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In both the phenomenological and formal studies of fundamental physics, the central research

focus is on high-order perturbative corrections (loop expansion). The computation and analysis of

Feynman integrals, especially the multiloop ones, is thus crucial in theoretical physics.

In this lecture, we study the milestone method for Feynman integral computation: canonical

differential equation for Feynman integrals with uniformally transcendental (UT) weights [1]. It

was invented by Henn in 2013, and soon led to a revolution in the field of Feynman integral

computation. A lot of previously untouchable Feynman integrals were analytically computed in

this way. UT method for loop amplitudes, is like the “Dreadnought” battleship (1906) in the naval

history, which classified all previous battleships as “pre-Dreadnoughts”.

The outline of this method is,

• The εn-order of UT Feynman integrals is the integration of (εn−1)-order of these integrals,

and then the Feynman integrals are analytically expressed as iterative integrals.

• The mathematical properties of iterative integrals were studied long time ago, by the Math-

ematician Kuo-Tsai Chen.

• Specifically, many beautiful properties of iterative integrals can be captured by the so-called

Symbol [2]., which was invented in the context of N = 4 super-Yang-Mills theory.

• If the iterative integrals have certain simple integration kernels, the result would be polylog-

arithm functions.

In practice, if order-by-order in ε, a Feynman integral is expressed as polylogarithm functions, we

say that this Feynman integral is computed analytically.

In this lectures, we provides an introduction of UT integrals, canonical differential equation,

symbols and polylogarithms. The main references are [3, 4].

I. UT INTEGRALS AND POLYLOGARITHMS

We begin with the simplest example massless bubble integral.
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Example I.1. This is one of the simplest loop integrals. The propagators are

D1 = l21, D2 = (l1 − p)2 . (1)

with p2 = s. From the Symanzik polynomials, U = z1 + z2, F = −sz1z2, s < 0 is the Euclidean

region, and s > 0 is the physical region. By a direction computation,

G[α1, α2] =
(−1)α1+α2Γ

(
d
2 − α1

)
Γ
(
d
2 − α2

)
Γ
(
−d

2 + α1 + α2

)
(−s)

1
2

(d−2(α1+α2))

Γ (α1) Γ (α2) Γ (d− α1 − α2)
. (2)

The apparently simplest integral in this sector is (d = 4− 2ε),

Ibub ≡ eεγ(−s)εG[1, 1] =
1

ε
+ 2 +

(
4− π2

12

)
ε+

(
−7ζ(3)

3
+ 8− π2

6

)
ε2

+

(
−14ζ(3)

3
+ 16− π2

3
− 47π4

1440

)
ε3 +O

(
ε4
)

(3)

where γ is the Euler gamma constant. The Riemann Zeta function is defined as,

ζ(z) ≡
∞∑
n=1

1

nz
(4)

Since this is an one-scale integral, (−s)ε factor removed the s dependence. eεγ removed Euler

constants.

However, the “simplest” integral is not G[1, 1] but the magic uniformly transcendental (UT)

integral ([1]),

I ′bub ≡ eεγ(−s)εsG[1, 2] = −1

ε
+
π2ε

12
+

7ζ(3)ε2

3
+

47π4ε3

1440
+O

(
ε4
)
. (5)

This expression is much more concise than (I.1). If we define π to has the transcendental degree

one, and ζn has the transcental degree n, then the εn order of this expression has the transcendental

degree n+ 1.

So why is Ibub complicated? The IBP relation between the two integrals is that

Ibub =
1

−1 + 2ε
I ′bub . (6)

The factor 1/(−1 + 2ε) messed up the ε expansion. We say that I ′bub is an integral with uniform

transcendental weights.

Here we have a feeling that UT integral has a simpler analytic expression, while the non-

UT integral of the same sector tends to have a more complicated expression. For the analytic

computation, we would like to aim at UT integrals.
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The formal definition of UT integrals is given by Henn [1]: First, the transcedental degree T is

defined as,

T (rational number) = 0, T (rational function) = 0

T (π) = 1, T (ζ(n)) = n, T (log x) = 1, T (Lin(x)) = n

T (H(a1, . . . an;x)) = n, T (G(a1, . . . an;x)) = n, (7)

where Lin(. . .), H({a1, . . . an}, x) and G({a1, . . . an}, x) are the weight n classical, harmonic and

Goncharov polylogarithm functions respectively:

• Classical polylogarithms

Li1(z) ≡ − log(1− z), Lin(z) ≡
∫ z

0

dt

t
Lin−1(t) (8)

Note that Lin has the branch cut from 1 to +∞. When z < 1, Lin(z) is real. This integral is

convergent since Lin(z) = 0, ∀n. The pole 1/t does not provide a monodromy group around

z = 0 again because Lin(0) = 0.

∂

∂z
Lin(z) =

1

z
Lin−1(z) (9)

• Harmonic polylogarithms (HPLs). We first define three rational functions,

f−1(z) =
1

z + 1
, f0(z) =

1

z
, f1(z) =

1

1− z
(10)

Then define,

H(−1; z) ≡
∫ z

0
dtf−1(t) = log(1 + z),

H(0; z) ≡ log(z),

H(1; z) ≡
∫ z

0
dtf1(t) = − log(1− z), (11)

H(0, z)’s definition seems a bit strange, however, all of these functions satisfy ∂zH(a; z) =

fa(z), a = −1, 0, 1.

Then we recursively define that

H(a1, . . . , an; z) ≡
∫ z

0
dtfa1(t)H(a2, . . . , an; t) (12)

with the special case when a1 = . . . = an = 0

H(~0n; z) ≡ 1

n!
logn(z) (13)
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(a1, . . . an) is called the weight vector and H(a1, . . . , an; z) has the weight n . They satisfy,

∂zH(a1, . . . , an; z) = fa1(z)H(a2 . . . , an; z) (14)

It is easy to check that,

H(~0n−1, 1; z) = Lin(z) (15)

Except for the case when a1 = . . . = an = 0,

H(a1, . . . , an; 0) = 0 (16)

All HPLs are real in the range z ∈ (0, 1). Depending on the weight vector, it may have the

branch cuts (−∞, 0), (−∞,−1), (1,∞) or a union of these.

HPLs are very useful common functions in the field of scattering amplitudes. With the

weight n ≤ 3, all HPLs can be converted to classical polylogarithms. But when n > 3,

this property does not hold. Mathematica cannot deal with generic HPLs, however, these

functions can be easily handled by the Mathematica package HPL [5].

• Goncharov polylogarithms (GPLs). These are more complicated functions than HPLs, and

also common in scattering amplitudes, especially for complicated kinematics. Like HPLs,

G(a1, . . . , an; z) ≡
∫ z

0
dt

1

t− a1
G(a2, . . . , an; t) (17)

with the exception

G(~0n; z) =
1

n!
logn(z) (18)

Different from the HPLs, here the weight vector (a1, . . . an) can take arbitrary values. If

an 6= 0, then by simple calculus,

G(λ~an;λz) = G(~an; z) (19)

The integration of rational functions to GPLs can be nicely treated with the Maple package

HypInt [6], while the numeric evaluation of GPLs can be done with the C package GiNaC

[7].

Note that as in any graded algebra, the element 0 can be associated with arbitrary transcedental

weight.
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Second, a function f with uniformal transcendental weight n is pure, if

T (f) = n, T (∂xf) = n− 1 (20)

for any kinematic variable x. For example, log2(x) is UT and pure, while x log(1 − x) is UT but

not pure. Nowadays, in the literature, by the abuse of notation, “UT” usually means UT and pure.

Third, a UT Feynman integral has the ε expansion:

I = εk
∞∑
i=0

I(n)εn (21)

with

T (I(n)) = n (22)

Again, usually we require that I(n) is pure also. Here k is an integer to make the series formally

from the order ε0.

We comment that the Euler’s gamma constant, γ’s transcendental weight is not defined. By

multiplying an L-loop Feynman integral by eεLγ , γ is cancelled out at all orders of ε.

II. CANONICAL DIFFERENTIAL EQUATION

Consider an integral basis ~J of an integral family, we know that ~J satisifies a first-order differ-

ential equation,

∂i ~J = Mi(x, ε) ~J, (23)

where Mi is a m ×m square matrix. Recall that under a basis transformation ~J → T ~J , the DE

matrix transform as a connection,

Mi → TMiT
−1 + (∂iT )T−1 . (24)

(23) is called a canonical differential equation if Mi is proportional to ε.

Mi(x, ε) = εmi(x) (25)

A UT (and pure) integral basis

~I = εk
∞∑
n=0

~I(n)εn, (26)

such that T (~I(n)) = n and T (∂~I(n)) = n− 1, must be associated with a canonical DE.
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To see this, assume that ∂i~I = Ai(x, ε)~I and

Ai(x, ε) =
0∑

j=−∞
εjĀ

(j)
i (x) + εA

(1)
i (x) +

∞∑
j=2

εjĀ
(j)
i (x) (27)

The differential equation for integral basis in the sense of Laporta can only have rational functions

in the kinematic variables. Here to get a UT basis, we further request that the transformation

from the Laporta basis to a UT basis can only have algebraic functions in the kinematic variables.

Compare the εn order of the differential equation: for the left hand side,

T (∂i~I
(n)) = n− 1 . (28)

for the right the only weight-(n− 1) term is A
(1)
i (x)~I(n−1). Therefore,

∂i~I
(n) = A

(1)
i (x)~I(n−1) . (29)

Then sum over n = 0, . . .∞ and rename A
(1)
i (x) as Ai(x), we see that

∂i~I = εAi(x)~I . (30)

For a canonical DE, the proportionality in ε provides great advantages, since this differential

equation can be solved perturbatively in ε.

• The integrability condition for the differential equation splits as,

∂jAi = ∂iAj , [Ai, Aj ] = 0 (31)

That means Ais are total derivitives,

Ai = ∂iÃ (32)

So the canonical DE can be combined as the exterior differential form,

d~I = ε(dÃ(x))~I . (33)

where dÃ(x) is an m×m matrix whose enties are one forms.

• Ã(x) should have a further decomposition

Ã(x) =

N∑
l=1

al log(Wl) (34)

where each al is m×m is a constant matrix and Wl’s are rational or algebraic functions of

the kinematic variables. Wl is called a symbol letter or simply letter. The set of all Wl is

called the alphabet. As the name suggests, symbol letters are the building blocks of Feynman

integrals, as we will see.
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• With the canonical DE, order-by-order in ε, we see the beautiful structure,

∂i~I
(0) = 0

∂i~I
(1) = Ai(x)~I(0)

∂i~I
(2) = Ai(x)~I(1)

∂i~I
(3) = Ai(x)~I(2)

. . . (35)

Hence In is simply the integration of Ai(x)I(n−1). From the structure of Ã, Ai should be

“simple”, so the iterative integration is likely to be done analytically and the UT Feynman

integral can be calculated analytically to an arbitrary order of ε.

In particular, we see that the leading order I(0) is a constant vector. In practice, they are

usually rational numbers.

• There are advantages to choose a UT basis for the IBP reduction. Let Ii’s be a UT basis

and J an integral in the family,

J =
∑
i

ci(x̄, ε)Ii (36)

If J is also a UT integral with the matched degree of transcendental weights, then ci(x̄, ε)’s

are rational numbers. This property is important since we can use it to “optimize” a UT

basis. Do an IBP reduction of a large list of Feynman integrals to the UT basis, and if ci’s

are all rational numbers, then we find new UT integrals. Then we replace some of the Ii’s

by simpler UT integrals to get a simpler basis.

For generic J ’s, the reduction coefficients also have nice features [8]. In particular, ci’ corre-

sponding to a UT basis can be dramatically simplified with a multivariate partial fraction.

However, there is still a doubt: if from the expression of Feynman integrals we know that they

are UT, then we do not need to solve the canonical DE. The real power of canonical DE is that

we can predict (guess) a UT integral basis, set up a canonical DE and then solve it. This is the

content of the next section.

III. TO DETERMINE A UT BASIS, I

There are many ways to determine a UT basis. Roughly speaking, the ideas come from two di-

rections: (1) hints from formal theory studies like N = 4 Super-Yang-Mills theory and modern field
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theory methods like generalized unitarity; (2) the mathematical theory of differential equations.

In practice, they are both useful.

A. Leading singularity analysis

For years in the study of the planar N = 4 Super-Yang-Mills theory, people preferred “nice”

Feynman integrals with constant leading singularity. The amplitudes in this theory can usually be

expressed as,

A =
∑

(color factor)× (Parker-Taylor factor)

×(integral with constant leading singularity) (37)

After the invention of UT integrals and canonical differential equations, it was discovered that

integrals with constant leading singularity are likely to be UT integrals.

Leading singularity can be calculated from 4D generalized unitarity analysis, i.e., setting the

propagators on-shell and compute the residue [9, 10]. This computation is simple and provides

valuable information for the UT integral searching.

Example III.1. Consider the one-loop massless box diagram with

D1 = l21, D2 = (l1 − p1)2, D3 = (l1 − p1 − p2)2, D4 = (l1 + p4)2 (38)

with p2
i = 0, i = 1, 2, 3, 4. (p1 + p2)2 = s, (p1 + p4)2 = t and (p2 + p4)2 = −s − t. The master

integrals in the Laporta sense are ,

G[1, 1, 1, 1], G[1, 0, 1, 0], G[0, 1, 0, 1] (39)

The differential equation matrices are,

A′s =


− s+tε+t
s(s+t) −

2(2ε−1)
s2(s+t)

2(2ε−1)
st(s+t)

0 − ε
s 0

0 0 0

 , A′t =


− sε+s+t

t(s+t)
2(2ε−1)
st(s+t) −

2(2ε−1)
t2(s+t)

0 0 0

0 0 − ε
t

 (40)

• Sector (1, 1, 1, 1). We first check the leading singularity of G[1, 1, 1, 1] by the generalized

unitarity cut. The cut equation

D1 = D2 = D3 = D4 = 0 (41)
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has two solutions at l1 = l∗ and l1 = l̄∗. It is useful to apply spinor-helicity formalism to

express the two solutions and compute the residue.

l1 = a1p1 + a2p2 + a3
〈43〉
〈13〉

λ1λ̃4 + a4
〈13〉
〈43〉

λ4λ̃1 . (42)

There are two maximal cut solutions at,

l∗ : a1 = 0, a2 = 0, a3 = −1, a4 = 0

l̄∗ : a1 = 0, a2 = 0, a4 = 0, a4 =
s

s+ t
(43)

The multivariate residues are,

± 1

st
(44)

Therefore we guess that stG[1, 1, 1, 1] is a UT integral.

• Sector (1, 0, 1, 0). We try to compute the 4D leading singularity like the box. However, a

short computation ends up with ∮
da2

∮
da3

1

a3
(45)

There is no multivariate residue defined for a2 and a3. It is difficult convert G[1, 0, 1, 0] to

a UT integral by multiplying a function in s and t.

However, for the bubble diagram, or any kind of two-point Feynman integral, the trick is

to consider 2D leading singularity. Consider the bubble integral with d = 2 − 2ε. The 2D

leading singularity computation is similar: we can parameterize l
[2D]
1 as,

l
[2D]
1 = c1(p1 + p2) + c2p

⊥ (46)

where p⊥ is a 2D vector such that p⊥ · (p1 + p2) = 0. It is convenient to set (p⊥)2 = −s. A

two-fold computation provides that G(2−2ε)[1, 0, 1, 0] has the leading singularity,

±1

s
(47)

So we guess the sG(2−2ε)[1, 0, 1, 0] is a UT integral. By the dimension recursion relation,

sG(2−2ε)[1, 0, 1, 0] = −2sG(4−2ε)[2, 0, 1, 0] = 2(1− 2ε)G(4−2ε)[1, 0, 1, 0] (48)

So we guess that (1− 2ε)G[1, 0, 1, 0] is a UT.

• Sector (0, 1, 0, 1). We guess that (1− 2ε)G[0, 1, 0, 1] is a UT.
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By using the three UT canidates stG[1, 1, 1, 1], (1− 2ε)G[1, 0, 1, 0] and (1− 2ε)G[0, 1, 0, 1], unfortu-

nately the new DE is still not proportional to ε. This is from the fact that each candidate is a UT

but their transcedental weights do not match at the same ε order. It is easily fixed by considering,

stG[1, 1, 1, 1],
1− 2ε

ε
G[1, 0, 1, 0],

1− 2ε

ε
G[0, 1, 0, 1] (49)

We can do some “cosmetic” work to get dimensionless UT integrals,

I1 = eεγ(−s)εstG[1, 1, 1, 1], I2 = eεγ(−s)ε 1− 2ε

ε
G[1, 0, 1, 0], I3 = eεγ(−s)ε 1− 2ε

ε
G[0, 1, 0, 1] .

(50)

Indeed the new DE is canonical. With x ≡ t/s,

Ax =


− ε
x(x+1) −

2ε
x+1

2ε
x(x+1)

0 0 0

0 0 − ε
x

 . (51)

It is a classical trick to double the propagator of bubble-type integrals to get UT integrals. How-

ever the new fashion is to consider reducible integrals to replace bubble-type integrals. In this

example,

sG[1, 0, 1, 1], tG[0, 1, 1, 1] (52)

are also UT integrals, based on the leading singularity computations.

Example III.2. Consider the two-loop massless box family with inversed propapators,

D1 = l21, D2 = (l1 − p1)2, D3 = (l1 − p1 − p2)2, D4 = (l2 + p1 + p2)2

D5 = (l2 − p4)2, D6 = l22, D7 = (l1 + l2)2, D8 = (l1 + p4)2, D9 = (l2 + p1)2, (53)

The last two are irreducible scalar products and we consider the sector (1, 1, 1, 1, 1, 1, 1, 0, 0) and all

its subsector. By the standard IBP process (with the symmetry), there are 8 master integrals. We

consider the UT searching sector-by-sector,

• Sector (1, 1, 1, 1, 1, 1, 1, 0, 0). There are two master integrals and we need to find two UT

integrals.

Note that the two-loop 4D integration is 8-fold, while in this sector we only have 7 denomina-

tors. With the abuse of multivariate residue definition, we can pick up 7 integration variables

first, and treat the rest one as a free variable “y”. If for generic values of y,

D1 = . . . = D7 = 0 (54)
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has a solution, then we compute the 7-fold residue as a function of y. Then we continue

to compute the residue in y. This kind of computation for G[1, 1, 1, 1, 1, 1, 1, 0, 0] provides

values:

1

s2t
, − 1

s2t
, 0, (55)

So the leading singularity of G[1, 1, 1, 1, 1, 1, 1, 0, 0] can be defined as 1
s2t

.

Note that in this step, we have to exhaust all possible way of computing the multivariate

residues. Obviously this is a complicated procedure, and the complete treatment is given

[10]. We comment that this multivariate residue computation is a typical algebraic geometry

problem, and the leading singularity computation can be efficiently carried out with the so-

called “primary decomposition” and “transformation law” [11].

We guess that s2tG[1, 1, 1, 1, 1, 1, 1, 0, 0] is a UT integral. Similarly,

s2G[1, 1, 1, 1, 1, 1, 1,−1, 0] is also a UT integral candidate.

Alternatively, we can compute the leading singularity in a loop-by-loop fashion. The left loop

is a massless box with external legs p1, p2,−l2 − p1 − p2, l2, which is the so-called “hard”

two-mass box. The leading singularity of this box is

1

s(l2 + p1)2
(56)

For the right loop with the propagators l22, (l2−p4)2 and (l2 +p1 +p2)2. Note that from (56),

we get a new box in l2. Taking the singularity again, we see that the leading singularity of

G[1, 1, 1, 1, 1, 1, 1, 0, 0] is 1/(s2t). This analysis is much easier than the full leading singularity

analysis.

• Sector (0, 1, 0, 1, 1, 1, 1, 0, 0). This is a box-bubble diagram. We can perform a loop-by-

loop analysis to compute the right box residue first, and get a bubble. For the one-loop bubble

analysis, we know that it would be a UT if one of its propagator is doubled. Therefore we

guess that stG[0, 2, 0, 1, 1, 1, 1, 0, 0]/ε is a UT.

• Sector (0, 1, 1, 0, 1, 1, 1, 0, 0). This is a slashed box diagram. This one is tricky. It is not

easy to find the leading singularity from the 4D residue computation. It can be determined

by other methods. The UT candidate is (s+ t)G[0, 1, 1, 0, 1, 1, 1, 0, 0].

• Sector (0, 1, 0, 1, 0, 1, 1, 0, 0). This is a trianglar-bubble diagram. The analysis would be

similar to the box-bubble diagram, and the UT candidate is sG[0, 2, 0, 1, 0, 1, 1, 0, 0]/ε.
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• Sector (1, 0, 1, 1, 0, 1, 0, 0, 0). This is a factorized bubble-bubble diagram. From the

one-loop result, we know that G[2, 0, 1, 2, 0, 1, 0, 0, 0]/ε2 must be a UT integral.

• Sector (0, 0, 1, 0, 0, 1, 1, 0, 0) and (0, 1, 0, 0, 1, 0, 1, 0, 0). These are the sunset

integrals. From the 2D leading singularity analysis, we see that sG[0, 0, 2, 0, 0, 2, 1, 0, 0]/ε2

and tG[0, 2, 0, 0, 2, 0, 1, 0, 0]/ε2 are UT candidates.

With some cosmetic work, the UT candidates are,

I1 = s2e2γεG[1, 1, 1, 1, 1, 1, 1,−1, 0](−s)2ε,

I2 = s3xe2γεG[1, 1, 1, 1, 1, 1, 1, 0, 0](−s)2ε,

I3 = s(x+ 1)e2γεG[0, 1, 1, 0, 1, 1, 1, 0, 0](−s)2ε,

I4 = −s
2xe2γεG[0, 2, 0, 1, 1, 1, 1, 0, 0](−s)2ε

ε
,

I5 =
s2e2γεG[2, 0, 1, 2, 0, 1, 0, 0, 0](−s)2ε

ε2
,

I6 = −se
2γεG[0, 2, 0, 1, 0, 1, 1, 0, 0](−s)2ε

ε
,

I7 = −se
2γεG[0, 0, 2, 0, 0, 2, 1, 0, 0](−s)2ε

ε2
,

I8 =
sxe2γεG[0, 2, 0, 0, 2, 0, 1, 0, 0](−s)2ε

ε2
(57)

and the canonical DE is

Ax = ε

(
a−1

x+ 1
+
a0

x

)
(58)

with

a−1 =



−1 1 −18 −4 −1 3 −3 9
2

−2 2 −12 −4 −2 −6 −6 3

0 0 2 0 0 0 0 0

0 0 0 1 0 −3 0 −3
2

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0



(59)
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and

a0 =



1 −1 18 4 −1 −3 3 −9
2

0 −2 12 4 0 0 3 −3

0 0 −2 0 0 0 −1
2 −

1
2

0 0 0 −2 0 0 0 3
2

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −2



(60)

In practice, if we guess a MI Ik which may be proportional to a UT integral by a ε-independent

factor, we can make a transformation ansatz

Ik → f(x̄)Ik (61)

and then collect all ε0 terms in the DE matrix. Cancel the ε0 terms, and we are able to determine

f(x̄) analytically. This trial and error way is convenient and saves the time for finding the leading

singularity.

Note that for a complicated integral, the leading singularities may be a list of rational functions,

which do not differ between each other by constant factors. In this case, it is impossible to construct

a UT integral from this integral directly and we have to consider a linear combination.

B. Lee’s algorithm

Another approach to find UT integrals, is to convert a non-canonical DE to a canonical DE.

With a canonical DE, it is highly likely that the corresponding integrals are UT. However, we

comment that a canonical DE does not not guarantee that the integrals are UT. For example, if ~I

is a UT basis which satisfies,

d~I = ε(dÃ)~I (62)

Then a basis ~J = f(ε)~I has the same DE. However, with a nontrivial function f(ε), J is in general

not a UT basis. This subtlety can usually be fixed by evaluating the simplest integral in the basis

analytically, or compute the leading singularity of some integrals, and then remove possible f(ε)

factor.

Here we introduce Roman Lee’s algorithm [12] of finding the canonical DE. There are basically

three steps. For simplicity, we consider the one-variable case,
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1. Make the differential equation to a Fuchsian form. This step is based on Moser’s algorithm,

which lowers DE matrix’s pole degree in a sequence of rational transformations.

It is not guranteed that any differential equation of Feynman integrals can always be trans-

formed to a Fuchsian form by Moser’s algorithm. When it is the case, pick up the residue

matrices like,

∂xI
′ =

(∑
i

Ai(x, ε)

x− ai
)
I ′ (63)

2. Ai(x, ε) are in general not proportional to ε. Find the eigenvalues of Ai(x, ε). (We also need

to consider the residue matrix at the infinity.) If the eigenvalues are all in the form Z + Qε,

then apply the so-called balance transformation. For i 6= j, pick one eigenvalue λik of Ai and

one eigenvalue λjl of Aj . A balance transformation is

(I− P ) +
x− xi
x− xj

P (64)

with

P =
1

vu

(
uv

)
, Aiu = λiku, vAj = λjlv (65)

where u is a right eigenvector of Ai and v is a left eigenvector of Aj . A balance transformation

increases Ai’s eigenvalue λik by one and decrease Aj ’s eigenvalue λjl by one.

Repeat this steps, until all eigenvalues are proportional to ε. Name the total transformation

as I ′′ = T1I
′.

3. Now the differential equation reads

∂xI
′′ =

(∑
i

Ai(x, ε)

x− ai
)
I ′′ (66)

with all Ai(x, ε)’s eigenvalues proportional to ε. Note that Ai’s in general do not commute,

so a simultaneous diagonalization does not work. Then here is the brilliant trick of Lee, to

make all entries of Ai(x, ε) proportional to ε.

Suppose there is a transformation matrix T (x, ε) such that

T (x, ε)Ai(x, ε)T
−1(x, ε) = εBi(x), ∀i (67)

then we introduce an auxiliary variable µ. It is clear,

T (x, ε)Ai(x, ε)T
−1(x, ε)/ε = T (x, µ)Ai(x, µ)T−1(x, µ)/µ (68)
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Define S(x, ε, µ) = T (x, µ)−1T (x, ε), and

S(x, ε, µ)
Ai(x, ε)

ε
=
Ai(x, µ)

µ
S(x, ε, µ) ∀i (69)

This is a linear equation in S(x, ε, µ) and in principle we can solve it for S(x, ε, µ) with x, ε, µ

treated as parameters. If for the solution, S(x, ε, µ) is finite and invertible when µ → µ0

with some constant µ0, then

S(x, ε, µ0)Ai(x, ε)S(x, ε, µ0)−1 = ε
Ai(x, µ0)

µ0
(70)

Let T = S(x, ε, µ0) and this makes all entries proportional ε. The canonical DE is obtained.

Lee’s algorithm is implemented as an interactive Mathematica package Libra [13], or the auto-

matic packages epsilon and fuchsia [14, 15].

We comment that sometimes in the second step, the eigenvalues do not have the form Z + Qε.

This is usually caused by the variable choice x and implies the UT integrals have a square root

factor over the original MIs. In this case, we need to rationalize the square root and then use Lee’s

algorithm.

Sometimes, we could not find a non-singular balance transformation to make all eigenvalues

proportional to ε. Usually, this means the UT basis does not exist and the Feynman integrals

contain elliptic functions.

IV. INTEGRATION TO SYMBOLS

Before we consider solving the canonical DE analytically, we introduce the solution of DE in

the symbol level. Symbol is a great tool for the loop-level scattering amplitudes which captures

many features of the analytic Feynman integrals.

We see that all polylogarithm functions has the form: an integration of a simple rational function

multiplied by a lower weight polylogarithm. To illustrate this structure, the symbol [2] is defined

recursively as, if

dF =
∑
i

Fid logRi (71)

with rational functions Ri, then the symbol of F is

S(F ) ≡
∑
i

S(Fi)⊗Ri (72)
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Here S is the Q linear map from the function space to the symbol space. ⊗ is the notation for

noncommutative tensor product. Each entry of the tensor is called a symbol letter.

For the simplest function,

S(log(z)) = z (73)

The original symbol definition treats

S(π) = 0, S(ζn) = 0 , (74)

to ignore these constants. Note that against the intuition, S(π log(z)) = 0.

Note that d log(R1R2) = d logR1 + d logR2, d log(cR) = d log(R), d log(R−1) = −d log(R), so

we demand the symbol to has the distributivity,

. . .⊗ (R1R2)⊗ . . . = . . .⊗R1 ⊗ . . .+ . . .⊗R2 ⊗ . . .

. . .⊗ (cR)⊗ . . . = . . .⊗R⊗ . . .

. . .⊗ (R−1)⊗ . . . = − . . .⊗R⊗ . . . (75)

Example IV.1. By the definition,

S(Li2(z)) = −(1− z)⊗ z, S(Li4(z)) = −(1− z)⊗ z ⊗ z ⊗ z

S
(
Li2(

x

y
)
)

= −(1− x

y
)⊗ x

y
, S(H(1,−1; z)) = −(z + 1)⊗ (1− z) (76)

For the second line, we do not need to decompose d(x/y) = dx/y− xdy/y2 but just treat d(x/y) as

one object.

Note that in −(1− z)⊗ z, the overall minus sign cannot be dropped. However, it is quite risky

to confuse it with (z − 1)⊗ z. Therefore, frequently, especially for the programming, we write

S(Li2(z)) = −S[1− z, z] (77)

and the overall factor is emphasized.

The map S is a simple representation of polylogarithm functions, and can be used to check

function identities. If a function combination is zero, then its symbol must be zero.

Example IV.2. (Abel’s identity)

Li2
( x

1− y
)

+ Li2
( y

1− x
)
− Li2

( xy

(1− x)(1− y)

)
= Li2(x) + Li2(y) + log(1− x) log(1− y) (78)
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We use symbol to check this identity.

S[l.h.s] = −S[1− x

1− y
,

x

1− y
]− S[1− y

1− x
,

y

1− x
] + S[1− xy

(1− x)(1− y)
,

xy

(1− x)(1− y)
]

= −S[1− x, x] + S[1− x, 1− y] + S[1− y, 1− x]− S[1− y, y] (79)

which is obviously the same as the letters of the right hand side, since

d
(

log(1− x) log(1− y)
)

= log(1− x)d log(1− y) + log(1− y)d log(1− x) (80)

However, note that even if the corresponding symbol is zero, we still could not claim the function

is zero. The reason is that constants like π or ζn are dropped in the symbol map S. S is not an

injective map. It is posssible to make an ansatz which proportional to π or ζn for the missing part,

and then use numeric evaluation to check a function relation completely.

Given a symbol S[R1, . . . , Rn], can we find a function F such that S(F ) = S[R1, . . . , Rn]?

Naively, we define the iterative integral like this: Let M be the space (manifold) of variables and

choose o a base point. For any point p ∈M , p = (x1, . . . , xm), we find a smooth map γ : [0, 1]→M

such that

γ(0) = o, γ(1) = p (81)

With the abuse of notation Ri(t) ≡ Ri(γ(t)), we define

F (p) =

∫ 1

0
dtn

R′n(tn)

Rn(tn)

(∫ tn

0
dtn−1

R′n−1(tn−1)

Rn−1(tn−1)

(∫ tn−1

0
dtn−2

R′n−2(tn−2)

Rn−2(tn−2)

(
. . .

)))
(82)

This definition is clearly extended to the linear combination of symbols. For a connect region

containing o, it seems F is defined. However, we need to check if the definition is homotopically

invariant under an infinitesimal deformation of γ.

Example IV.3. Consider the symbol (1 + x) ⊗ (1 + y). In the x-y plane, choose the base point

o = (0, 0). For p = (1, 1), choose a path (x(t), y(t)) such that (x(0), y(0)) = (0, 0) and (x(1), y(1)) =

(1, 1). The “function” F at p has the expression,

F (p) =

∫ 1

0
dt2

y′(t2)

1 + y(t2)

∫ t2

0
dt1

x′(t1)

1 + x(t1)
(83)

With x(t) = t, y(t) = t we get F (p) = log(2)2/2, while for x(t) = t, y(t) = t2 we get F (p) =

log(2)2/4 +π2/48. The two paths are hotomopically equivalent, so this function is not well defined.

The validity condition of the iterative integral is solved by Chen’s iterative integral theory [16].

The integral 82 is well defined if and only if the symbol is integrable: Let A be a weight-m symbol
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in letters {R1 . . . Rl},

A =
∑
I

cIS[Ri1 , . . . Rim ] (84)

where each I = {i1, . . . im} is m-tuple whose entries are integers in [1, l]. A is integrable if for any

1 ≤ j ≤ m− 1

∑
I

cI

(
d logRij ∧ d logRij+1

)
S[Ri1 , . . . , R̂ij , R̂ij+1 , . . . , Rim ] = 0 (85)

Example IV.4. The symbol

S[1− x, x] + S[1− x, 1− y] + S[1− y, 1− x]S[1− y, y] (86)

is integrable. Since it is clear that

−d log(1− x) ∧ d log(x) + d log(1− x) ∧ d log(1− y)

+d log(1− y) ∧ d log(1− x)− d log(1− y) ∧ d log(y) = 0 (87)

by the anti-commutative wedge product. This is the symbol from the well-defined function in the

example (IV.2).

The symbol

S[x+ y, 1− y, y] + S[1− y, x+ y, y] + S[1− y, y, x+ y] (88)

is also integrable. To see this, with j = 1 for the condition in (85), we can check

d log(x+ y) ∧ d log(1− y)S[y] + d log(1− y) ∧ d log(x+ y)S[y] + d log(1− y) ∧ d log(y)S[x+ y] = 0

(89)

The check with j = 2 is similar.

When a symbol A is integrable, the iterative integral (82) F is well-defined. By Newton-Leibniz

theorem and the symbol definition

S(F ) = A. (90)

So we see that a integrable symbol corresponds to a function. Note the iterative integral is homo-

topically invariant, but if the variable space is not simply connected (because of singular points),

the iterative integral can have branch cuts.
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Integrable symbols can be used to calculate an amplitude in the approach of bootstrap, for

example see ref. [17–19]. In practice, the integrable symbols with fixed weights can be found by

the package [20].

Back to the canonical differential equation, with the background knowledge of Chen’s theory,

it is clear that the solution would be an iterative integral. In many cases, we first want to know

the symbol of the solution, instead of the analytic solution. By the definition, the symbol of the

solution can be obtained without much effort.

Consider the canonical differential equation for UT integrals,

d~I = ε(dÃ)~I = ε

( N∑
i=1

aid logWi

)
~I (91)

with

~I = εk
∞∑
n=0

~I(n)εn (92)

Recall the canonical DE splits to differential orders of ε in (35): each derivate of I(n) is the product

of dlog’s and I(n−1). This immediately indicts that

S(I(m)) =

( N∑
im=1

N∑
im−1=1

. . .

N∑
i1=1

aimaim−1 . . . ai1I
(0)

)
S[Wi1 , . . . ,Wim ] (93)

where I(0) is the leading order of the UT basis, which is a constant (rational number) vector. The

correctness of (93) is simply from the definition of symbols.

Note that this forumla only needs the leading order of UT, I(0), which can be easily obtained

from an infrared/ultraviolet structure analysis or a numeric computation. In practice, to evaluate

the big sum in (93), we always compute ai1I
(0) first, then ai2ai1I

(0) and likewise for the rest

multiplication to speed up the computation. This computation should be simple.

An interesting consequence of (93) is that if the two matrices satisfy,

aiaj = 0, (94)

Then the symbol can never have Wj and Wi in the adjacent position.

V. INTEGRATION TO FUNCTIONS

From the study of symbols, the idea of solving canonical differential equation in terms of iterative

integrals becomes clear. However, in practice, we need the analytic function form of Feynman

integrals. The new ingredient is the boundary condition.
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The solution of a canonical differential equation is completely determined by UT integral at one

boundary point o,

~I(n)(o) ≡ B(n) (95)

Let γ be a smooth starting from o. Then along the curve γ, the solution corresponding to the

UT Feynman integral is

I(0) = B(0)

I(1) = B(1) +

∫
γ
(dÃ)I(0)

I(2) = B(2) +

∫
γ
(dÃ)I(1)

. . .

I(n) = B(n) +

∫
γ
(dÃ)I(n−1)

(96)

Here the notation
∫
γ can be explicitly written as an integration over a t-parameterized curve from

o to an arbitrary point p.

The main difference between (93) and (96) is that the higher order boundary values B(i)’s are

also taken into account. That means the computation is significantly harder than the previous

section.

About the integration in (96), note that (dÃ) contains only dlog’s of the symbol letters. If all

letters are rational functions, then (dÃ) contain rational function only. Along the curve γ, the pull

back of (dÃ) would become rational function in t. By a factorization, each rational function only

have linear denominators in t. The power of each linear factor would be at most one, because of the

dlog form. Therefore, the integration, by the definition, produces GPLs only if all symbol letters

are rational. Of course, in many cases the integration only gives HPLs or classical polylogarithms.

If the symbol letters contain square root and cannot be rationalized simultaneously, then the

integration may provide more complicated function other than GPLs.

Here the main problem is to find the higher order boundary values. This step is tricky: unfortu-

nately, there is no automatic algorithm to do this. There are two types of strategies for determining

the boundary values:

1. Direct evaluation of the boundary values at a special point. The special point can have ac-

cidental kinematic symmetries or some special physical meaning. For integrals with internal
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masses, we often consider the special point to be the limit mass → ∞. For integrals with

multiple legs, we often consider the point with the permutation symmetry of the legs.

At the special point, the number of master integral may drop dramatically and we do not

need to evaluate all UT integrals at that point. One example is the so-called two-loop five-

point nonplanar “double-pentagon” integral family at the kinematic point, where p3, p4 and

p5 are symmetric under permutations, the number of master integrals dropped from 108 to

49.

Then we try to directly evaluate the independent UT integrals at that point. The methods

could be Feynman parametrization with Cheng-Wu theorem, dimension recursion relation,

expansion by regions or direct integration with HypInt. However, there is no automatic

way for this computation.

2. Set an Ansatz for the boundary values and determine them later against the consistency

condition. There are many types of consistency conditions. For example, for the massless

four-point kinematics, a planar UT integral should be finite in the limit u → 0. More

generically, a UT integral is likely to be finite when one of the symbol letter is zero and

ε < 0. Thos generic consistency condition was systematically studied in []. Furthermore, it

is also useful to consider the soft/collinear/Regge limit of the UT integrals.

In solving a canonical DE in the function level, one may need to use both of the strategies.

Example V.1. (One-loop massless box) The UT basis and the canonical DE of one-loop massless

box integral family are given in (50) and (51).

The canonical DE has the symbol letter decomposition,

Ax = ε

(
a−1

x+ 1
+
a0

x

)
(97)

with

a−1 =


1 −2 −2

0 0 0

0 0 0

 , a0 =


−1 0 2

0 0 0

0 0 −1

 . (98)

We choose the point x = 1. At this point, I2 = I3 and by a simple Feynman parametrization

computation,

I2|x=1 = I3|x=1 = ε−2

(
1− π2ε2

12
− 7ζ(3)ε3

3
− 47π4ε4

1440
+ . . .

)
(99)
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The boundary value for I1 can also be computed by Feynman parametrization, however the procedure

is much more complicated. We leave its boundary value undetermined.

For the convenience, we define,

~I = ε−2
∞∑
n=0

~I(n)(x)εn . (100)

The boundary value is then

∑
n

~B(n)εn =


c(0)

1

1

+


c(1)

0

0

 ε+


c(2)

−π2

12

−π2

12

 ε2 +


c(3)

−7ζ(3)
3

−7ζ(3)
3

 ε3 + . . . (101)

c’s are to be fixed by the condition that planar Feynman integral should not diverge at x = −1

(u = 0). Note that the DE itself has the pole x = −1 does not mean the solution must diverge

there.

The condition limx→−1
~I(n+1)(x) <∞ is translated as,

lim
x→−1

a−1
~I(n)(x) = ~0 (102)

• Weight-0. (102) determines that c0 = 4 and (96) provides,

~I(0) =
(

4, 1, 1
)T

(103)

• Weight-1. (102) determines that c1 = 0 and (96) provides,

~I(1) =
(
−2 log(x), 0, − log(x)

)T
(104)

Note that in using the logarithm function, we impose the branch cut (−∞, 0) on the x-plane.

• Weight-2. The condition (102) reads

lim
x→−1

c2 − log(x)2 +
π2

3
= 0 (105)

It appears subtle because log(x) has different values above and below the point x = −1.

However, this subtlety is cleared because of the square, and we get c2 = −4π2/3. By (96),

~I(2) =
(
−4π2

3 , −π2

12 ,
log2(x)

2 − π2

12

)T
(106)

• Weight-3. The condition (102) determines that

c3 =
1

6

(
−77ζ(3)− 6π2 log(2)

)
(107)
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And by (96), we get ~I3,
1
6

(
12Li3(−x)− 12Li2(−x) log x+ 2 log3 x− 6 log(x+ 1) log2 x+ 7π2 log x− 6π2 log(x+ 1)− 68ζ3

)
−7ζ3

3

1
12

(
−2 log3 x+ π2 log x− 28ζ3

)


(108)

Note that these functions also have the branch cut (−∞, 0).

Higher orders can be analytically computed in the similar way. After the analytic computation, it

is important to check it with numeric computations. With s = −1 and t = −1, from the package

pySecdec we have

I1|x→1 = 4.00000ε−2 −
(
1.74986× 10−7

)
ε−1 − 13.1595− 22.2675ε (109)

which is consistent with our analytic boundary condition. Furthermore, we can check the integrated

result on a generic physical point. For example, consider the point s = −1 and t = +3, pySecdec

gives

I1|x→−3 =
4.00000

ε2
− 2.19725− 6.28323i

ε
− (13.15975− 0.00021i) + (−9.8244− 10.2675i)ε (110)

which is consistent with our analytic computation. Note that in the physical region, we have to

shift the value as,

s→ −1, t→ 3 + iδ, δ > 0 (111)

in order to get the correct value for functions like log x and Li2(−z). Otherwise, we are using the

wrong branch.

Example V.2. (Two-loop massless box) The UT basis and the canonical DE were given in (57)

and (58). Again the UT basis is dimensionless and we consider x = 1 as our boundary. Here we

see that this example has new features, comparing with the one-loop box family.

The last four UT integrals in (57) can be easily computed from Feynman parameterization. The

UT integrals I3 and I4 can also be computed from Feynman parameterization, however, the cost is

heavier. We leave the boundary values for the first four UT integrals undetermined.

We use the convention

~I = ε−4
∞∑
n=0

~I(n)(x)εn . (112)
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The boundary condition for the 8 UT integrals is

∞∑
n=0

~B(n)εn =



c
(0)
1 + εc

(1)
1 + ε2c

(2)
1 + ε3c

(3)
1 + ε4c

(4)
1 +O

(
ε5
)

c
(0)
2 + εc

(1)
2 + ε2c

(2)
2 + ε3c

(3)
2 + ε4c

(4)
2 +O

(
ε5
)

c
(0)
3 + εc

(1)
3 + ε2c

(2)
3 + ε3c

(3)
3 + ε4c

(4)
3 +O

(
ε5
)

c
(0)
4 + εc

(1)
4 + ε2c

(2)
4 + ε3c

(3)
4 + ε4c

(4)
4 +O

(
ε5
)

1− π2ε2

6 −
14ζ(3)ε3

3 − 7π4ε4

120 +O
(
ε5
)

1
4 + π2ε2

24 −
13ζ(3)ε3

6 − 41π4ε4

1440 +O
(
ε5
)

−1 + π2ε2

6 + 32ζ(3)ε3

3 + 19π4ε4

120 +O
(
ε5
)

1− π2ε2

6 −
32ζ(3)ε3

3 − 19π4ε4

120 +O
(
ε5
)
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We may use the planar consistency condition limx→−1
~In+1(x) <∞ or

lim
x→−1

a−1
~In(x) = 0 (114)

• Weight 0. In this case, (114) means,

c
(0)
2 =

7

4
+ c

(0)
1 , c

(0)
3 = 0, c

(0)
4 =

9

4
(115)

It does not look good because c
(0)
1 is still undetermined. We leave c

(0)
1 as a free parameter

and turn to the next order.

• Weight 1. We integrate ~I(0) to get ~I(1). Then (114) reads,

c
(1)
2 = c

(1)
1 + lim

x→−1
(2c

(0)
1 −

9

2
) log x, c

(1)
3 = 0, c

(1)
4 = 0 (116)

No matter we approach the point x = −1 from the above or the below, log x would be complex.

However c
(1)
2 and c

(1)
1 should be real, since the boundary point is in the Euclidean region.

Hence,

c
(0)
1 =

9

4
(117)

At the weight-1 order, we fixed the weight-0 boundary condition. Here the value of c
(1)
1 is

undetermined yet.

• Weight 2. We integrate ~I(1) to get ~I(2). Then (114) reads,

c
(2)
2 → 1

24

(
48c

(1)
1 lim

x→−1
(log(x)) + 24c

(2)
1 − 13π2

)
c

(2)
3 → π2

2
c

(2)
4 = −13π2

8
(118)

Again by the Euclidean region argument,

c
(1)
1 = 0 (119)
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So we completely obtained the UT basis up to weight 1, and the result is,

~I(0) + ε~I(1) =



9
4 − 2ε log(x)

4− 5ε log(x)

0

9
4 − 3ε log(x)

1

1
4

−1

1− 2ε log(x)



(120)

All order boundary values can be fixed by (1) the planar integral consistency condition (2) Euclidean

region condition. The rest computation is left as homework.

We remark that for solving canonical DE, it may be cumbersome to use the “Integrate” com-

mand in Mathematica, even if a result contains only classical polylogarithm. It is more convenient

to define the iterative integration rules and formal function like HPLs or GPLs in the computer

algebra system. Then call a package like HPL to simplify the result.

To simplify polylogarithms combinations, the main tool is the shuffle identity.

Example V.3. To understand shuffle identity, it is good to start from a simple example. Consider

f1(z) = H(1,−1; z) and f2(z) = H(−1, 1; z). Assume that 0 < z < 1, and they both have the

iterative integral form,

f1(z) =

∫ z

0
dt2

1

1− t2

∫ t2

0
dt1

1

1 + t1

f2(z) =

∫ z

0
dt2

1

1 + t2

∫ t2

0
dt1

1

1− t1
(121)

In the second integral, rename the variables t1 ↔ t2, and we get

H(1,−1; z) +H(−1, 1; z) =

∫ z

0
dt1

1

1 + t1

∫ z

0
dt2

1

1− t2
= − log(1 + z) log(1− z) (122)

We see that

S(log(1 + z)) = S[1 + z], S(− log(1− z)) = −S[1− z]

S(H(1,−1; z) +H(−1, 1; z)) = −S[1 + z, 1− z]− S[1− z, 1 + z] (123)

So for the symbol of two products log(1 + z) and log(1− z), is the sum of the shuffle product of two

letters.
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We also comment that all terms in (122) have the same branch cuts (−∞,−1) and (1,∞), and

by analytic continuation, the identity holds everywhere on the complex plane except for z = ±1.

For the product of two polylogarithms, the shuffle identity can be derived by a simplex decom-

position. For GPLs,

G(a1 . . . an; z)G(an+1, . . . an+m; z) =
∑

σ∈Σn,m

G(aσ(1) . . . aσ(n+m); z) (124)

where Σn,m is a subset of the permutation group Σn+m consists all permutations such that

σ−1(1) < . . . < σ−1(n), and, σ−1(n+ 1) < . . . < σ−1(n+m), (125)

For HPLs, the shuffle identity is the same with G→ H.

The shuffle identity means that GPLs (HPLs) of the same weights in z are not independent. So

we can use the shuffle identity to simplify polylogarithms, and extract the divergence.

Example V.4. Consider the function f(z) = H(1, 0,−1, 0; z). This function is divergent when

z → 1. Find the leading divergence. We use the shuffle identity,

H(1; z)H(0,−1, 0; z) = H(1, 0,−1, 0; z) +H(0, 1,−1, 0; z) +H(0,−1, 1, 0; z) +H(0,−1, 0, 1; z)

(126)

The last three functions are not divergent at z → 1. Hence we see that,

H(1, 0,−1, 0; z)|z→0 → −H(0,−1, 0; z) log(1− z) ∼ 3

2
ζ(3) log(1− z) (127)

VI. SIMPLIFIED CANONICAL DIFFERENTIAL EQUATION

Sometimes, for a real-world problem, we do not need to solve all the integrals in a family.

Instead, we are only interesed in a subset of integrals to a certain ε order. In this case, a canonical

DE can be simplified [21].

We illustrate the idea with a concrete example in the ref. [21],

Example VI.1. (One-loop box with internal mass).

D1 = l21 −m2, D2 = (l1 − p1)2 −m2, D3 = (l1 − p1 − p2)2 −m2, D4 = (l1 + p4)2 −m2

(128)
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with p2
i = 0, i = 1, 2, 3, 4. (p1 + p2)2 = s, (p1 + p4)2 = t and (p2 + p4)2 = −s − t. There are 6

master integrals in this family. With the leading singularity analysis and some reasonable guessing,

the UT basis is,

I1 = eεγ
(
m2
)ε√

st (st− 4m2(s+ t))G[1, 1, 1, 1]

I2 = eεγs
(
m2
)ε
G[1, 0, 1, 1]

I3 = eεγt
(
m2
)ε
G[0, 1, 1, 1]

I4 = eεγ
√
s(s−4m2)(m2)

ε

ε G[1, 0, 2, 0]

I5 = eεγ
√
t(t−4m2)(m2)

ε

ε G[0, 1, 0, 2]

I6 = eεγ
(m2)

ε+1

ε2
G[0, 0, 0, 3]

(129)

It is convenient to define

u = −4m2

s
, v = −4m2

t
(130)

and,

βu =
√

1 + u, βv =
√

1 + v, βuv =
√

1 + u+ v, (131)

The alphabet {W1, . . . ,W8} is

{ u

1 + u
,

v

1 + v
,

u+ v

1 + u+ v
,
βu − 1

βu + 1
,
βv − 1

βv + 1
,
βuv − βu
βuv + βu

,
βuv − βv
βuv + βv

,
βuv − 1

βuv + 1
} (132)

By a numerical fitting, the canonical differential equation has the Ã matrix (homework):

Ã =



log (W3) −2 log (W8) −2 log (W8) −2 log (W6) −2 log (W7) 0

0 0 0 − log (W4) 0 0

0 0 0 0 − log (W5) 0

0 0 0 log (W1) 0 2 log (W4)

0 0 0 0 log (W2) 2 log (W5)

0 0 0 0 0 0


(133)

It is easy to find the boundary value at m→∞

u→∞, v →∞ (134)

and solve the canonical DE. However, if we only need the I1’s ε0 order, there is a short cut.

Note that from the UV/IR analysis, in the UT list

I1, I2, I3 ∼ O(ε0), I4, I5 ∼ O(ε−1), I6 ∼ O(ε−2) (135)
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Then we define

J1 = I1, J2 = I2, J3 = I3, J4 = εI4, J5 = εI5, J6 = ε2I5, (136)

So Ji’s are finite as ε→ 0. The DE for J ’s is,

d ~J = d



ε log (W3) −2ε log (W8) −2ε log (W8) −2 log (W6) −2 log (W7) 0

0 0 0 − log (W4) 0 0

0 0 0 0 − log (W5) 0

0 0 0 ε log (W1) 0 2 log (W4)

0 0 0 0 ε log (W2) 2 log (W5)

0 0 0 0 0 0


~J (137)

If we are only interested in the ε0 order of J , then

d ~J (0) = d



0 0 0 −2 log (W6) −2 log (W7) 0

0 0 0 − log (W4) 0 0

0 0 0 0 − log (W5) 0

0 0 0 0 0 2 log (W4)

0 0 0 0 0 2 log (W5)

0 0 0 0 0 0


~J (0) (138)

The DE is significantly simplified. Especially,

d


J

(0)
1

J
(0)
4

J
(0)
5

J
(0)
6

 = d


0 −2 log (W6) −2 log (W7) 0

0 0 0 2 log (W4)

0 0 0 2 log (W5)

0 0 0 0




J

(0)
1

J
(0)
4

J
(0)
5

J
(0)
6

 (139)

That means J
(0)
1 is an integration of J

(0)
4 and J

(0)
5 , where the latter two are the integration of J

(0)
6 .

We then have a simple iterative integration, unlike the standard canonical DE, here the iterative

structure is over different integrals.

From Feynman parameterization,

J
(0)
6 = −1

2
(140)

and then

J
(0)
4 = − log(W4) + c4 = − log(

βu − 1

βu + 1
) + c4, J

(0)
5 = − log(W5) + c5 = − log(

βv − 1

βv + 1
) + c5 (141)
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From the boundary condition at s → 0 and t → 0, we see that c4 = c5 = 0. Then, the symbol of

J
(0)
1 is clear,

S(J
(0)
1 ) = 2S[W4,W6] + 2S[W5,W7] = 2

(
S[
βu − 1

βu + 1
,
βuv − βu
βuv + βu

] + S[
βv − 1

βv + 1
,
βuv − βv
βuv + βv

]

)
. (142)

If we pick up a boundary point where J
(0)
1 → 0, then J

(0)
1 has a compact expression in terms of

iterative integral

J
(0)
1 = 2

∫
γ

log

(
βu − 1

βu + 1

)
d log

(
βuv − βu
βuv + βu

)
+ log

(
βv − 1

βv + 1

)
d log

(
βuv − βv
βuv + βv

)
(143)

This is a perfect answer.

However, in practice, we may want the expression in terms of polylogarithms. In general, Chen’s

iterative integral may not be a combination of polylogrithm, but the integral (143) is, because all

three square roots can be rationalized simutaneously:

u =
(1− w2)(1− z2)

(w − z)2
, v =

4wz

(w − z)2
(144)

For the simplicity, we choose the Euclidean region,

u = −4m2

s
> 0, v = −4m2

t
> 0 (145)

and correspondingly 0 < w < z < 1. In this region,

βu =
1− wz
z − w

, βv =
z + w

z − w
, βuv =

1 + wz

z − w
(146)

Then

W4 =
(w + 1)(1− z)
(1− w)(z + 1)

, W5 =
w

z
, W6 = wz, W7 =

(1− w)(1− z)
(w + 1)(z + 1)

(147)

Here we see that in the new coordinates, the relevant symbol letters become {z, w, 1 ± z, 1 ± w}.

For a generic point (z, w), 0 < w < z < 1, we pick the boundary point as (w,w) and γ to be

the straight line from (w,w) to (z, w). At (w,w), J
(0)
1 is zero. Then the computation of (143) is

straightforward, and the result is

J
(0)
1 = −2Li2(1− w)− 4Li2(−w) + 2Li2(w) + 2Li2(1− z) + 4Li2(−z)− 2Li2(z) + 2 log(w + 1) log(z)

+2 log(w) log(1− z)− 2 log(1− w) log(z)− 2 log(w) log(z + 1)− 2 log(w) log(w + 1) + 2 log(z) log(z + 1) .

(148)

This result is consistent with pySecdec.
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The lesson here is that we do not need to compute the two triangles but directly get the box from

the integration of bubbles. The equation (139) is not just upper triangular, but has all diagonal

elements zero. Then the iterative integration structure over UT integrals is manifest.

This kind of treatment certainly simplified the canonical DE a lot. However, it would be greater

if one can completely skip the full canonical DE and directly get a simple DE like (139). This is

possible and the key idea is find integral relations only valid to a fixed order of ε.

VII. UT DETERMINATION, II

The UT determination for multiloop Feynman integrals, especially with multiple legs, is not a

easy task. In this section, we give an overview of some more recent methods.

A. Integrand dlog construction

Roughly speaking, integrand dlog construction can be understood as an advanced version of

the leading singularity analysis. Again, it was invented in the study of N = 4 Super-Yang-Mills

theory [22, 23].

A 4D dlog integrand has the form∫
d log f1 ∧ . . . d log f4L (149)

We can consider f1, . . . , f4L as variables and thus any residue would be ±1. Note that this argument

is actually stronger than the leading singularity based on cuts, since here no cut is taken. A

Feynman integral with 4D dlog integrand is likely to be UT, while a Feynman integral with constant

leading singularity tends to be a UT up to some lower sector integrals.

Example VII.1. (one loop massless box’s dlog form). The inverse propagators are

D1 = l21, D2 = (l1 − p1)2, D3 = (l1 − p1 − p2)2, D4 = (l4 + p4)2 (150)

We define a “magic factor”,

F = (l − l∗)2 (151)

where l∗ is one of the maximal cut solution for l. Then it is easy to check∫
d log

(
F

D1

)
∧ d log

(
F

D2

)
∧ d log

(
F

D3

)
∧ d log

(
F

D4

)
∝ st

∫
d4l

1

D1D2D3D4
(152)
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therefore stG[1, 1, 1, 1] is a dlog integral. We already know that this is a UT integral.

In practice, it is not easy to find an elegant dlog integrand like (VII.1). However, for the purpose

of UT determination, a linear combination of several dlog integrand is equally good. Such a linear

combination can be found with Wasser’s package dlog [24].

B. Baikov leading singularity

Baikov representation is convenient for the leading singularity computation, and has been used

recently in the UT determination [25–28]. In Baikov representation, the ε parameter is preserved

while the integration is over an integer number of variables.

Example VII.2. (two-loop massless slashed box). With the notation in the previous examples, the

integral G[0, 1, 1, 0, 1, 1, 1, 0, 0] is the so-called slashed box integral.

G[0, 1, 1, 0, 1, 1, 1, 0, 0] =

∫
ddl1

iπd/2

∫
1

(l − p1)2(l − p1 − p2)2

∫
ddl2

iπd/2
1

(l2)2(l2 − p4)2(l2 + l1)2
(153)

We can do a right-to-left Baikov analysis. For the loop with l2, the external lines are l1 and p4, so

the Baikov representation is

G

 l1 p4

l1 p4


3−d
2 ∫

dz1dz2dz3 G

 l2 l1 p4

l2 l1 p4


d−4
2

1

z1z2z3
(154)

with the Baikov variable definition,

l22 = z1, l1 · l2 =
1

2
(−l21 − z1 + z3), l2 · p4 =

1

2
(z1 − z2). (155)

Consider the residue at {z1, z2, z3} → {0, 0, 0} of 154 with d→ 4, we get,

1

l1 · p4
(156)

For the left loop with external lines p2, the Baikov representation is

G

 p2 p4

p2 p4


3−d
2 ∫

dw1dw2dw3 G

 l1 − p1 p2 p4

l1 − p1 p2 p4


d−4
2

1

w1w2w3
(157)

with the Baikov variable definition,

(l1 − p1)2 = w1, (l1 − p1 − p2)2 =
1

2
(w1 − w2), l1 · p4 = w3 −

t

2
(158)
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Note that from the right loop analysis we have a new propagator (l1 · p4)−1. We have to add p4 as

an external line. The residue of (157) is then,

1

s+ t
(159)

From the loop-by-loop Baikov representation we can see the leading singularity of

G[0, 1, 1, 0, 1, 1, 1, 0, 0] is 1/(s+ t).

More important, in multi-leg cases, an integrand may be explicitly zero in the 4D limit, but the

integral does not vanish. In such cases, 4D UT determination method completely failed but the

Baikov method works.

Example VII.3. ( Two-loop five-point nonplanar UT integral). The propagators of this integral

family are,

D1 = l21, D2 = (l1 − p1)2, D3 = (l1 − p12)2, D4 = l22,

D5 = (l2 − p123)2, D6 = (l2 − p1234)2, D7 = (l1 − l2)2,

D8 = (l1 − l2 + p3)2, D9 = (l1 − p1234)2, D10 = (l2 − p1)2,

D11 = (l2 − p12)2.

(160)

Consider the integral,

I[µ12] ≡
∫
ddl1d

dl2

(iπd/2)2

G

 l1 p1 p2 p4 p5

l2 p1 p2 p4 p5

 .

D1 . . . D8
(161)

This one has no 4D leading singularity, since in the 4D limit the numerator is vanishing. However,

the integral itself is not zero. A Baikov leading singularity analysis finds nonzero residues of I[µ12],

and we can predict that,

s12 − s45

ε1245
I[µ12] . (162)

would be a UT integral [25]. Indeed it is, by the check of the differential equation.

C. Module lift method

Sometimes the search of UT integrals has a flavour of algebraic geometry: we need to combine

several integrals to satisfy some condition (leading singularity, dlog form ...). However, the coef-

ficients must be “nice”, without certain poles. The double constraints tend to form an algebraic

geometry problem.
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Mathematically, we are dealing with a linear equation system,

Mv = b (163)

where the m×n matrix M and the m-dimenisonal vector b are known. The vector v is to be solved

for. Sometimes, we want v’s entries are all polynomials. Then it is a classical problem in algebraic

geometry. Each column of M is a generator in the module Rm so M defines a submodule S in

Rm. To find a polynomial vector solution v, is equivalent to lift S to b [25]. This can be done by

a Groebner basis computation for S.

Example VII.4. ( Module Lift to find UT integrals ) Again, consider the integral family in Ex-

ample VII.3. The sector (1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0) contains 9 master integrals. It is then a tough

problem to construct 9 UT integrals for this sector. To simplify the discussion, we only look at the

maximal cut level. The building blocks are the integrals,

G[1, 1, 1, 1, 1, 1, 1, 1, a9, a10, a11] (164)

with

−2 ≤ a9 + a10 + a11 ≤ 0, aj ≤ 0, j = 9, 10, 11 (165)

There 10 such kind of integrals, which are denoted as I1, . . ., I10. A UT anasatz on the maximal

cut level is given by,

10∑
j=1

cjIj (166)

Here we simply consider the 4D leading singularities. There are 8 solutions for the maximal cut,

say p1, . . . p8. Define the residues,

Respi [Ij ] ≡Mij (167)

And we have the 4D leading singularity requirement,

10∑
j=1

Mijcj = bi (168)

where bi must be rational numbers. The (8× 10) matrix M contains large expressions, so it would

not be explicitly listed here. What a pity!

In this example, it is clear that from the viewpoint of linear algebra, for a fixed vector b, the

solution for c is not unique even if the solution exists. If we naively pick up a solution of c for
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the UT Ansatz, unfortunately, we do not get a canonical DE in the end. The problem is that most

solutions of c contains complicated unphysical poles, which can hardly make a UT, even if the 4D

leading singularities are all constants.

Here we impose a radical condition, for even integrals the c’s must be a polynomial of Mandel-

stam variables, while for odd integrals the c’s must be a polynomial of Mandelstam variables over

ε1234.

For the even case, c’s are polynomial but note that M itself contains fractions. This subtlety can

be easily solved by a rescaling M̃ = FM , where F is a known polynomial of Mandelstam variables

to ensure that M̃ contains polynomials only. Then,

M̃c = Fb (169)

is a module lift problem in the module R8, with R = Q[s12, s23, s34, s45, s15]. For a given b, an

algebraic geometry software like Singular can find the lift solution c within a second.

For example, with b = (1, 0, 0,−1, 0, 0, 0, 0)T , Singular provides the solution for c,

c =



0

4s12s23 (s12 − 2s45)

4s12s34s45

4s12s15 (s12 − s45)

0

0

−4s12s15

−4s12 (s12 − s45)

−4s12 (s23 + s45)

−4s12 (s12 − s34)



(170)

The solution is surprisingly simple and such kind of solutions can be used to build a 9×9 canonical

DE on the maximal cut [25]. After fitting the lower subsector contributions, this solution really

turns to a UT integral.
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