

@ Similar to the one-dimensional case, we use

V]iv1/2y = v;:—l/Z,y ~Viti/2y Dlejri2 = V;:,‘+1/2 ~ V12 (21)
to denote the jumps on vertical and horizontal edges, where

a8 _ . a8 _ .
Vi = im ) v = i )
T2 i+
are the traces along two different directions.
@ The weighted averages on vertical and horizontal edges are respectively

denoted by
Oy _ = N+ 0 = 0t
{{v}i+%,y = 91Vi+%’y—|—91\/i+%’y, {{v}}xﬁ% —92VXJ+% +92VXJ+%, (22)

with the given parameters 6, and 6,.
@ Here and below denote 9~1 =1-6;, and 9~2 =1-0,.
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The semi-discrete DG method

@ Similarly, the semi-discrete DG method is defined as follows: find the
map u: [0,T] — V, such that

(ur,v) =H(u,v), YveV, re(0,T], (23)

with u(x,y,0) € V, approximating the initial solution.
@ The spatial DG discretization in 2d case is given in the form

H(u,v) = H"O (u,v) + H>% (u,v),
with the DG discretization in two directions

/Hlel (u, v) Z Z [/ Bluvxdxdy—i—/ﬁl‘{{bl}”r ¥ vﬂz+2ydy]

1<i<N, 1<j<Ny

7_[292 (u,v) Z Z [/I< 52MVdedy+/6z{u}x92 ﬂv XJ+IM]

1<i<N, 1<j<N,

@ Here §,.(6, — 1/2) > 0 is demanded for x = 1, 2.
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Optimal error estimate

Theorem 3.1 (multi-dimension)

Assume that the initial solution Uy € H**2(2) N C(Q), then for any t € [0, T] we
have

1U@) = u(®)|| < C||Uolles2h,
with suitable setting of the initial solution (e.g., the L>/GGR projection).

@ This theorem can be proved by applying two-dimensional GGR projection
Gy =Xl @ Y, (24)

where X?' and Y?* are one-dimensional GGR projections, corresponding
the x- and y- direction respectively.

@ The detailed definitions of 2d GGR projection depend on the values of
parameters, denoted by ~; and +, below.

@ For given function z, denote the GGR projection error by n = z — G "z.
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Detailed definition (I)

@ v # 1/2and v, # 1/2: Let z € H>(€,) be a given periodic function, there
holds for all i and j that

/ nvdxdy =0, Wy e Q(Ky), (25a)

/ by iy =0, W e P, (250)

/, Tl v =0, W e P, (25¢)
Y1572

T =0, (25d)

with the weighted average at the corner point of element

M2 =y ™" + T + et + it

@ This projection is firstly proposed and discussed in
@ X. MENG, C. -W. SHU AND B. Y. Wu, Math. Comp., 85, 1225-1261 (2016)
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Detailed definition (ll)

@ v # 1/2and v, = 1/2: Let z € H,(2). There holds for all i and j that
/ pdrdy =0, Vv e P (1) ® PHI), (26a)
/ Dl vay =0, W e P, (26b)
=1/2 and v, # 1/2: Let z € Hi(Q2,). There holds
/ nvdxdy =0, Wve PHI) @ P, (27a)
/ T} vax =0, W e P, (27b)

@ The above two projections have been proposed for v, =, = 1 in

@ B. DONG AND C. -W. SHu, SINUM 47, 3240-3268(2009)
@ 7, =1, = 1/2: we define it to be the 2d L-projection.
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Properties of 2d GGR projection

@ As 1d case, we also have the optimal approximation result

Lemma 3.1 (Approximation property of 2d case)

For any ~, and -,, the 2d GGR projection is well-defined, and

IGR) wil + A2 () Wlln, < Clwllie ikt (28)

e The proof line is very similar as that for the 1d case.
e Discuss each term on the RHS of the following decomposition

through the matrix analysis.

@ However, the 2d GGR projection can not completely eliminate the errors
emerged in the interior or on the boundary of every element.
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Superconvergence property

@ Fortunately, there holds the following superconvergence property.

Lemma 3.2 (A, # 1/2 and 6, # 1/2)

Let¢ = 1,2 and U € H*%(,) N C(Q). For any v € V,, there holds

N, Ny
SN H (U -Gptuy)

i=1 j=1

< CHH U v IV

on the quasi-uniform Cartesian mesh, where (for example)

0z =
" (w,2) = /K W, rdy = / {(ng’yz Jivdy ~ <W6hy2+)"—%7y} dy.

ij ‘]l

@ By this result, it is easy to prove Theorem 3.1.
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Proof of Lemma 3.2

@ Main points:
@ New representation of LHS

o Kernel space of new representation

e Rough boundedness
@ More clear statements are given in this talk.

@ References:
@ P. CASTILLO AND B. COCKBURN, Math. Comp., 71, 455-478 (2002)

@ X. MENG, C. -W. SHU AND B. Y. Wu, Math. Comp., 85, 1225-1261 (2016)
@ Y. CHENG, X. MENG AND Q. ZHANG, Math. Comp., 86, 1233-1267 (2017)

@ For notational simplicity, below we denote

Gy* =Gy Gi' =X, GP=Y,.
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Step1: new representation of LHS

Proposition 3.1
If the function U is continuous everywhere, then

> x,0,
{GUYY, = Yallnpy, ), AGWUR, = XuU(yppy).

@ Take the edge x = x,;1/, as an example. Two items of the 2d GGR
projection imply for Vj that

/j{GhU}}?jr’;yvdyz /U(xi+%,-)vdy, W e P,

Jj
61,0 _
{GaU ey = Uitins-
@ The 1d GGR projection implies for any j that
/ YhU(xi-i-%v )de = U(xi+%7 ')Vd))7 Vv e Pk_l (‘]J)7
Jj Jj
0
{YhU(xi-&-%v')}}?Jr;jJr% = Ui+%,j+%'

@ The uniqueness of 1d GGR projection yields the first conclusion.
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Step 1: new representation of LHS

@ Hence, for any continuous function U, we have

1 (G UL )
= / Cir vadxdy—/(YﬁUV‘)i+%7ydy+/(Y,va+)i_%7ydy
' y g (29)
= / Ghlvadxdy—/(YﬁU‘v‘)Hlydy—k/(Yh Uty +),,Lydy
K; J a J
— cl
:gij(U7v)7

and similarly have
(G U,v)
- / G- vadxdy—/(X#U—v—)mldx+/(x,fU+v+)xJ,ldx (30)
Ky I 2 I 2

—_ o2

@ Extent the above representations to broken Sobolev space.
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Step 2: kernel space of new representation

Proposition 3.2
Note that Q;, = I, x J,. For any w € P*t1(Q,), there holds

Efw,v) =0, We Vv, =k (31)

@ Start the proof from the special function
w = p(x)q(y),
where p(x) € H'(I;) and g(y) € H'(J,,). The definitions imply that
Giw(x,y) = Xup(x) - Yiq(y). (32)
@ Furthermore, it is easy to see have

Xpw(x, y®) = Xpp(x) - g0F), (33a)
Yyw(®,y) = p(x¥) - Yirq(y). (33b)
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Step 2: kernel space of new representation

@ Now additionally assume g(y) € P*(J,). Then (32) implies
Girw = X p(x) - q(y)- (34)

@ It follows from (33b) that Y,,Lw(xf;m,y) = 0. Together with (34), we have

&l

,j(W,V) = 07 Vv € Vh~ (35)
since three terms are all equal to zero.

@ An application of integration by part along y-direction, together with (34)
and (33a), yield

Gouw) = = [ KipWa (e dedy, WeVi (30

i
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Step 2: kernel space of new representation

@ ltis easy to see that (31) holds for any w € 9%(€2,), and hence we just
need to verify it for two kinds of functions

w=Lir1(0)lk, w =Ly (v)lk,
where K = K goes through all elements.
@ Take the first type as an example. It is easy to see that
w(x,y) = p(x)q(y),
with the separation
p(x) = Ly x41(x)1;, € H! (), qby) = 1, € Pk(Jh).
As a result, we can get (31) by using (35) and (36).

@ Now we can compete the proof of Proposition 3.2.
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Step 3: rough boundedness

@ Assume z € H'(Q,).

@ Using the inverse inequality and the approximations of GGR projections,
and we have

Ny N)
YD Eizv) < Chllzllm o V¥l + Chllz* )

i=1 j=1

V| Ty

(37)
< Cllzllm @ VIl + Chllzllmz @) IVII-
@ Here we have used the trace inequality in each element
1
12l (ox;) < CIIZIIHI(K IIZIIW(K) < Ch 3|zl k) + CR2 2l k)

where the bounding constant C is independent of 7 and Kj;.
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Final proof of Lemma 3.2

@ Summing up the above three conclusions, we have

22%“’[ U-G*u,v)

i=1 j=l1

Ny Ny
-3 e
=l =i

=

x Y

éé’g(U—w,v)

L
< C|U = wlla o, VIl + CRIU — wllm2 gy

I

vl

for any w € PA1(€Q,).

@ Now we can complete the proof by using the simple approximation
property.
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e The LDG method for convection-diffusion equation
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Convection diffusion equation

Consider the 1d linear constant convection diffusion equation
(0,1) x (0,7],  (38)

(x,1) €

U+ cUy = dUy + f(x, 1),
equipped with the periodic boundary condition. Here d > 0 and
assume ¢ > 0 for simplicity.

@ Introduce the auxiliary variable P = \/dU,, and U is called the prime

variable.
@ Consider the equivalent first-order system

ou  oh, Oh,

T Pt =0
with the physical flux

Vdu).

(huy By) = (cU — VdP, —
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Semi-discrete LDG scheme

@ The semi-discrete scheme is defined in each element: find u and p in the
finite element space Vj, such that

d_x /I’l 7dx+ h A% )i %_ (/:Luv+),~_% = /ﬁ}dx7 (39a)
I;
/ prs— [ g+ i)y = )iy = (39b)
I I;

hold for any i = 1,2, ..., N and for any test function (v,r) € Vj, x V.

@ The generalized alternating numerical fluxes is defined as

(hus hp) = (c{u}® — Vafp}D, —Vagup®), (40)
where 6 and ~ are two given parameters.

@ Assume in addition ¢ > 1 for upwind-biased.

e ~ = 1: the purely alternating numerical flux is used for diffusion.
e 0 = 1: the purely upwind flux is used for convection.

qzh@nju.edu.cn DG/LDG method July 27-28, 2020, USTC 45/58



Stability

Theorem 4.1 (stability)

The semi-discrete LDG scheme is stable in the L>-norm, namely

T
(T < [lu(0)]] +/0 7 (2)|dz. (41)

@ The proof is trivial and standard.

@ Note that the jumps of u and p do not provide for diffusion any stability
contribution.
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Proof of Theorem 4.1

@ Adding up two equations in (39) and summing them over all elements,
the LDG scheme (39) can be written in the form:

8uh

o —vdx + Gj,(u, p; v, r) /fvdx (42)

for any test function (v, r) € v, x V,,, where

Gy(u,p;v,r)
) o) (43)
/prdx+Z{ (u,v) + VaH;” (p,v) + VdH; (u,r)}
with the locally-defined functional for the given parameter «,
HE (w,2) /wa S U TR ETE () T AT
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Proof of Theorem 4.1

@ Using the negative semidefinite property and the skew-symmetric
property, we have the following identities:

G(w 3 ,p) = ol + (6 — ) Nl (45)

@ Taking the test function (v, r) = (u,p) in (42), and using (45) and
Cauchy—Schwarz inequality, we can easily get

1d,
—— < . 4
5 lull> < Il (46)
@ The L2-norm stability (41) immediately follows by canceling ||«| on both
sides and integrating the inequality with respect to the time.
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Error estimate

Theorem 4.2 (error estimate)

Assume u € L= (H**') N L*(H**?) and 2 € L*(H**"), then the LDG scheme
satisfies the optimal and uniform error estimate

Veh Vd

|lu(T) — un(T)|| < C(1 +T)[hk+l+\fmn<f T )|7_9\h’<+%]’

if the initial solution is good enough to ensure
1U(0) — u(0)| < CH*.

Here the bounding constant C > 0 is independent of mesh size h and the
reciprocal of the diffusion coefficient d.

@ A nice application of the GGR projection;
@ Do not adopt the dual technique or the elliptic projection.

@ Easily extended to 2d problem, by using the 2d GGR projection with the
modifications similar as below.
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@ Denote the error with the decomposition

ew=u—u=—xXu)— (U= Xu) = — & (47a)
e=p—-pP=P—Xp)—P—Xp) =1 — &, (47b)
where x, and yx, are the element in Vj,.
@ The energy identity is given as

&, oy
f gudx+Gh(£ua§p7§u7€p) Tl é.udx+ Gh(nuanp7£ua§p) (48)
where G, (-, -; -, -) are the LDG space discretization, and the left-hand side
satisfies the following inequality
N
2 2 _
LHS > 2 il + |1 + (0 ); 3 (49)
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@ The rest work is to establish the optimal boundedness for the right-hand
side of (48), with

G (s ps v, 1)

N ~ 50
= / mprde + ) {*CH,@ (s v) + VAH (1, v) + VaH (i, r)} 00
Q2 i=1

@ Below we would like to adopt the GGR projection to simultaneously
eliminate the projection error in

2 5

@)= [ wPde— Tpn @ -
MO0 = [witde— b5l + 005

with w =n,, 1, and a = 6, 7.
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Proof when parameters are the same

@ Lety,=GjUand x, = G,‘ZP. Since 6 = v, the GGR projection implies

Hi(e)(nuafu) = 0, Hz(a)(nﬁagu) = 0’ Hi(a)(nll?g[’) =0. (51)
@ Hence, due to the approximation property of GGR projection, we have

ony
q Ot

on,
RHS = | SEedst Gl it dy) = [ Fatr+ [ mpgar
Q Q

ou

< Chk+1
- ot

l€all + CHFp s 16

HK

@ It follows from the energy equation (48) that

N
1d 1
sTlal + 1612 +c(0 - 5) Ylal,
i=1
Ou
< OIS+ O pllmaa 11
Hk+l

@ Application of the Gronwall’s inequality can complete the proof.
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Proof when parameters are not the same (cont.)

@ If 6 £ +, the above treatment can not eliminate completely the projection
errors at the same time. For example, it follows from (51) that

[
H (,65) # H (1,6) = 0.
@ Below we consider three treatments!

@ If we want to eliminate completely the boundary errors coming from the
diffusion part, we can define

m=U—-G)U and 7,=P—G]P,
Along the same line as before, we can obtain the error estimate

() = w(T)| < CC1 +T) [+ + vely — o+ (52)
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Proof when parameters are not the same (cont.)

@ If we want to eliminate completely the boundary errors coming from the
convection part, we can define

77u=U—GfU and UPZP—GEP

@ Along the same analysis as before, we can easily see that the RHS of
error equation has a new term

> Vd(y = 0)([m)lEd — Il [&D)is s

@ This term can be bounded by the stability and the approximation property,
with the help of Young’s inequality and the inverse inequality

N
D I <crllg ).
i=1

@ An application of the Cauchy—Schwarz inequality and the Gronwall
inequality yields the error estimate

lu(T) = w(T)]| < €O +T) [#+! +Vly — 0l , (53)
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Proof when parameters are not the same (cont.)

@ A new GGR projection is needed!

Definition 3

For any vector-valued function z = (z,, z,) € [C(Q4)]?, define

Q7 (2, 2p) = (G240, G 2p) € Vi X Vi, (54)

where
@ Gz, is the same as before, and

° GZ’*z,, depends on both z, and z,. Forany i =1, ..., N, there hold

/ (GT*2,)vdx = / Lvdx, W e P(I), (55a)
I I

(55b)

= P~ = @ ~
{{GZ’*Z,,}}E_:)% = {{Zl(;')},q.% - Td(”f — Oz — Gz s

o Note that G)*z, = Gz, if v = 0.
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Proof when parameters are not the same

@ Similarly, we can derive the unique existence and

c

||Zp - GZ7*ZPH < Ch*t! <||Zka+l(Q,,) + \/;Zh —-0|- |Zu||H"+1(Q;,)> )

since z, — Gz, is already known to be of order #**!.

@ In order that projection errors on the element boundaries are eliminated
completely and simultaneously, we define

=U-G)U, 1,=P—G]*P,
which yields
Gh(nm Tlps & fp) = /angpdx-

@ Repeating the similar arguments as before, we can obtain

() — u(T)]| < C(1 + T <1+\;3|7—9|>h’““~ (56)

@ The proof is completed by (52), (53) and (56).
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e Concluding remarks
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Concluding remarks

@ Stability analysis and optimal error estimates in L>-norm are given in this
talk for the DG/LDG method.

@ The good stability comes from the numerical viscosity provided by the
square of jumps on the element interface.

@ In general, the strength of numerical viscosity is measured by

ul}) — fu=,ut
N 25 G

sIF (Kb, otherwise.

References about this issue:
@ Q. Zhang and C. -W. Shu, SINUM 42(2004), 641-666.

[§ J. Luo, C. -W. Shu and Q. Zhang. ESAIM 49(2015), 991-1018
@ The GGR projection is good at obtaining the optimal error estimate.

Thanks for your attention!
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