Stability analysis and error estimates of discontinuous Galerkin methods for linear hyperbolic and convection-diffusion equations: semi-discrete

Qiang Zhang

Department of Mathematics, Nanjing University

Lectures series on high-order numerical methods July 27-28, 2020, USTC

Background

- The discontinuous Galerkin (DG) method is widely used to solve the time-dependent hyperbolic equations:
 - Proposed firstly for linear equation by Reed and Hill (1973);
 - Developed to nonlinear equation, by Cockburn and Shu (1989)
 - the numerical flux at element interfaces;
 - the explicit (TVD/SSP) Runge-Kutta time-marching;
 - the slope limiter ...

It is named the RKDG method.

- The local discontinuous Galerkin (LDG) method is widely-used to solve those PDEs with high order derivatives:
 - proposed firstly by Bassi and Rebay (1997) to solve the Navier-Stokes equation;
 - developed and firstly analyzed by Cockburn and Shu (1998) for convection diffusion equations;
 - extended to many PDEs with higher order derivatives: J. Yan(Iowa State U), Y. Xu (USTC), ...
- Compared with wide applications, there is relatively less work on theory analysis, even for simple model equation.

Background

- The semi-discrete DG method:
 - local cell entropy inequality (1994), and hence the L²-norm of the numerical solution does not increase v.s. time.
 - optimal error estimate,
 - superconvergence analysis, and post-processing,
 - ...
- The fully-discrete RKDG method:
 - total-variation-diminishing in the means, with the strong-stability-preserving (SSP) time-marching;
 - lower (time) order RKDG methods:
 - L²-norm stabilities for linear hyperbolic equation;
 - L²-norm error estimates for linear/nonlinear eqaution(s), with the sufficiently smooth solution;
 - local analysis of L²-normerror estimates for the linear equation, when the initial solution has a discontinuity.
 - arbitrary order RKDG method for linear equation (reported in this talk):
 - L²-norm stability for arbitrary RKDG methods;
 - optimal error estimate and superconvergence analysis.

• ...

Quick review on the DG method

- 2 The DG method: 1d hyperbolic equation
- The DG method: 2d hyperbolic equation
- 4 The LDG method for convection-diffusion equation
- 5 Concluding remarks

Outline

Quick review on the DG method

- 2 The DG method: 1d hyperbolic equation
- 3) The DG method: 2d hyperbolic equation
- 4 The LDG method for convection-diffusion equation
- 5 Concluding remarks

Let us start from the 1d nonlinear hyperbolic equation

$$U_t + f(U)_x = 0, \quad (x,t) \in (0,1) \times (0,T],$$
(1)

equipped with the periodic boundary condition. f: physical flux.

- Let $I_h = \{I_i\}_{i=1}^N$ be the quasi-uniform partition, where *h* is the maximum length of every element.
- The discontinuous finite element space is defined as the piecewise polynomials of degree at most *k* ≥ 0, namely

$$V_h = \{v \colon v \in L^2(I), v|_{I_i} \in \mathcal{P}^k(I_i), i = 1, \dots, N\}.$$

• jump and average at the interface point:

$$\llbracket v \rrbracket = v^+ - v^-, \quad \{\!\!\{v\}\!\!\} = \frac{1}{2}(v^- + v^+).$$

The semi-discrete DG method

 The semi-discrete DG method for the model equation is defined as follows: find the map *u*: [0, *T*] → *V_h* such that

$$(u_t, v) = \mathcal{H}(u, v), \quad \forall v \in V_h, \quad t \in (0, T],$$
 (2)

with the initial solution $u(x, 0) \in V_h$.

 $\bullet\,$ Here (\cdot,\cdot) is the usual L^2 inner product, and the spatial DG discretization

$$\mathcal{H}(u,v) = \sum_{1 \le i \le N} \left[\int_{I_j} f(u) v_x \, \mathrm{d}x + \hat{f}(u_{i+\frac{1}{2}}^-, u_{i+\frac{1}{2}}^+) \llbracket v \rrbracket_{i+\frac{1}{2}} \right]$$
(3)

involves the numerical flux $\hat{f}(u^-, u^+)$.

Numerical flux

- Consistence: $\hat{f}(p,p) = f(p)$;
- Lip. continuous with two arguments;
- Stability demand:
 - Monotone: $\hat{f}(\uparrow,\downarrow)$

$$[f(p) - \hat{f}(u^{-}, u^{+})][[u]] \ge 0, \quad \forall p \in \operatorname{inter}\{u^{-}, u^{+}\}.$$

This ensures the local entropy inequality and hence the $\mathsf{L}^2\text{-norm}$ stability. Example: Lax-Fredrichs flux

$$\hat{f}(u^{-}, u^{+}) = \frac{1}{2}[f(u^{-}) + f(u^{+})] - \frac{1}{2}C[[u]],$$

where $C = \max |f'(u)|$.

• For linear case $f(u) = \beta u$, the numerical flux $\hat{f}(u^-, u^+)$ is allowed to be upwind-biased, namely

$$\hat{f}(u^{-}, u^{+}) = \beta \{\!\!\{u\}\!\!\}^{(\theta)} = \beta [\theta u^{-} + (1 - \theta)u^{+}],$$

where $\beta(\theta - 1/2) > 0$. In general, it is not an monotone flux.

Contents in this talk

- The model equations is simple:
 - linear constant hyperbolic equation (and convection-diffusion equation);
 - periodic boundary condition;
 - the upwind-biased numerical flux (and generalized alternating numerical flux);
 - the linear scheme without any nonlinear treatments.
- Stability analysis and error estimates (in L²-norm) by energy technique:
 - semi-discrete DG/LDG method

property of DG discretization, GGR projection, multi-dimension, ...

fully discrete RKDG method

stability performance, temporal differences of stage solutions, matrix transferring process, reference function at stage time, incomplete correction function technique, ...

Quick review on the DG method

- 2 The DG method: 1d hyperbolic equation
 - 3) The DG method: 2d hyperbolic equation
- 4 The LDG method for convection-diffusion equation
- 5 Concluding remarks

Consider the 1d hyperbolic equation with nonzero constant β

$$U_t + \beta U_x = 0, \quad x \in (0, 1), \quad t \in (0, T],$$
 (4)

equipped with the periodic boundary condition.

• The DG method is defined as follows: find *u*: [0, *T*] → *V_h* such that

$$(u_t, v) = \mathcal{H}^{\theta}(u, v), \quad \forall v \in V_h, \quad t \in (0, T],$$
(5)

with $u(x, 0) \in V_h$ approximating the initial solution.

The spatial DG discretization is given in the form

$$\mathcal{H}^{\theta}(u,v) = \sum_{1 \le i \le N} \left[\int_{I_i} \beta u v_x \, \mathrm{d}x + \beta \{\!\!\{u\}\!\}_{i+\frac{1}{2}}^{(\theta)} \llbracket v \rrbracket_{i+\frac{1}{2}} \right],\tag{6}$$

with the upwind-biased numerical flux, since $\beta(\theta - 1/2) > 0$.

Properties of DG discretization (arbitrary α)

accurate skew-symmetric

$$\mathcal{H}^{1-\alpha}(\varphi,\psi) + \mathcal{H}^{\alpha}(\psi,\varphi) = 0.$$

approximating skew-symmetric

$$\mathcal{H}^{\alpha}(\psi,\varphi) + \mathcal{H}^{\alpha}(\varphi,\psi) = -(2\alpha - 1)\sum_{i=1}^{N} \llbracket \varphi \rrbracket_{i+\frac{1}{2}} \llbracket \psi \rrbracket_{i+\frac{1}{2}}.$$

negative semidefinite

$$\mathcal{H}^{\alpha}(\varphi,\varphi) = -\frac{1}{2}(2\alpha - 1)\sum_{i=1}^{N} \llbracket \varphi \rrbracket_{i+\frac{1}{2}}^{2} = -\frac{1}{2}(2\alpha - 1) \llbracket \llbracket \varphi \rrbracket \rVert_{\Gamma_{h}}^{2} \leq 0.$$

boundedness in the finite element space

$$\mathcal{H}^{\alpha}(\varphi,\psi) \leq Mh^{-1} \|\varphi\| \|\psi\|.$$

Theorem 2.1

The DG method is stable in L²-norm, namely

 $||u(t)|| \le ||u(0)||.$

- The proof is trivial.
- Taking v = u in (6) and using the negative semidefinite property, we have

$$\frac{1}{2}\frac{d}{dt}\|u\|^2 + \frac{1}{2}(2\theta - 1)\|[\![u]\!]\|_{\Gamma_h}^2 \le 0,$$

which implies the above stability.

• An additional stability mechanism is provided by the square of jumps, which is better than the standard FEM.

General framework of error estimate

Error splitting: let χ be a reference function in V_h, consider

$$e = u - U = \xi - \eta,$$

where $\xi = u - \chi \in V_h$ and $\eta = U - \chi$.

• Estimate ξ by η : for example, we can do it by using the error equation

$$(\xi_t, v) - \mathcal{H}^{\theta}(\xi, v) = (\eta_t, v) - \mathcal{H}^{\theta}(\eta, v),$$
(7)

with the test function $v = \xi$.

- The lower bound of LHS is usually given by the stability result.
- Sharply estimate RHS by introducing a suitable χ , which is often defined as a well-defined projection.
- Applications of the Gronwall inequality and the triangular inequality.

Definition 1 (L² projection)

Let $w \in L^2(I)$ be any given function. The L² projection, denoted by $\mathbb{P}_h w$, is the unique element in V_h such that

$$(w - \mathbb{P}_h w, v) = 0, \quad \forall v \in V_h.$$

- The projection is well-defined, and
- there holds the approximation property

$$\|\mathbb{P}_{h}^{\perp}w\| + h^{\frac{1}{2}}\|\mathbb{P}_{h}^{\perp}w^{\pm}\|_{\Gamma_{h}} \leq Ch^{k+1}\|w\|_{k+1}.$$

• Since V_h is discontinuous finite element space, (8) is equal to

$$(w - \mathbb{P}_h w, v)_{I_i} = 0, \quad \forall v \in \mathcal{P}^k(I_i), \quad i = 1, 2, \dots, N.$$

Hence this projection is also called the local L² projection.

(8)

Quasi-optimal error estimate

Theorem 2.2

Assume that the initial solution $U_0 \in H^{k+1}(I)$, then for any $t \in [0,T]$ we have

$$|U(t) - u(t)|| \le C ||U_0||_{k+1} h^{k+\frac{1}{2}},$$

with suitable setting of the initial solution (e.g., the L^2 projection).

 By the help of the enhanced stability mechanism and the definition of L² projection, we can get from (7) that

$$\begin{split} \frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \|\xi\|^2 &+ \frac{1}{2} (2\theta - 1) \| \llbracket \xi \rrbracket \|_{\Gamma_h}^2 \leq \| \llbracket \xi \rrbracket \|_{\Gamma_h} \| \{\!\!\{\eta\}\!\}^{(\theta)} \|_{\Gamma_h} \\ &\leq \frac{1}{2} (2\theta - 1) \| \llbracket \xi \rrbracket \|_{\Gamma_h}^2 + C \| \{\!\!\{\eta\}\!\}^{(\theta)} \|_{\Gamma_h}^2. \end{split}$$

• By the approximation property of L² projection, we can yield

$$\|\xi\| \le \|\xi(0)\| + C\|U_0\|_{k+1}h^{k+\frac{1}{2}}.$$
(9)

Noticing the initial setting, the triangular inequality ends the proof.

Optimal error estimate?

- However, the numerical experiments shows the optimal order. To obtain the sharp error estimate, we have to introduce a better projection.
- For $\theta = 0, 1$:
 - Interpolation on the Gauss-Radau points:
 - P. LESAINT AND P. A. RAVIART, Mathematical Aspects of finite elements in PDEs, 89-145 (1974)
 - Gauss-Radau projection:

Р. CASTILLO AND B. COCKBURN, Math. Comp., 71, 455-478 (2002)

- For general value of θ, the Generalized Gauss-Radau (GGR) projection is introduced.
 - J. L. Bona and e.t.c., Math. Comp., **82**, 1401-1432 (2013)
 - H. L. Liu and N. Polymaklam, Numer. Math., **129**, 321-351 (2015)
 - X. Meng, C. -W. Shu and B. Y. Wu, Math. Comp., 85, 1225-1261 (2016)
 - Y. Cheng, X. Meng and Q. Zhang, Math. Comp., **86**, 1233-1267 (2017)

Definition 2 (1d GGR)

Assume that $\theta \neq 1/2$. For any given periodic function $w \in H^1(I_h)$, the GGR projection, denoted by $\mathbb{G}_h^{\theta} w$, is the unique element in V_h such that

$$((\mathbb{G}_h^{\theta})^{\perp}w,v)_{I_i}=0, \ \forall v \in \mathcal{P}^{k-1}(I_i); \quad \{\!\!\{(\mathbb{G}_h^{\theta})^{\perp}w\}\!\}_{i+\frac{1}{n}}^{(\theta)}=0,$$

for i = 1, 2, ..., N. Here $(\mathbb{G}_h^{\theta})^{\perp} w = w - \mathbb{G}_h^{\theta} w$ is the projection error.

• In general, the GGR projection is globally defined.

Lemma 2.1

The 1d GGR projection is well-defined, and satisfies

$$\|(\mathbb{G}_h^{ heta})^{\perp} z\| + h^{rac{1}{2}}, \|(\mathbb{G}_h^{ heta})^{\perp} z\|_{\Gamma_h} \leq C \|z\|_{k+1} h^{k+1}.$$

Prove it later.

qzh@nju.edu.cn

(10)

Theorem 2.3

Assume that the initial solution $U_0 \in H^{k+2}(I)$, then for any $t \in [0,T]$ we have

$$|U(t) - u(t)|| \le C ||U_0||_{k+2} h^{k+1},$$

with suitable setting of the initial solution (e.g., the L^2/GGR projection).

• The 1d GGR projection implies for any $v \in V_h$,

$$\mathcal{H}^{\theta}(\eta, \mathbf{v}) = \sum_{1 \leq i \leq N} \left[\int_{I_i} \beta \eta v_x \, \mathrm{d}x + \beta \{\!\!\{\eta\}\!\}_{i+\frac{1}{2}}^{(\theta)} [\![\mathbf{v}]\!]_{i+\frac{1}{2}} \right] = 0.$$

• It follows from (7) and Lemma 2.1 that

$$\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\|\xi\|^2 + \frac{1}{2}(2\theta - 1)\|[\![\xi]\!]\|_{\Gamma_h}^2 = (\eta_t, \xi) \le \|\xi\|\|\eta_t\| \le Ch^{k+1}\|\xi\|\|U_t\|_{k+1}.$$

Integration and application the triangular inequality end the proof.

- Let $E = \mathbb{G}_h^{\theta} z \mathbb{P}_h z$, where $\mathbb{P}_h z \in V_h$ is the local L²-projection.
- Show below that $E \in V_h$ exists uniquely and satisfies

$$|E||_{L^{2}(\Omega_{h})} + h^{\frac{1}{2}} ||E||_{L^{2}(\Gamma_{h})} \leq Ch^{\min(k+1,s+1)} ||z||_{H^{s+1}(\Omega_{h})}.$$
 (11)

These purposes can be achieved by direct manipulations through a linear system, since

$$\int_{I_i} Ev dx = 0, \quad \forall v \in \mathcal{P}^{k-1}(I_i), \quad i = 1, \dots, N,$$
(12a)

$$\{\!\!\{E\}\!\!\}_{i+\frac{1}{2}}^{(\theta)} = \{\!\!\{z - \mathbb{P}_h z\}\!\!\}_{i+\frac{1}{2}}^{(\theta)} \equiv b_i, \quad i = 1, \dots, N,$$
(12b)

where b_i is the projection error resulting from the L²-projection.

 Due to the orthogonality of the rescaled Legendre polynomials, it is easy to see from (12a) that

$$E(x) = \alpha_{i,k} L_{i,k}(x) = \alpha_{i,k} \widehat{L}_k(\widehat{x}),$$

in the element I_i , where $\hat{x} = 2(x - x_i)/h_i \in [-1, 1]$ and

$$L_{i,l}(x) \equiv \widehat{L}_l\left(\frac{2(x-x_i)}{h_i}\right) \equiv \widehat{L}_l(\widehat{x}).$$

Here $\widehat{L}_l(\hat{x})$ is the standard Legendre polynomial in [-1, 1] of degree *l*.

• Since $\widehat{L}_k(\pm 1) = (\pm 1)^k$, it follows from (12b) that

$$\theta \alpha_{i,k} + \widetilde{\theta}(-1)^k \alpha_{i+1,k} = b_i, \quad i = 1, \cdots, N.$$
(13)

Note that $\alpha_{N+1,k} = \alpha_{1,k}$ and $\tilde{\theta} = 1 - \theta$.

• The unknowns $\vec{\alpha}_N = (\alpha_{1,k}, \alpha_{2,k}, \dots, \alpha_{N,k})^{\top}$ can be determined from the following linear algebra system

$$\mathbb{A}_N \vec{\alpha}_N = \vec{b}_N,\tag{14}$$

Image: A mathematic states and a mathematic states

where $\vec{b}_N = (b_1, b_2, \dots, b_N)^{ op}$ and

It is easy to work out that

$$\det(\mathbb{A}_N) = \theta^N (1 - \zeta^N) \neq 0$$
, with $\zeta = (-1)^{k+1} \tilde{\theta} / \theta \neq 1$.

Hence *E* and $\mathbb{G}_{h}^{\theta} z$ is determined uniquely.

A

qzh@nju.edu.cn

• Easy to see that \mathbb{A}_N^{-1} is a circulant matrix with the (i, j)-th entry

$$(\mathbb{A}_N^{-1})_{ij} = \frac{1}{\theta(1-\zeta^N)} \zeta^{\mathsf{mod}(j-i,N)}.$$

Both the row-norm and the column-norm satisfy

$$\|\mathbb{A}_{N}^{-1}\|_{1} = \|\mathbb{A}_{N}^{-1}\|_{\infty} \leq \frac{1}{|\theta||1-\zeta^{N}|} \frac{|1-|\zeta|^{N}|}{|1-|\zeta||} \leq \frac{1}{|\theta||1-|\zeta||},$$

hence the spectral norm is bounded above by

$$\|\mathbb{A}_{N}^{-1}\|_{2}^{2} \leq \|\mathbb{A}_{N}^{-1}\|_{1}\|\mathbb{A}_{N}^{-1}\|_{\infty} \leq \frac{1}{\theta^{2}(1-|\zeta|)^{2}}.$$
(16)

• Note that this inequality holds independently of the element number N.

Owing to the approximation property of L²-projection, we have

$$\begin{aligned} \|\vec{\alpha}_{N}\|_{2}^{2} &= \|\mathbb{A}_{N}^{-1}\vec{b}_{N}\|_{2}^{2} \leq \|\mathbb{A}_{N}^{-1}\|_{2}^{2}\|\vec{b}_{N}\|_{2}^{2} \\ &\leq C\|\vec{b}_{N}\|_{2}^{2} \leq C\|z - \pi_{h}z\|_{\Gamma_{h}}^{2} \leq Ch^{2\min(k+1,s+1)-1}\|z\|_{H^{s+1}(\Omega_{h})}^{2}. \end{aligned}$$
(17)

• Finally, noticing the simple facts

$$\|E\|_{L^{2}(\Omega_{h})}^{2} = \sum_{i=1}^{N} \alpha_{i,k}^{2} \|L_{i,k}(x)\|_{L^{2}(I_{i})}^{2} = \sum_{i=1}^{N} \frac{h_{i} \alpha_{i,k}^{2}}{2k+1} \le Ch \|\vec{\alpha}_{N}\|_{2}^{2},$$
(18a)
$$\|E\|_{L^{2}(\Gamma_{h})}^{2} = \sum_{i=1}^{N} \alpha_{i,k}^{2} = \|\vec{\alpha}_{N}\|_{2}^{2},$$
(18b)

as well as (17), we can obtain (11) and finish the proof.

- Actually, $\theta = 1/2$ can be also used in the semi-discrete DG method.
- In general, the convergence order is *k*.
- However, the convergence order can achieve *k* + 1 if the mesh is uniform and the degree *k* is even.
 - It can be proved by the super-convergence attribution of mesh construction and the L² projection.
 - Also by using the GGR projection in some sense.
- However, when directly taking $\theta = 1/2$ in Definition 2, the GGR projection uniquely exists only if
 - the degree k is even , and
 - the number of elements is odd.

Hence, the GGR projection for $\theta = 1/2$ is defined to be the L² projection, namely

$$\mathbb{G}_h^{\frac{1}{2}}w = \mathbb{P}_h w.$$

Quick review on the DG method

- 2 The DG method: 1d hyperbolic equation
- The DG method: 2d hyperbolic equation
 - 4 The LDG method for convection-diffusion equation
 - 5 Concluding remarks

Discontinuous finite element space

Consider the 2d linear constant hyperbolic equation

 $U_t + \beta_1 U_x + \beta_2 U_y = 0, \quad (x, y, t) \in (0, 1)^2 \times (0, T],$ (19)

equipped with the periodic boundary condition.

• Let $\Omega_h = I_h \times J_h = \{K_{ij}\}_{i=1,...,N_x}^{j=1,...,N_y}$ denote a quasi-uniform tessellation with the rectangular element

$$K_{ij} \equiv I_i \times J_j \equiv (x_{i-\frac{1}{2}}, x_{i+\frac{1}{2}}) \times (y_{j-\frac{1}{2}}, y_{j+\frac{1}{2}}),$$

of the length $h_i^x = x_{i+1/2} - x_{i-1/2}$ and the width $h_j^y = y_{j+1/2} - y_{j-1/2}$.

The associated finite element space is defined as

$$V_h \equiv V_h^{(2)} \equiv \{ v \in L^2(\Omega) : v |_K \in \mathcal{Q}^k(K_{ij}), \forall K_{ij} \in \Omega_h \},$$
(20)

where $Q^k(K_{ij})$ denotes the space of polynomials on K_{ij} of degree at most $k \ge 0$ in each variable.

qzh@nju.edu.cn

Notations of averages and jumps

Similar to the one-dimensional case, we use

$$\llbracket v \rrbracket_{i+1/2,y} = v_{i+1/2,y}^+ - v_{i+1/2,y}^-, \quad \llbracket v \rrbracket_{x,j+1/2} = v_{x,j+1/2}^+ - v_{x,j+1/2}^-$$
(21)

to denote the jumps on vertical and horizontal edges, where

$$v_{i+\frac{1}{2},y}^{\pm} = \lim_{x \to x_{i+\frac{1}{2}} \pm} v(x,y), \quad v_{x,j+\frac{1}{2}}^{\pm} = \lim_{y \to y_{j+\frac{1}{2}} \pm} v(x,y)$$

are the traces along two different directions.

 The weighted averages on vertical and horizontal edges are respectively denoted by

$$\{v\}_{i+\frac{1}{2},y}^{\theta_{1},y} = \theta_{1}v_{i+\frac{1}{2},y}^{-} + \widetilde{\theta_{1}}v_{i+\frac{1}{2},y}^{+}, \quad \{\!\{v\}\!\}_{x,j+\frac{1}{2}}^{x,\theta_{2}} = \theta_{2}v_{x,j+\frac{1}{2}}^{-} + \widetilde{\theta_{2}}v_{x,j+\frac{1}{2}}^{+}, \quad (22)$$

with the given parameters θ_1 and θ_2 .

• Here and below denote $\tilde{\theta_1} = 1 - \theta_1$ and $\tilde{\theta_2} = 1 - \theta_2$.

The semi-discrete DG method

 Similarly, the semi-discrete DG method is defined as follows: find the map *u*: [0, *T*] → *V_h* such that

$$(u_t, v) = \mathcal{H}(u, v), \quad \forall v \in V_h, \quad t \in (0, T],$$
(23)

with $u(x, y, 0) \in V_h$ approximating the initial solution.

The spatial DG discretization in 2d case is given in the form

$$\mathcal{H}(u,v) = \mathcal{H}^{1,\theta_1}(u,v) + \mathcal{H}^{2,\theta_2}(u,v),$$

with the DG discretization in two directions

$$\begin{aligned} \mathcal{H}^{1,\theta_1}(u,v) &= \sum_{1 \le i \le N_x} \sum_{1 \le j \le N_y} \left[\int_{K_{ij}} \beta_1 u v_x \, dx \, dy + \int_{J_j} \beta_1 \{\!\!\{u\}\!\}_{i+\frac{1}{2},y}^{\theta_1,y} [\![v]\!]_{i+\frac{1}{2},y} \, dy \right], \\ \mathcal{H}^{2,\theta_2}(u,v) &= \sum_{1 \le i \le N_x} \sum_{1 \le j \le N_y} \left[\int_{K_{ij}} \beta_2 u v_y \, dx \, dy + \int_{I_i} \beta_2 \{\!\!\{u\}\!\}_{x,j+\frac{1}{2}}^{x,\theta_2} [\![v]\!]_{x,j+\frac{1}{2}} \, dx \right]. \end{aligned}$$

• Here $\beta_{\kappa}(\theta_{\kappa}-1/2) > 0$ is demanded for $\kappa = 1, 2$.

Theorem 3.1 (multi-dimension)

Assume that the initial solution $U_0 \in H^{k+2}(\Omega) \cap C(\overline{\Omega})$, then for any $t \in [0,T]$ we have

$$|U(t) - u(t)|| \le C ||U_0||_{k+2} h^{k+1},$$

with suitable setting of the initial solution (e.g., the L²/GGR projection).

This theorem can be proved by applying two-dimensional GGR projection

$$\mathbb{G}_{h}^{\theta_{1},\theta_{2}} = \mathbb{X}_{h}^{\theta_{1}} \otimes \mathbb{Y}_{h}^{\theta_{2}}, \tag{24}$$

where $\mathbb{X}_{h}^{\theta_{1}}$ and $\mathbb{Y}_{h}^{\theta_{2}}$ are one-dimensional GGR projections, corresponding the *x*- and *y*- direction respectively.

- The detailed definitions of 2d GGR projection depend on the values of parameters, denoted by γ₁ and γ₂ below.
- For given function *z*, denote the GGR projection error by $\eta = z \mathbb{G}_h^{\gamma_1, \gamma_2} z$.

Detailed definition (I)

γ₁ ≠ 1/2 and γ₂ ≠ 1/2: Let z ∈ H₂(Ω_h) be a given periodic function, there holds for all *i* and *j* that

$$\int_{K_{ij}} \eta v dx dy = 0, \quad \forall v \in \mathcal{Q}^{k-1}(K_{ij}),$$
(25a)

$$\int_{J_j} \{\!\!\{\eta\}\!\!\}_{i+\frac{1}{2},y}^{\gamma_1,y} v \mathrm{d}y = 0, \quad \forall v \in \mathcal{P}^{k-1}(J_j),$$
(25b)

$$\int_{I_i} \{\!\!\{\eta\}\!\!\}_{x,j+\frac{1}{2}}^{x,\gamma_2} v \mathrm{d}x = 0, \quad \forall v \in \mathcal{P}^{k-1}(I_i),$$
(25c)

$$\eta_{i+\frac{1}{2},j+\frac{1}{2}}^{\gamma_1,\gamma_2} = 0,$$
(25d)

with the weighted average at the corner point of element

$$\eta^{\gamma_1,\gamma_2} = \gamma_1\gamma_2\eta^{-,-} + \gamma_1\widetilde{\gamma_2}\eta^{-,+} + \widetilde{\gamma_1}\gamma_2\eta^{+,-} + \widetilde{\gamma_1}\widetilde{\gamma_2}\eta^{+,+}.$$

This projection is firstly proposed and discussed in

X. MENG, C. -W. SHU AND B. Y. WU, Math. Comp., 85, 1225-1261 (2016)

Detailed definition (II)

• $\gamma_1 \neq 1/2$ and $\gamma_2 = 1/2$: Let $z \in H_1(\Omega_h)$. There holds for all *i* and *j* that

$$\int_{K_{ij}} \eta v \, \mathrm{d}x \, \mathrm{d}y = 0, \quad \forall v \in \mathcal{P}^{k-1}(I_i) \otimes \mathcal{P}^k(J_j), \tag{26a}$$
$$\int_{J_j} \{\!\!\{\eta\}\!\!\}_{i+\frac{1}{2},y}^{\gamma_1,y} v \, \mathrm{d}y = 0, \quad \forall v \in \mathcal{P}^k(J_j). \tag{26b}$$

• $\gamma_1 = 1/2$ and $\gamma_2 \neq 1/2$: Let $z \in H_1(\Omega_h)$. There holds

$$\int_{K_{ij}} \eta v \, dx \, dy = 0, \quad \forall v \in \mathcal{P}^{k}(I_{i}) \otimes \mathcal{P}^{k-1}(J_{j}),$$

$$\int_{I_{i}} \{\!\!\{\eta\}\!\!\}_{x,j+\frac{1}{2}}^{x,\gamma_{2}} v \, dx = 0, \quad \forall v \in \mathcal{P}^{k}(I_{i}).$$
(27b)

- The above two projections have been proposed for $\gamma_1 = \gamma_2 = 1$ in B. DONG AND C. -W. SHU, SINUM **47**, 3240-3268(2009)
- $\gamma_1 = \gamma_2 = 1/2$: we define it to be the 2d L^2 -projection.

Properties of 2d GGR projection

As 1d case, we also have the optimal approximation result

Lemma 3.1 (Approximation property of 2d case)

For any γ_1 and γ_2 , the 2d GGR projection is well-defined, and

$$\|(\mathbb{G}_{h}^{\gamma_{1},\gamma_{2}})^{\perp}w\| + h^{\frac{1}{2}}\|(\mathbb{G}_{h}^{\gamma_{1},\gamma_{2}})^{\perp}w\|_{\Gamma_{h}} \le C\|w\|_{k+1}h^{k+1}.$$
(28)

- The proof line is very similar as that for the 1d case.
- Discuss each term on the RHS of the following decomposition

$$\mathbb{G}_h^{\gamma_1,\gamma_2}w - \mathbb{G}_h^{\frac{1}{2},\frac{1}{2}}w = E_x + E_y + E_{xy},$$

through the matrix analysis.

• However, the 2d GGR projection can not completely eliminate the errors emerged in the interior or on the boundary of every element.

Superconvergence property

Fortunately, there holds the following superconvergence property.

Lemma 3.2 ($\theta_1 \neq 1/2$ and $\theta_2 \neq 1/2$)

Let $\ell = 1, 2$ and $U \in H^{k+2}(\Omega_h) \cap C(\overline{\Omega})$. For any $v \in V_h$, there holds

$$\left|\sum_{i=1}^{N_x}\sum_{j=1}^{N_y}H_{ij}^{\ell,\theta_\ell}\Big(U-\mathbb{G}_h^{\theta_1,\theta_2}U,v\Big)\right|\leq Ch^{k+1}\|U\|_{H^{k+2}(\Omega_h)}\|v\|,$$

on the quasi-uniform Cartesian mesh, where (for example)

$$\mathcal{H}_{ij}^{1,\theta_1}(w,z) = \int_{K_{ij}} w \frac{\partial z}{\partial x} \, \mathrm{d}x \, \mathrm{d}y - \int_{J_j} \left[(w^{\theta_1,y} z^-)_{i+\frac{1}{2},y} - (w^{\theta_1,y} z^+)_{i-\frac{1}{2},y} \right] \mathrm{d}y.$$

By this result, it is easy to prove Theorem 3.1.

- Main points:
 - New representation of LHS
 - Kernel space of new representation
 - Rough boundedness
- More clear statements are given in this talk.
- References:
 - Р. CASTILLO AND B. COCKBURN, Math. Comp., 71, 455-478 (2002)
 - X. MENG, C. -W. SHU AND B. Y. WU, Math. Comp., 85, 1225-1261 (2016)
 - Y. CHENG, X. MENG AND Q. ZHANG, Math. Comp., 86, 1233-1267 (2017)
- For notational simplicity, below we denote

$$\mathbb{G}_h^{ heta_1, heta_2} = \mathbb{G}_h, \quad \mathbb{G}_h^{ heta_1} = \mathbb{X}_h, \quad \mathbb{G}_h^{ heta_2} = \mathbb{Y}_h.$$

Step1: new representation of LHS

Proposition 3.1

If the function U is continuous everywhere, then

$$\{\!\!\{\mathbb{G}_hU\}\!\!\}_{i+\frac{1}{2},y}^{\theta_1,y} = \mathbb{Y}_hU(x_{i+\frac{1}{2}},\cdot), \quad \{\!\!\{\mathbb{G}_hU\}\!\!\}_{x,j+\frac{1}{2}}^{x,\theta_2} = \mathbb{X}_hU(\cdot,y_{j+\frac{1}{2}}).$$

Take the edge x = x_{i+1/2} as an example. Two items of the 2d GGR projection imply for ∀*j* that

$$\begin{split} \int_{J_j} \{\!\!\{\mathbb{G}_h U\}\!\!\}_{i+\frac{1}{2},y}^{\theta_{1,y}} v \, \mathrm{d}y &= \int_{J_j} U(x_{i+\frac{1}{2}}, \cdot) v \, \mathrm{d}y, \quad \forall v \in \mathcal{P}^{k-1}(J_j), \\ \{\!\!\{\mathbb{G}_h U\}\!\!\}_{i+\frac{1}{2},j+\frac{1}{2}}^{\theta_1, \theta_2} &= U_{i+\frac{1}{2},j+\frac{1}{2}}. \end{split}$$

• The 1d GGR projection implies for any j that

$$\int_{J_j} \mathbb{Y}_h U(x_{i+\frac{1}{2}}, \cdot) v \, \mathrm{d}x = \int_{J_j} U(x_{i+\frac{1}{2}}, \cdot) v \, \mathrm{d}y, \quad \forall v \in \mathcal{P}^{k-1}(J_j),$$
$$[\mathbb{Y}_h U(x_{i+\frac{1}{2}}, \cdot)]_{i+\frac{1}{2}, j+\frac{1}{2}}^{x, \theta_2} = U_{i+\frac{1}{2}, j+\frac{1}{2}}.$$

• The uniqueness of 1d GGR projection yields the first conclusion.

Step 1: new representation of LHS

• Hence, for any continuous function U, we have

$$\mathcal{H}_{ij}^{1,\theta_{1}}(\mathbb{G}_{h}^{\perp}U, v) = \int_{K_{ij}} \mathbb{G}_{h}^{\perp}Uv_{x} \, \mathrm{d}x \, \mathrm{d}y - \int_{J_{j}} (\mathbb{Y}_{h}^{\perp}Uv^{-})_{i+\frac{1}{2}, y} \, \mathrm{d}y + \int_{J_{j}} (\mathbb{Y}_{h}^{\perp}Uv^{+})_{i-\frac{1}{2}, y} \, \mathrm{d}y \\ = \int_{K_{ij}} \mathbb{G}_{h}^{\perp}Uv_{x} \, \mathrm{d}x \, \mathrm{d}y - \int_{J_{j}} (\mathbb{Y}_{h}^{\perp}U^{-}v^{-})_{i+\frac{1}{2}, y} \, \mathrm{d}y + \int_{J_{j}} (\mathbb{Y}_{h}^{\perp}U^{+}v^{+})_{i-\frac{1}{2}, y} \, \mathrm{d}y \\ \equiv \mathcal{E}_{ij}^{i}(U, v), \qquad (29)$$

and similarly have

$$\mathcal{H}_{ij}^{2,\theta_2}(\mathbb{G}_h^{\perp}U, v) = \int_{K_{ij}} \mathbb{G}_h^{\perp}Uv_y \, \mathrm{d}x \, \mathrm{d}y - \int_{I_i} (\mathbb{X}_h^{\perp}U^-v^-)_{x,j+\frac{1}{2}} \, \mathrm{d}x + \int_{I_i} (\mathbb{X}_h^{\perp}U^+v^+)_{x,j-\frac{1}{2}} \, \mathrm{d}x \quad (30)$$

$$\equiv \mathcal{E}_{ij}^2(U, v).$$

Extent the above representations to broken Sobolev space.

qzh@nju.edu.cn

Step 2: kernel space of new representation

Proposition 3.2

Note that $\Omega_h = I_h \times J_h$. For any $w \in \mathcal{P}^{k+1}(\Omega_h)$, there holds

$$\mathcal{E}_{ij}^{\ell}(w,v) = 0, \quad \forall v \in V_h = \mathcal{Q}^k.$$
(31)

Start the proof from the special function

w = p(x)q(y),

where $p(x) \in H^1(I_h)$ and $q(y) \in H^1(J_h)$. The definitions imply that

 $\mathbb{G}_h w(x, y) = \mathbb{X}_h p(x) \cdot \mathbb{Y}_h q(y).$ (32)

Furthermore, it is easy to see have

$$\mathbb{X}_h^{\perp} w(x, y^{\pm}) = \mathbb{X}_h^{\perp} p(x) \cdot q(y^{\pm}),$$
(33a)

$$\mathbb{Y}_{h}^{\perp}w(x^{\pm}, y) = p(x^{\pm}) \cdot \mathbb{Y}_{h}^{\perp}q(y).$$
(33b)

Step 2: kernel space of new representation

• Now additionally assume $q(y) \in \mathcal{P}^k(J_h)$. Then (32) implies

$$\mathbb{G}_h^{\perp} w = \mathbb{X}_h^{\perp} p(x) \cdot q(y).$$
(34)

• It follows from (33b) that $\mathbb{Y}_{h}^{\perp}w(x_{i\mp 1/2}^{\pm}, y) = 0$. Together with (34), we have

$$\mathcal{E}_{ij}^1(w,v) = 0, \quad \forall v \in V_h.$$
(35)

since three terms are all equal to zero.

An application of integration by part along *y*-direction, together with (34) and (33a), yield

$$\mathcal{E}_{ij}^2(w,v) = -\int_{K_{ij}} \mathbb{X}^{\perp} p(x) q_y(y) v(x,y) \, \mathrm{d}x \, \mathrm{d}y, \quad \forall v \in V_h.$$
(36)

Step 2: kernel space of new representation

 It is easy to see that (31) holds for any w ∈ Q^k(Ω_h), and hence we just need to verify it for two kinds of functions

$$w = L_{i',k+1}(x)\mathbf{1}_K, \quad w = L_{j',k+1}(y)\mathbf{1}_K,$$

where $K = K_{i'j'}$ goes through all elements.

Take the first type as an example. It is easy to see that

$$w(x, y) = p(x)q(y),$$

with the separation

$$p(x) = L_{i',k+1}(x)\mathbf{1}_{I_{i'}} \in H^1(I_h), \quad q(y) = \mathbf{1}_{J_{i'}} \in P^k(J_h).$$

As a result, we can get (31) by using (35) and (36).

• Now we can compete the proof of Proposition 3.2.

- Assume $z \in H^1(\Omega_h)$.
- Using the inverse inequality and the approximations of GGR projections, and we have

$$\sum_{i=1}^{N_{x}} \sum_{j=1}^{N_{y}} \mathcal{E}_{ij}^{\ell}(z, v) \leq Ch \|z\|_{H^{1}(\Omega_{h})} \|\nabla v\|_{H^{1}(\Omega_{h})} + Ch \|z^{\pm}\|_{H^{1}(\Gamma_{h})} \|v\|_{\Gamma_{h}}$$

$$\leq C \|z\|_{H^{1}(\Omega_{h})} \|v\| + Ch \|z\|_{H^{2}(\Omega_{h})} \|v\|.$$
(37)

• Here we have used the trace inequality in each element

$$\|z\|_{H^1(\partial K_{ij})} \le C \|z\|_{H^1(K_{ij})}^{rac{1}{2}} \|z\|_{H^2(K_{ij})}^{rac{1}{2}} \le Ch^{-rac{1}{2}} \|z\|_{H^1(K_{ij})} + Ch^{rac{1}{2}} \|z\|_{H^2(K_{ij})},$$

where the bounding constant C is independent of h and K_{ij} .

Final proof of Lemma 3.2

Summing up the above three conclusions, we have

$$\begin{split} &\sum_{i=1}^{N_x} \sum_{j=1}^{N_y} \mathcal{H}_{ij}^{\ell,\theta_\ell} (U - \mathbb{G}_h^{\theta_1,\theta_2} U, v) \\ &= \sum_{i=1}^{N_x} \sum_{j=1}^{N_y} \mathcal{E}_{ij}^{\ell} (U, v) \\ &= \sum_{i=1}^{N_x} \sum_{j=1}^{N_y} \mathcal{E}_{ij}^{\ell} \Big(U - w, v \Big) \\ &\leq C \|U - w\|_{H^1(\Omega_h)} \|v\| + Ch \|U - w\|_{H^2(\Omega_h)} \|v\|, \end{split}$$

for any $w \in \mathcal{P}^{k+1}(\Omega_h)$.

• Now we can complete the proof by using the simple approximation property.

Quick review on the DG method

- 2 The DG method: 1d hyperbolic equation
- 3) The DG method: 2d hyperbolic equation
- 4 The LDG method for convection-diffusion equation

5 Concluding remarks

Convection diffusion equation

Consider the 1d linear constant convection diffusion equation

 $U_t + cU_x = dU_{xx} + f(x,t), \quad (x,t) \in (0,1) \times (0,T],$ (38)

equipped with the periodic boundary condition. Here $d \ge 0$ and assume $c \ge 0$ for simplicity.

- Introduce the auxiliary variable $P = \sqrt{d}U_x$, and U is called the prime variable.
- Consider the equivalent first-order system

$$\frac{\partial U}{\partial t} + \frac{\partial h_u}{\partial x} = f, \qquad P + \frac{\partial h_p}{\partial x} = 0,$$

with the physical flux

$$(h_u, h_p) = (cU - \sqrt{d}P, -\sqrt{d}U).$$

Semi-discrete LDG scheme

• The semi-discrete scheme is defined in each element: find *u* and *p* in the finite element space *V*_h, such that

$$\int_{I_i} \frac{\partial u}{\partial t} v dx - \int_{I_i} h_u \frac{\partial v}{\partial x} dx + (\hat{h}_u v^-)_{i+\frac{1}{2}} - (\hat{h}_u v^+)_{i-\frac{1}{2}} = \int_{I_i} f v dx, \quad (39a)$$
$$\int_{I_i} p r dx - \int_{I_i} h_p \frac{\partial r}{\partial x} dx + (\hat{h}_p r^-)_{i+\frac{1}{2}} - (\hat{h}_p r^+)_{i-\frac{1}{2}} = 0, \quad (39b)$$

hold for any i = 1, 2, ..., N and for any test function $(v, r) \in V_h \times V_h$.

• The generalized alternating numerical fluxes is defined as

$$(\hat{h}_{u}, \hat{h}_{p}) = (c\{\!\!\{u\}\!\!\}^{(\theta)} - \sqrt{d}\{\!\!\{p\}\!\!\}^{(\tilde{\gamma})}, -\sqrt{d}\{\!\!\{u\}\!\!\}^{(\gamma)}), \tag{40}$$

where θ and γ are two given parameters.

- Assume in addition $\theta \geq \frac{1}{2}$ for upwind-biased.
 - $\gamma = 1$: the purely alternating numerical flux is used for diffusion.
 - $\theta = 1$: the purely upwind flux is used for convection.

Theorem 4.1 (stability)

The semi-discrete LDG scheme is stable in the L²-norm, namely

$$\|u(T)\| \le \|u(0)\| + \int_0^T \|f(t)\| \mathrm{d}t.$$
(41)

- The proof is trivial and standard.
- Note that the jumps of *u* and *p* do not provide for diffusion any stability contribution.

Proof of Theorem 4.1

• Adding up two equations in (39) and summing them over all elements, the LDG scheme (39) can be written in the form:

$$\int_{\Omega} \frac{\partial u_h}{\partial t} v dx + G_h(u, p; v, r) = \int_{\Omega} f v dx$$
(42)

for any test function $(v, r) \in V_h \times V_h$, where

$$G_{h}(u,p;v,r) = \int_{\Omega} prdx + \sum_{i=1}^{N} \left\{ -c\mathcal{H}_{i}^{(\theta)}(u,v) + \sqrt{d}\mathcal{H}_{i}^{(\tilde{\theta})}(p,v) + \sqrt{d}\mathcal{H}_{i}^{(\theta)}(u,r) \right\}$$
(43)

with the locally-defined functional for the given parameter α ,

$$\mathcal{H}_{i}^{(\alpha)}(w,z) = \int_{I_{i}} w \frac{\partial z}{\partial x} dx - \{\!\!\{w\}\!\}_{i+\frac{1}{2}}^{(\alpha)} z_{i+\frac{1}{2}}^{-} + \{\!\!\{w\}\!\}_{i-\frac{1}{2}}^{(\alpha)} z_{i-\frac{1}{2}}^{+}.$$
(44)

• Using the negative semidefinite property and the skew-symmetric property, we have the following identities:

$$G_h(u,p;u,p) = \|p\|^2 + c\left(\theta - \frac{1}{2}\right) \|[\![u_h]\!]\|_{\Gamma_h}^2.$$
(45)

• Taking the test function (v, r) = (u, p) in (42), and using (45) and Cauchy–Schwarz inequality, we can easily get

$$\frac{1}{2}\frac{d}{dt}\|u\|^2 \le \|f\|\|u\|.$$
(46)

 The L²-norm stability (41) immediately follows by canceling ||u|| on both sides and integrating the inequality with respect to the time.

Error estimate

Theorem 4.2 (error estimate)

Assume $u \in L^{\infty}(H^{k+1}) \cap L^2(H^{k+2})$ and $\frac{\partial u}{\partial t} \in L^2(H^{k+1})$, then the LDG scheme satisfies the optimal and uniform error estimate

$$\|u(T)-u_h(T)\| \leq C(1+T) \Big[h^{k+1} + \sqrt{c} \min\Big(\frac{\sqrt{ch}}{\sqrt{d}}, \frac{\sqrt{d}}{\sqrt{ch}}, 1\Big)|\gamma-\theta|h^{k+\frac{1}{2}}\Big],$$

if the initial solution is good enough to ensure

$$||U(0) - u(0)|| \le Ch^{k+1}.$$

Here the bounding constant C > 0 is independent of mesh size h and the reciprocal of the diffusion coefficient d.

- A nice application of the GGR projection;
- Do not adopt the dual technique or the elliptic projection.
- Easily extended to 2d problem, by using the 2d GGR projection with the modifications similar as below.

qzh@nju.edu.cn

DG/LDG method

Proof line

Denote the error with the decomposition

$$e_u = u - u = (u - \chi_u) - (u - \chi_u) \equiv \eta_u - \xi_u,$$
 (47a)

$$e_p = p - p = (p - \chi_p) - (p - \chi_p) \equiv \eta_p - \xi_p,$$
 (47b)

where χ_u and χ_p are the element in V_h .

The energy identity is given as

$$\int_{\Omega} \frac{\partial \xi_u}{\partial t} \xi_u dx + G_h(\xi_u, \xi_p; \xi_u, \xi_p) = \int_{\Omega} \frac{\partial \eta_u}{\partial t} \xi_u dx + G_h(\eta_u, \eta_p; \xi_u, \xi_p)$$
(48)

where $G_h(\cdot, \cdot; \cdot, \cdot)$ are the LDG space discretization, and the left-hand side satisfies the following inequality

$$\mathsf{LHS} \ge \frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \|\xi_u\|^2 + \|\xi_p\|^2 + c\left(\theta - \frac{1}{2}\right) \sum_{i=1}^N [\![\xi_u]\!]_{i+\frac{1}{2}}^2. \tag{49}$$

Ξ

• The rest work is to establish the optimal boundedness for the right-hand side of (48), with

$$G_{h}(\eta_{u},\eta_{p};v,r) = \int_{\Omega} \eta_{p} r dx + \sum_{i=1}^{N} \left\{ -c\mathcal{H}_{i}^{(\theta)}(\eta_{u},v) + \sqrt{d}\mathcal{H}_{i}^{(\tilde{\gamma})}(\eta_{p},v) + \sqrt{d}\mathcal{H}_{i}^{(\gamma)}(\eta_{u},r) \right\}.$$
(50)

 Below we would like to adopt the GGR projection to simultaneously eliminate the projection error in

$$\mathcal{H}_{i}^{(\alpha)}(w,z) = \int_{I_{i}} w \frac{\partial z}{\partial x} dx - \{\!\!\{w\}\!\}_{i+\frac{1}{2}}^{(\alpha)} z_{i+\frac{1}{2}}^{-} + \{\!\!\{w\}\!\}_{i-\frac{1}{2}}^{(\alpha)} z_{i-\frac{1}{2}}^{+},$$

with $w = \eta_u, \eta_p$ and $\alpha = \theta, \gamma$.

Proof when parameters are the same

• Let $\chi_u = \mathbb{G}_h^{\theta} U$ and $\chi_p = \mathbb{G}_h^{\theta} P$. Since $\theta = \gamma$, the GGR projection implies

$$\mathcal{H}_{i}^{(\theta)}(\eta_{u},\xi_{u})=0, \quad \mathcal{H}_{i}^{(\widetilde{\theta})}(\eta_{p},\xi_{u})=0, \quad \mathcal{H}_{i}^{(\theta)}(\eta_{u},\xi_{p})=0.$$
(51)

Hence, due to the approximation property of GGR projection, we have

$$\mathsf{RHS} = \int_{\Omega} \frac{\partial \eta_u}{\partial t} \xi_u dx + G_h(\eta_u, \eta_p; \xi_u, \xi_p) = \int_{\Omega} \frac{\partial \eta_u}{\partial t} \xi_u dx + \int_{\Omega} \eta_p \xi_p dx$$
$$\leq Ch^{k+1} \left\| \frac{\partial u}{\partial t} \right\|_{H^{k+1}} \| \xi_u \| + Ch^{k+1} \| p \|_{H^{k+1}} \| \xi_p \|,$$

It follows from the energy equation (48) that

$$\begin{split} \frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \|\xi_u\|^2 + \|\xi_p\|^2 + c \left(\theta - \frac{1}{2}\right) \sum_{i=1}^N [\![\xi_u]\!]_{i+\frac{1}{2}}^2 \\ &\leq C h^{k+1} \left\| \frac{\partial u}{\partial t} \right\|_{H^{k+1}} \|\xi_u\| + C h^{k+1} \|p\|_{H^{k+1}} \|\xi_p\| \end{split}$$

Application of the Gronwall's inequality can complete the proof.

qzh@nju.edu.cn

Proof when parameters are not the same (cont.)

 If θ ≠ γ, the above treatment can not eliminate completely the projection errors at the same time. For example, it follows from (51) that

$$\mathcal{H}_i^{(\gamma)}(\eta_u,\xi_p)\neq\mathcal{H}_i^{(\theta)}(\eta_u,\xi_p)=0.$$

- Below we consider three treatments!
- If we want to eliminate completely the boundary errors coming from the diffusion part, we can define

$$\eta_u = U - \mathbb{G}_h^{\gamma} U$$
 and $\eta_p = P - \mathbb{G}_h^{\gamma} P$,

Along the same line as before, we can obtain the error estimate

$$\|u(T) - u(T)\| \le C(1+T) \Big[h^{k+1} + \sqrt{c} |\gamma - \theta| h^{k+\frac{1}{2}} \Big],$$
(52)

Proof when parameters are not the same (cont.)

 If we want to eliminate completely the boundary errors coming from the convection part, we can define

$$\eta_u = U - \mathbb{G}_h^{\theta} U$$
 and $\eta_p = P - \mathbb{G}_h^{\theta} P$.

 Along the same analysis as before, we can easily see that the RHS of error equation has a new term

$$\sum_{i=1}^{N} \sqrt{d} (\gamma - \theta) (\llbracket \eta_p \rrbracket \llbracket \xi_u \rrbracket - \llbracket \eta_u \rrbracket \llbracket \xi_p \rrbracket)_{i+\frac{1}{2}}.$$

• This term can be bounded by the stability and the approximation property, with the help of Young's inequality and the inverse inequality

$$\sum_{i=1}^{N} \llbracket \xi_{p} \rrbracket_{i+\frac{1}{2}}^{2} \leq Ch^{-1} \lVert \xi_{p} \rVert^{2}.$$

• An application of the Cauchy–Schwarz inequality and the Gronwall inequality yields the error estimate

$$\|u(T) - u(T)\| \le C(1+T) \left[h^{k+1} + \sqrt{d} |\gamma - \theta| h^k \right],$$
(53)

Proof when parameters are not the same (cont.)

A new GGR projection is needed!

Definition 3

For any vector-valued function $z = (z_u, z_p) \in [C(\overline{\Omega}_h)]^2$, define

$$\mathbb{Q}_{h}^{\theta,\gamma}(z_{u},z_{p}) = (\mathbb{G}_{h}^{\gamma}z_{u},\mathbb{G}_{h}^{\widetilde{\gamma},\star}z_{p}) \in V_{h} \times V_{h},$$
(54)

where

- $\mathbb{G}_h^{\gamma} z_u$ is the same as before, and
- $\mathbb{G}_{h}^{\tilde{\gamma},\star}z_{p}$ depends on both z_{p} and z_{u} . For any $i = 1, \ldots, N$, there hold

$$\int_{I_i} (\mathbb{G}_h^{\widetilde{\gamma},\star} z_p) v dx = \int_{I_i} z_p v dx, \quad \forall v \in P^{k-1}(I_i),$$
(55a)

$$\{\!\{\mathbb{G}_{h}^{\tilde{\gamma},\star}z_{p}\}\!\}_{i+\frac{1}{2}}^{(\tilde{\gamma})} = \{\!\{z_{p}^{(\tilde{\gamma})}\}\!\}_{i+\frac{1}{2}} - \frac{c}{\sqrt{d}}(\gamma - \theta)[\![z_{u} - \mathbb{G}_{h}^{\gamma}z_{u}]\!]_{i+\frac{1}{2}}.$$
(55b)

• Note that $\mathbb{G}_{h}^{\widetilde{\gamma},\star}z_{p} = \mathbb{G}_{h}^{\widetilde{\gamma}}z_{p}$ if $\gamma = \theta$.

Proof when parameters are not the same

Similarly, we can derive the unique existence and

$$\|z_p - \mathbb{G}_h^{\widetilde{\gamma},\star} z_p\| \le Ch^{k+1} \left(\|z_p\|_{H^{k+1}(\Omega_h)} + \frac{c}{\sqrt{d}} |\gamma - \theta| \cdot \|z_u\|_{H^{k+1}(\Omega_h)} \right),$$

since $z_u - \mathbb{G}_h^{\gamma} z_u$ is already known to be of order h^{k+1} .

 In order that projection errors on the element boundaries are eliminated completely and simultaneously, we define

$$\eta_u = U - \mathbb{G}_h^{\gamma} U, \quad \eta_p = P - \mathbb{G}_h^{\widetilde{\gamma}, \star} P,$$

which yields

$$G_h(\eta_u,\eta_p;\xi_u,\xi_p)=\int_\Omega \eta_p\xi_p\mathrm{d}x.$$

Repeating the similar arguments as before, we can obtain

$$\|u(T) - u(T)\| \le C(1+T)\left(1 + \frac{c}{\sqrt{d}}|\gamma - \theta|\right)h^{k+1}.$$
 (56)

• The proof is completed by (52), (53) and (56).

Quick review on the DG method

- 2 The DG method: 1d hyperbolic equation
- 3) The DG method: 2d hyperbolic equation
- 4 The LDG method for convection-diffusion equation

5 Concluding remarks

Concluding remarks

- Stability analysis and optimal error estimates in L²-norm are given in this talk for the DG/LDG method.
- The good stability comes from the numerical viscosity provided by the square of jumps on the element interface.
- In general, the strength of numerical viscosity is measured by

$$\alpha(\hat{f}; u^{-}, u^{+}) = \begin{cases} \frac{f(\{\!\!\{u\}\!\}) - \hat{f}(u^{-}, u^{+})}{[\![u]\!]}, & [\![u]\!] \neq 0, \\ \frac{1}{2} |f'(\{\!\!\{u\}\!\})|, & \text{otherwise.} \end{cases}$$

References about this issue:

- Q. Zhang and C. -W. Shu, SINUM 42(2004), 641-666.
- J. Luo, C. -W. Shu and Q. Zhang. ESAIM 49(2015), 991-1018
- The GGR projection is good at obtaining the optimal error estimate.

Thanks for your attention!

qzh@nju.edu.cn