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Abstract—Facing the huge volume of traffic and intensive
traffic dynamics, the traditional datacenter architectures are
behind the curve due to the fixed topology and the demand-
oblivious nature. Driven by the traffic pattern, the reconfig-
urable technologies, like optical circuit switches (OCSes), are
a promising alternative to further improve throughput when
facing traffic dynamics, thanks to the high bandwidth and low
reconfiguration time. However, existing works on OCSes are
relatively elementary. Some of previous works only deploy single
OCS which cannot adapt to large-scale datacenters, while others
either cannot guarantee near-optimality or overlook practical
issues like limited fiber capacity. These solutions may cause low
throughput and long reconfiguration time, resulting in poor QoS.
In this paper, we present Leaf to maximize throughput thus
to further improve QoS, by deploying multiple OCSes to carry
traffic in a cooperation manner. Furthermore, we also show its
efficient reconfiguration ability and near-optimality. The formu-
lated problem is a new k-weight limited matching problem and is
proven to be NP-hard, which can be solved by a new proposed
approximation algorithm with bounded approximation ratio.
To evaluate our proposed solution, simulation experiments are
conducted with both real-world and synthetic datasets. Compared
with state-of-the-arts works, Leaf can improve throughput by
42.16%−68.92%, and reduce runnning time by 68.87%−78.72%.

Index Terms—Reconfigure, QoS, Datacenter, Optical Circuit
Switch

I. INTRODUCTION

Current data-intensive web applications like high-resolution
video streaming, online games and distributed machine learn-
ing [1] have led to a significant increase of communication
traffic in datacenters over the decades [2]. Motivated by the
rapid increasing communication demand and the traffic pattern
features, great efforts have been made to design more efficient
datacenter structure, like Fat-tree [3], Hypercube [4] and
Butterfly [5]. However, these solutions all have in common that
the architecture designs are fixed, resulting that datacenters are
demand-oblivious [6], making datacenters perform poorly and
damage QoS when facing intensive dynamics of traffic [7].
Moreover, these solutions are also electric-based, requiring
complex wiring and fail to scale to accommodate growth [8].
Therefore, many researchers tend to explore a more agile
and efficient manner to help improving QoS by dynamically
adjusting the datacenter topology and connections between
racks when facing traffic dynamics [9].

In recent years, emerging reconfigurable technologies have
enabled an alternative solution to current datacenter archi-

tecture, which introduces the possibility to reconfigure the
datacenter structure and topology at runtime [10]. Among
several alternatives, optical circuit switches (OCSes) have
been a popular choice, thanks to the low reconfiguration time
(a few µs) [11], high bandwidth transmission (hundreds of
Gbps) [11], and being compatible with traditional electric-
based datacenter networks [12].

Fig. 1. A datacenter topology with racks a-f , four traditional switches and
one optical circuit switch (OCS).

In brief, an OCS uses Micro-Electro-Mechanical Systems
(MEMS) to directly transfer the carrier laser beams from input
ports to output ports without decoding any packets [13]. The
configuration between input-output ports, i.e., the connections,
can be easily reconfigured by MEMS according to traffic
dynamics. Specifically, as shown in Fig. 1, the datacenter
consists of six racks denoted from a to f , each of which is
equipped with a Top-of-Rack (ToR) switch. The upper part
of the figure is the fixed electric-based network topology with
four traditional switches, which are static and oblivious to the
traffic dynamics. While the lower part is the reconfigurable
optic-based topology with one OCS. There are six ports of the
OCS and each port connects one ToR switch. The topology
in this figure adopts the separation paradigm proposed in [9]
and [14]. The authors propose that mice and regular flows are
transmitted via the fixed topology, while reconfigurable optic-
based network carries elephant or burst flows. Suppose that the
traffic bursts between a− b, c− d and e− f at time T1. Then

2024 IEEE/ACM 32nd International Symposium on Quality of Service (IWQoS)

979-8-3503-5012-8/24/$31.00 ©2024 IEEE



we have the configuration to connect corresponding racks,
consisting of three connections colored by red. While at time
T2, traffic dynamics take place, and the burst traffic would exist
between a−f , b−c and d−e. Thus, we reconfigure the OCS
to connect corresponding racks, which also consists of three
connections yet colored by blue. Since the reconfiguration of
OCSes only takes a few µs, it is very efficient to switch the
configuration to improve throughput.

In the context of OCSes, there have been several kinds of re-
searches, like flow scheduling [15] [16] and OCS deployment
[17] [18]. However, these works didn’t fully take advantages
of OCSes [9], since they ignore the low reconfiguration time
and only focus on the high-bandwidth of OCSes [15]. Thus,
another major problem is raised: To fully leverage the low
reconfiguration time feature and improve QoS for reconfig-
urable datacenters, how can we swiftly and near-optimally
compute configurations for OCSes to maximize throughput,
so that datacenters can better deal with traffic dynamics? To
solve the raised problem, authors in [8] first propose a solution
with single OCS. They formulate the throughput maximization
problem as a maximum graph matching problem and solve it
with Edmond’s blossom algorithm [19]. This solution is also
studied in C-through [11] and Solstice [20]. However, these
works only focus on single OCS, which fail to be extended to
multiple OCSes scenario. Existing works on multiple OCSes
are relatively fewer, and they either cannot guarantee near-
optimality [13], or overlook practical constraints like limited
fiber capacity [21] [22]. Thus, these solutions cannot fully
maximize throughput when facing traffic dynamics, and cause
huge waste of traffic, which would damage QoS.

In this paper, we present Leaf , focusing on how to im-
prove QoS by maximizing throughput with multiple OCSes
in datacenters considering practical and efficient features.
Specifically, Leaf shows how to leverage multiple OCSes to
form connections between racks with limited and non-uniform
fiber capacity. In our solution, the configurations of different
OCSes are not independent. They can cooperate with each
other to carry more traffic between a pair of racks which
holds heavy communication demand, thus to avoid much
waste of traffic. This method can solve the shortcomings
of [21] and [22]. Therefore, the throughput result of our
solution is further improved. In fact, the formulated problem of
Leaf is theoretically and mathematically complex. Even if we
ignore some constraints of the problem, it remains NP-hard.
Nevertheless, we will consider more constraints in our model,
making our scheme more difficult but also more practical,
compared with existing works. The main contributions of this
paper can be summarized as follows:
• We comprehensively summarize current reconfigurable

solutions for datacenters and analyze their pros and cons
with an example to strengthen our motivation.

• We give the problem formulation of Leaf , i.e., the k-
weight limited matching problem, and we analyze its
NP-hardness and inapproximability.

• We propose a new approximation algorithm for Leaf
based on greedy-iteration. Furthermore, we prove the

proposed algorithm yields 1
2 -approximation and time

complexity is O(km(logm+n)), where k is the number
of OCSes and m/n is the number of edges/vertices in
formulated graph.

• We conduct extensive experiments to compare Leaf with
state-of-the-art solutions. With both real-world and syn-
thetic datasets, we evaluate the throughput and running
time of Leaf to show its superior performance.

II. BACKGROUND AND MOTIVATION

This section discusses existing works on reconfiguring OC-
Ses for throughput maximization, and show their shortcomings
with a motivating example.

A. Mathematical Modeling

Before we move on, there is a significant fact about
mathematical modeling of OCSes’ configurations. Back to
Fig. 1, we can see that the connections belonging to the
same configuration are rack-disjoint, i.e., every rack can only
establish single connection in the OCS. For instance, in the
configuration colored by red, rack a can only be connected
to b, until the OCS is reconfigured. This is because circuit
switching allow connections to be formed between only two
racks each time [10]. Thus, from the mathematical perspective,
each configuration of an OCS can be regarded as a matching
of network topology. Therefore, most of related works would
leverage graph matching theory and algorithms, which is also
a key idea of this paper.

B. Current Solutions and Limitations

We summarize the advantages and disadvantages of existing
works on throughput maximization of OCS in Table I. In this
section, k, n,m represent the number of OCSes, the number
of racks and the number of communication demands, respec-
tively. Here communication demand represents that whether
two racks have to communicate with each other. Back in Fig. 1,
we have m = 3 at time T1, including communication demands
a − b, c − d and e − f . According to our research, there are
mainly three categories of solutions as follows.

1) Single OCS solution: Achieving a reconfigurable data-
center with single OCS is relatively simple. The authors of [8]
and [11] first leverage single OCS to improve throughput in
datacenters. The formulated problem is the maximum graph
matching problem, which is solved by Edmond’s blossom
algorithm [23], the time complexity of which is O(mn2).
However, it is very natural to adopt multiple OCSes in current
datacenter for more throughput. These solutions clearly are
not suitable for the situation.

2) Multiple OCSes solution: Helios: One of the represen-
tative work of multiple OCSes solution is Helios [13]. The
authors propose to leverage multiple OCSes to further improve
throughput. The solution is straightforward, greedily selecting
current configuration with maximum traffic volume for OCSes,
and the time complexity is O(kmn2). However, this is proven
to be not optimal [22], and authors didn’t give any near-
optimality guarantee. Furthermore, this work only considers
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TABLE I
COMPARISON OF ADVANTAGES AND DISADVANTAGES OF EXISTING WORKS

Solutions Practical Features Efficient Features

Multiple
OCSes

Limited
Fiber Capacity

Non-uniform
Fiber Capacity

Near
Optimality

Time
Complexity

Single OCS (e.g., [20], [8], [11]) # ! # ! O(mn2)

Helios [13] ! ! # # O(kmn2)

k-DM [21], [22] ! # # ! O(kn(n logn+m))

Leaf ! ! ! ! O(km(logm+ n))

uniform capacity of fibers, which is less practical. According
to [24], the capacity of a fiber can range from 10 Gbps to 10
Tbps. Thus, it is necessary to take non-uniform fiber capacity
into consideration.

3) Multiple OCSes solution: k-Disjoint Matching (k-DM):
To explore how to guarantee near-optimality in throughput
maximization with multiple OCSes, the works of [22] and [21]
leverage different mathematical theories to help design algo-
rithms. Specifically, they formulate the problem as a k-Disjoint
Matching (k-DM) problem, i.e., every edge in the topology
only belongs to one matching. To solve the problem, they pro-
pose a series of algorithms. A representative algorithm called
Blossom-iteration uses the Blossom algorithm repeatedly for
each OCS. The authors prove that the approximation ratio is
less than 7

9 , and the time complexity is O(kn(n log n+m)).
However, these works focus on mathematical theories and
overlook the practical conditions, like limited and non-uniform
fiber capacity. Since authors assume the capacity of fibers to be
unlimited, excessive traffic may be assigned to fibers, causing
waste of traffic.

C. A Motivating Example

We use Figs. 2-3 to show an example to motivate our work
on reconfigurable datacenters with multiple OCSes.

Fig. 2. The topology of the motivating example. The vertices (a−g) represent
different Top-of-Rack switches, while the black lines are communication
demand. The weight of each edge represents specific traffic volume.

Fig. 2 shows the network topology and corresponding traffic
information. In general, there are 7 racks within the datacenter,
and the Top-of-Rack (ToR) switches are denoted by vertices
labeled from a to g. The edges represent the communication
demand between two racks. If two racks need to communicate
with each other, the two corresponding vertices are connected
with an edge. In this example, we have 8 communication

demands/edges. The weight of each edge represents specific
traffic volume of each communication demand. According to
the spatial and temporal features of datacenter traffic [25], the
traffic volume varies greatly among rack pairs. For instance,
in this example, the racks f and g have 120 units of traffic
volume, while racks a and c do not need to communicate
with each other. The information above constitutes a simple,
undirected and edge-weighted graph.

The configuration of an OCS can be regarded as a matching
of the formulated graph, as we discussed in Section II-A. Since
we consider practical constraints, we require that the fiber
capacity should be limited, assuming that all optical fibers
can hold 50 units of traffic. Moreover, we calculate the actual
throughput according to fiber’s capacity and the traffic volume
assigned to it, abandoning the overloaded traffic. That’s to
say, when we find a configuration for an OCS, not all traffic
can be transmitted, due to the limited capacity of fibers. For
instance, we find a configuration for the motivating example
connecting a − g, b − f , c − d. The theoretical total traffic
volume is 15 + 10 + 40 = 65 units. However, if given three
optical fibers with 20 units of capacity, the actual throughput
is only 15+10+20 = 45 units, abandoning 20 units of traffic
between c and d. We consider two OCSes in this example. The
four solutions are shown in Fig. 3 and the results comparison
is shown in Table II.

First, consider traditional solutions, by deploying single
OCS. The set of maximum weighted matching can be acquired
by Edmond’s blossom algorithm [23]. In our motivating exam-
ple, the matching includes {(a, b), (d, e), (f, g)}, which means
that the configuration is connecting a − b, d − e and f − g,
as shown in Fig. 3(a). The theoretical total traffic volume is
220 units. However, since the capacity of fibers is 50 units, we
have to abandon 70 units of traffic volume between f and g.
Thus, we only have 150 units of actual throughput. Existing
works like [20] and [11] adopted this solution.

Helios would greedily choose the matching with the
maximum weight from current topology. Then, the graph
would update residual edge weight. The results are shown
in Fig. 3(b). First, the matching colored by red including
{(a, b), (d, e), (f, g)} will be chosen, which is the same as the
one in Fig. 3(a). Considering 50 units of capacity, the residual
traffic volume of rack pairs a− b, d−e, f −g will be reduced
from 50, 50, 120 units to 0, 0, 70 units, respectively. Thus, the
second matching colored by blue only includes {(b, c), (f, g)},
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(a) Single OCS solution (b) Helios (c) k-DM (d) Leaf

Fig. 3. Four kinds of solutions comparison. The colored lines are different connections of OCSes’ configurations. Connections with the same color belongs
to one configuration. Mathematically, configurations can be regarded as matchings of the topology.

which means the second OCS can only connect b−c and f−g.
The actual throughput is 240 units.

With the advancement of the work [22], authors formulate
the throughput maximization problem as a k-Disjoint Match-
ing problem, and propose a series of algorithms (like Blossom-
iteration) to solve it. Note that, the authors consider that
capacity of fibers is unlimited. Thus, under this circumstance,
different configurations of OCSes are completely connection-
disjoint, i.e., a pair of racks are connected by at most one OCS.
In our motivating example, we can acquire the solution as
shown in Fig. 3(c). The first matching colored by red includes
{(a, b), (c, d), (f, g)}. The second matching colored by blue
includes {(a, g), (b, c), (d, e)}. The actual units of throughput
are 245 units.

By adopting our solution Leaf , the derived result can be
seen in Fig. 3(d). The first and the second matchings are
colored by red and blue respectively. Since the fiber capacity
is taken into consideration, the configurations of different
OCSes are no longer connection-disjoint. They can cooperate
to carry more traffic between two racks. In this example,
the communication demand between f and g is chosen in
two configurations, i.e., the two OCSes will simultaneously
establish connections between f and g.to carry traffic The two
matchings are {(a, b), (c, d), (f, g)} and {(b, c), (d, e), (f, g)},
and the actual throughput is 280 units. Compared with single
OCS solution, Helios and k-DM, Leaf can further improve ac-
tual throughput by 86.67%, 16.67% and 14.29%, respectively.

Moreover, since we also consider the situation where the
capacity of fibers is non-uniform, we can further improve
the actual throughput when fibers with different capacity are
provided. For instance, in our motivating example, assume that
one fiber has 60 units of capacity while others still have 50
units of capacity. Then the fiber with 60 units of capacity
will be used to carry traffic between f and g. Under this
circumstance, the actual throughput will be improved to 290
units. However, since other solutions do not take non-uniform
capacity into consideration, the fiber with higher capacity may
be randomly deployed, probably causing waste of capacity.

This example fully demonstrates the potential of Leaf
to further improve throughput in reconfigurable datacenters
with multiple OCSes. However, we will show the formulated
problem of Leaf is theoretically and mathematically difficult

in the next section.

III. PRELIMINARIES

This section presents the formulation of Leaf , including
detailed modeling of reconfigurable datacenters and the formu-
lated problem of throughput maximization for multiple OCSes.
Finally we analyze its mathematical complexity compared
with existing problems and further prove its NP-hardness and
inapproximability.

A. Reconfigurable Datacenter Model

We formulate the reconfigurable datacenter as a graph
model. In general, a datacenter deploys a set of racks, and
each rack has a Top-of-Rack (ToR) switch. We denote the
set of ToR switches as V = {v1, v2, ..., v|V |}. Then, every
two ToR switches may have communication demand. We use
E = {e1, e2, ..., e|E|} to represent the demand set and D to
represent the specific traffic volume, where D : E → N0.
Then, we have a simple, undirected, edge-weighted graph
G = (V,E,D). Here the ToR switches set V represents the
vertex set of the graph. The communication demand set E can
be regarded as the edge set, and the traffic volume function
D means the weight of each edge.

For instance, in Fig. 2, we have the switch set V =
{a, b, c, d, e, f, g}, with |V | = 7. The communication demand
set is E = {(a, b), (b, c), ..., (b, f)}, with |E| = 8. The traffic
volume is defined as D : (a, b) → 50, (b, c) → 40, (c, d) →
40, (d, e) → 50, (e, f) → 1, (f, g) → 120, (a, g) →
15, (b, f) → 10. The datacenter network topology is denoted
by G = (V,E,D).

B. Problem Formulation

OCSes use Micro-Electro-Mechanical Systems (MEMS) to
redirect carrier laser beams from input and output ports to form
the connection between two ToRs. Thus, from mathematical
perspective, an OCS i ∈ I and its configuration M i (how the
OCS connects ToR switches) can be regarded as a matching
of the topology G. Mathematically, a matching is a subset
of the edge set, where every two edges are disjoint, i.e.,
they do not share the same vertex. We use variable xie,l to
represent how much traffic volume of communication demand
e in configuration M i is carried by a fiber l ∈ Li, where
Li represents the set of fibers corresponding to the OCS

2024 IEEE/ACM 32nd International Symposium on Quality of Service (IWQoS)



TABLE II
COMPARISON RESULTS OF MOTIVATING EXAMPLE.

Solutions Configurations (Matchings) Actual Throughput Total Throughput

Single OCS {(a, b), (d, e), (f, g)} 150 150

Helios {(a, b), (d, e), (f, g)} 150 240{(b, c), (f, g)} 90

k-DM {(a, b), (c, d), (f, g)} 140 245{(a, g), (b, c), (d, e)} 105

Leaf {(a, b), (c, d), (f, g)} 140 280{(b, c), (d, e), (f, g)} 140

i. The limited capacity of each fiber l is denoted as c(l).
We denote the total actual throughput of a configuration as
D(M i) =

∑
e,l x

i
e,l, representing how much traffic can this

OCS hold. Our objective is to find k = |I| configurations,
such that

∑
i∈I D(M i) is maximized.

For instance, in Fig. 3(d), our solution acquires configura-
tions for two OCSes as follows: M1 = {(a, b), (c, d), (f, g)}
and M2 = {(b, c), (d, e), (f, g)}. The traffic over each fiber
can be represented as x1(a,b) = 50, x1(c,d) = 40, x1(f,g) = 50,
and x2(b,c) = 40, x2(d,e) = 50, x2(f,g) = 50. We omit l in
subscript for simplicity, since all fibers’ capacity are uniform
(c(l) = 50). The actual throughput is D(M1) = 140 and
D(M2) = 140. We formulate the problem as follows.

max
∑
i∈I

D(M i)

S.t.



xie,l ≤ c(l), ∀e ∈ E, l ∈ Li, i ∈ I∑
i∈I

∑
l∈Li xie,l ≤ D(e), ∀e ∈ E

e ∩ e′ = ∅, ∀e, e′ ∈M i, i ∈ I
D(M i) =

∑
e,l x

i
e,l, ∀M i, i ∈ I

xie,l ≥ 0, ∀e ∈ E, l ∈ Li, i ∈ I

(1)

The first set of inequality represents the fiber capacity con-
straint.The second set of inequality means the traffic volume
constraint. The third set of equation means M i only include
edges which do not share the same vertex. We calculate the
actual throughput of a matching in the fourth set of equation.
Our objective is to maximize the total actual throughput.

This is a new problem compared with k-Disjoint Matching
problem defined in [22], since we allow an edge can be
included in two or more matchings. Moreover, due to the
limited capacity of fibers, our matchings’ weight (i.e., OCSes’
actual throughput) is limited. Thus, the problem is called the
k-weight limited matching problem.

C. Problem Complexity Analysis

This section shows the complexity of the k-weight lim-
ited matching problem of Leaf , and further proves its NP-
hardness and inapproximability.

1) Multiple Optical Circuit Switches: Currently, many re-
searches focus on the problem that how to maximize through-
put with single OCS [20], [11], [14], which is can be formu-
lated as a simple weight maximum matching problem and we

can find the optimal solution in polynomial time. The situation
where multiple OCSes are deployed is first considered in [13],
which is solved by greedily choosing the maximum weight
matching. However, the authors in [22] point out that multiple
matchings problem is NP-hard, and the greedy solution is not
optimal. Thus, it is tricky to design an efficient algorithm with
bounded approximation ratio to solve the problem.

2) Limited and Non-uniform Fiber Capacity: Although
authors in [22] and [21] have discussed how to deal with the
situation where multiple OCSes are adopted, they overlook
some practical constraints like limited fiber capacity. In fact,
the formulated problem in their works is a special case of ours.
Supposing that the minimum fiber capacity is larger than the
maximum weight of all edges, our problem can be generalized
to theirs.

3) NP-Hardness and Inapproximability: Sections above
show that our problem is more complex compared with
existing ones. This section formally proves its NP-hardness
and inapproximability.

Theorem 1: The k-weight limited matching problem defined
in Eq. (1) is NP-hard.

Proof: We prove the NP-hardness by showing that
k-weight limited matching problem can be reduced to k-
disjoint matching problem [22]. Specifically, we assume that
the minimum capacity of all fibers is larger than the maximum
weight of all edges. That is to say, an arbitrary fiber can carry
communication demand between any pair of ToR switches.
Thus, there no longer exist multiple matchings share the same
edge. Our problem becomes the k-disjoint matching problem,
which is NP-hard.

Moreover, we can also assume there exists an efficient
algorithm which can solve k-weight limited matching problem,
denoted by Alg. A. Specifically, Alg. A can acquire the
optimal solution under the situation where the capacity of
fibers can either be larger or smaller than the weight of edges.
Therefore, we can definitely use Alg. A to acquire the optimal
solution where the minimum capacity of all fibers is larger
than the maximum weight of all edges, which is exactly the
scenario of k-disjoint matching problem. Thus, the k-weight
limited matching problem is NP-hard too.

Theorem 2: It is NP-hard to approximate the k-weight
limited problem within a factor of (1− ε) for any ε ∈ [0, 1

m ],
where m is the number of edges and ε is an arbitrarily small
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value.
Before we prove the inapproximability of the k-weight

limited problem, a famous lemma needs to be introduced.
Lemma 3: It is NP-complete to determine whether the

chromatic index of a cubic graph is 3 or 4. Here a cubic graph
refers to a graph where all vertices have degree 3 [26].

Proof: We consider a cubic graph with all edges’ weights
are uniform (setting to 1). If the chromatic index of the cubic
graph is 3, the optimal solution with k = 3 is m. Meanwhile,
all algorithms with approximation ratio larger than (1 − 1

m )
can acquire a solution more than m(1 − 1

m ) = m − 1. That
is to say, the solutions will include all edges. However, if the
chromatic index is 4, these algorithms with k = 3 can at most
contain m − 1 edges. Thus, we can use these algorithms to
determine whether the chromatic index is 3 or 4 for any cubic
graph, which is contradictory to the Lemma 3.

In all, the above analysis shows that the k-weight limited
matching problem is much more difficult compared with ex-
isting problems. Thus, designing an approximation algorithm
with low time complexity and bounded approximation ratio is
far from trivial and urgently needed.

IV. ALGORITHM DESIGN

This section we propose an algorithm based on the classic
greedy-iteration algorithm [21]. Furthermore, the time com-
plexity and approximation ratio are analyzed.

A. Improved Greedy-Iteration Algorithm

This section presents the approximation algorithm based on
greedy-iteration [27] for Leaf as shown in Alg. 1. The inputs
of proposed algorithm require a simple, undirected, edge-
weighted graph G abstracted from real datacenter topology,
and the number of OCSes k. We need to find k-weight limited
matchings (i.e., configurations) and how to allocate traffic
volume for each fiber of the corresponding OCS as outputs.

For each OCS i, we first initialize the matching set M i

as an empty set. Then, we sort all edges e ∈ E according
to their current weights and all fibers l ∈ Li according to
their capacity, both in the descending order (Lines 1-4). For
each fiber l, we should find a suitable edge for it (Lines 5-
22). First, the edge should not be adjacent to any edges in
M i (Lines 9-13). We use flag2 ∈ {0, 1} to represent whether
this edge is adjacent to any edges in M i (flag2 = 1) or
not (flag2 = 0). If not, we then assign the weight of edge
to the fiber, and update the residual weight (Lines 14-18).
If so, we will check the next edge (Lines 19-20). However,
if we cannot find one more suitable edge, it means current
matching is complete for the OCS i. We should break current
loop and search a matching for next OCS (Lines 23-25). We
use flag1 ∈ {0, 1} to represent whether there is a suitable
edge for M i (flag1 = 1) or not (flag1 = 0). Finally, the
algorithm returns k-weight limited matchings M i and traffic
volume on fibers of each OCS xie,l.

Algorithm 1 Improved Greedy-Iteration algorithm
Require: A simple, undirected, edge-weighted graph G,

and OCS set i ∈ I
1: for i ∈ I do
2: Initialize M i = ∅
3: Sort all edges e ∈ E according to D(e) in the descend-

ing order
4: Sort all fibers l ∈ Li according to c(l) in the descending

order
5: for l ∈ Li do
6: flag1 ← 0
7: for e ∈ E do
8: flag2 ← 0
9: for e′ ∈M i do

10: if e ∩ e′ 6= ∅ then
11: flag2 ← 1
12: end if
13: end for
14: if flag2 = 0 then
15: flag1 ← 1
16: M i ←M i ∪ e
17: xie,l ← max[c(l), D(e)]
18: D(e)← max[0, D(e)− c(l)]
19: else
20: Continue
21: end if
22: end for
23: if flag1 = 0 then
24: Break
25: end if
26: end for
27: end for
28: Return {M i} and {xie,l}

B. Performance Analysis

In this section, we analyze the time complexity and approx-
imation ratio of the proposed algorithm.

Theorem 4: The time complexity of algorithm is
O(km(logm + n)), where k is the number of OCSes and
m is the number of communication demands (edges) and n is
the number of ToR switches (vertices).

Proof: The algorithm involves k iterations, each of which
consists of following three parts: sorting edges and fibers,
selecting an edge for a fiber, determining whether an edge
is adjacent to current matching set M i. The running time of
each part is O(sort(m)), O(m|Li|), O(|M i|), respectively.
Here |Li| represents the number of fibers, and |M i| means
the number of edges in a matching, which are both O(n).
Thus, the total time complexity is O(k(sort(m) + mn +
n)). Here O(sort(m)) represents the time complexity of
a sorting algorithm. The time complexity can be regarded
as O(k(m logm + mn + n)) = O(km(logm + n)), if a
comparison-based sorting algorithm is adopted [28].

Theorem 5: The approximation ratio of Alg. 1 is 1
2 , when
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the minimum capacity of all fibers is larger than the maximum
weight of all edges.

Due to limited space, the proof is omitted here.
Theorem 6: The 1

2 -approximation ratio is a tight bound.
Proof: Consider a 2-dimensional hypercube graph as

shown in Fig. 4. We define the nodes denoted from a to h

Fig. 4. The 2-dimensional hypercube. The solution of proposed algorithm is
colored by blue, and the optimal solution is colored by red.

as hypercube nodes. Every hypercube node has two adjacent
non-hypercube nodes. Let the edge connecting two hypercube
nodes be the hypercube edge, and the edge connecting one
hypercube node and one non-hypercube node be the non-
hypercube edge. Assume that the weight of all non-hypercube
edges is 1, and the weight of all hypercube edges is 1+ε, where
ε is an arbitrarily small positive value. Our algorithm can
acquire the solution colored by blue, including 4 hypercube
edges with total weight 4 + ε, while the optimal solution is
colored by red, including 8 non-hypercube edges with total
weight 8. The approximation ratio is 4+4ε

8 = 1
2 + ε

2 . When
ε→ 0, the approximation ratio 1

2 + ε
2 →

1
2 .

V. EVALUATION

This section presents the simulation experiments to compare
Leaf with existing works. All experiments are performed on
a machine with 11th Gen Intel(R) CORE(TM) i7-11800H
clocked at 2.3GHz and 32.0 GB of RAM.

A. Simulation Settings

1) Benchmarks: We compare Leaf with the following state-
of-the-arts solutions.
• Single OCS solution (SOCS). This solution is adopted

by the work [11], [8] and [20]. In specific, given a
traffic matrix for pairs of racks, Edmonds’ Blossom
algorithm is directly applied to acquire the maximum
weighted matching. In this paper, we use the function
max weight matching of Python package NetworkX of
version 3.1 [29] which is based on the Blossom algorithm.

• Multiple OCSes solution (MOCS). We consider two
MOCS solutions in this paper. The first one is originally
proposed in [22], i.e., the k-DM problem and its Blossom-
iteration algorithm, denoted by MOCS-ori. Moreover,
since the Helios proposed in [13] consider the capacity
of fibers, we combine MOCS-ori with Helios, taking the
capacity of fibers into consideration. We use MOCS-im
to denote the new method.

2) Traffic Trace Datasets: Our simulations are based on
both real-world and synthetic traffic traces, which have been
widely adopted in previous works for evaluation.
• Microsoft. This traffic trace and topology is proposed by

Microsoft Research in the work [14], and reproduced in
[30]. This topology includes 600 racks, and the flows are
generated with a Poisson arrival rate. The size of a flow is
based on distributions in previous work [31]. The source
and destination racks are based on production clusters.

• Graph 500. The Graph 500 Recursive-MATrices
(RMAT) is used to generate random graphs with
specific edge weight by varying the RMAT param-
eters [32]. In this paper, we adopt the parameters
(0.55, 0.15, 0.15, 0.15), which is evaluated by the works
[33], [22], and [21], denoted by rmat b. Specifically,
rmat b includes 1024 vertices and 6787 edges. The
weights of edges follow an exponential distribution with
values ranging from 1 to 500000.

3) OCS Settings: We consider Glimmerglass 64-port OC-
Ses [13]. The capacity of fibers ranges in {20, 40, 60, 80, 100}
Gbps. According to [22], the number of OCSes is chosen from
k ∈ {2, 4, 8, 16, 32, 64}.

4) Performance Metrics: We adopt the following two im-
portant metrics related to QoS, which are also adopted in the
previous works [22] and [21].
• Actual Throughput. Since we take the limited and non-

uniform fiber capacity into consideration, the theoretical
traffic volume of one configuration can only be partially
calculated as actual throughput, discussed in Section II-C.

• Running Time. The reconfigurable time is the key to deal
with traffic dynamics in datacenters. Thus we record the
start and end time stamp of executing the four algorithms
to measure the running time of each one.

B. Performance Comparison

We conduct two groups of experiments to evaluate the
performance of Leaf . The first group of experiments compares
the actual throughput by varying the number of racks and
OCSes in datacenters. Results are shown in Figs. 5-6.

Overall, Leaf can always acquire the highest throughput
results compared with SOCS, MOCS-ori and MOCS-im. For
instance, in Fig. 5, with the Microsoft dataset, given 32 OCSes
and 600 racks, the throughput results of SOCS, MOCS-ori,
MOCS-im and Leaf are 809.61 Gbps, 1831.93 Gbps, 1939.42
Gbps and 2603.09 Gbps. Leaf improves the throughput by
68.92%, 42.16% and 34.24%, compared with SOCS, MOCS-
ori and MOCS-im, respectively. In Fig. 6, with the Graph
500 dataset, given 8 OCSes and 300 racks, the throughput
results of SOCS, MOCS-ori, MOCS-im and Leaf are 705.81
Gbps, 1348.81 Gbps, 1657.01 Gbps and 4565.49 Gbps. Leaf
improves the throughput by 547.51%, 238.65% and 175.49%,
compared with SOCS, MOCS-ori and MOCS-im, respectively.
The reason why Leaf always acquires the highest throughput
results is that we take many practical facts into consideration.
Compared with SOCS, Leaf can deploy multiple OCSes
for higher throughput. Compared with MOCS-ori, Leaf can
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(a) SOCS. (b) MOCS-ori. (c) MOCS-im. (d) Leaf .

Fig. 5. Actual Throughput vs. Number of Racks and Number of OCSes with the Microsoft dataset.

(a) SOCS. (b) MOCS-ori. (c) MOCS-im. (d) Leaf .

Fig. 6. Actual Throughput vs. Number of Racks and Number of OCSes with the Graph 500 dataset.

carry more traffic between two racks. MOCS-ori overlooks
the limited capacity of fibers causing severe wasted traffic.
Although MOCS-im is capacity-aware, this solution can not
place fibers with non-uniform capacity properly. Thus, the
throughput results of MOCS-im are only slightly higher.

Another interesting and worth-noting observation is that the
growth trends of SOCS, MOCS-ori and MOCS-im differ in
terms of the number of racks and the number of OCSes.
Specifically, with a specific number of racks, given more
OCSes, the throughput will increase but tend to be steady
after a threshold. For instance, in Fig. 5, with 500 racks,
SOCS, MOCS-ori and MOCS-im can achieve 876.05 Gbps,
1995.88 Gbps and 2153.27 Gbps of throughput respectively
with 16 OCSes, given the Microsoft dataset. And when the
number of OCSes reaches 32 and 64, the throughput results
of three solutions remain the same. Specially, since SOCS
only deploys one OCS, the varying number of OCSes does
not affect the throughput results of SOCS. As comparison,
for a specific number of OCSes, when given more racks, the
throughput results of SOCS, MOCS-ori and MOCS-im will
decrease after reaching a threshold. For instance, in Fig. 5,
when there are 600 racks and 16 OCSes, the throughput results
of SOCS, MOCS-ori and MOCS-im are 809.61 Gbps, 1673.67
Gbps and 1939.417 Gbps, respectively. But with 500 racks,
the corresponding throughput results are 876.5 Gbps, 1995.88
Gbps and 2153.27 Gbps, respectively. Thus, the throughput
results of 600 racks are lower than those of 500 racks. And
we can also learn that in Fig. 6, the throughput results of
SOCS, MOCS-ori and MOCS-im are decreasing when the
number of racks exceeds 200. The reason is that when the
size of datacenter is larger, the matchings acquired by the
algorithms also become much more complex. SOCS, MOCS-

ori and MOCS-im does not take non-uniform capacity of
fibers into consideration and tend to place fibers to carry
the traffic demand with less traffic to avoid waste. Thus, the
communication demand with traffic are neglected, causing
the throughput results to decrease. However, Leaf takes the
limited and non-uniform fibers into consideration, which is
why the throughput of Leaf grows when the numbers of
racks increases. For instance, with the Microsoft dataset, given
4 OCSes, the throughput results of Leaf are 81.76 Gbps,
455.33 Gbps, 999.93 Gbps, 1564.97 Gbps, 2207.43 Gbps and
3039.14 Gbps, when there are 100, 200, 300, 400, 500, 600
racks, respectively. Furthermore, in Fig. 5(d), with a specific
number of racks, the throughput results of Leaf also tend
to be steady when given more OCSes, with the Microsoft
dataset. Specifically, when there are 400 racks, the throughput
results tend to be steady when the number of OCSes reaches
8, i.e., the threshold is 8. And when given 500 and 600 racks,
the throughput results tend to be steady when the numbers
of OCSes reach 16 and 32, respectively, which means the
thresholds become 16 and 32, respectively. This is because as
the datacenter network size grows, the size of traffic demand
also grows. Therefore, the threshold of OCSes’ number also
enlarges. However, in Fig. 6(d), it seems that the throughput
results of Leaf increase along with the number of OCSes
without a threshold. It is because the Graph 500 dataset is more
traffic demand-intensive, i.e., there exist much more edges in
its formulated graph. Thus, we cannot observe the steady trend
with only 64 OCSes.

The second group of experiments compares the running time
by varying the number of racks and the number of OCSes in
a datacenter to check the efficiency of Leaf . The results are
shown in Figs. 7-8. Overall, the running time results of MOCS-
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(a) SOCS. (b) MOCS-ori. (c) MOCS-im. (d) Leaf .

Fig. 7. Running Time vs. Number of Racks and Number of OCSes with Microsoft datasets.

(a) SOCS. (b) MOCS-ori. (c) MOCS-im. (d) Leaf .

Fig. 8. Running Time vs. Number of Racks and Number of OCSes with Graph 500 datasets.

ori, MOCS-im and Leaf increase with the growing numbers of
racks and OCSes, while the running time results of SOCS only
increase along with the number of racks. It is worth noting that
SOCS always achieve the lowest running time and the running
time results of SOCS does not affected by number of OCSes.
For instance, in Fig. 8, with the Graph 500 dataset, given 400
racks, the running time results of SOCS are around 200 ms.
And when there are 500 racks, the running time is around 360
ms. The reason why the running time of SOCS is the lowest is
that SOCS only needs to acquire one matching configuration
for single OCS, while other three solutions need to acquire
multiple configurations for multiple OCSes.

Furthermore, we can also learn from these figures that Leaf
always acquires the second lowest running time results. For
instance, in Fig. 7, with the Microsoft dataset, when there are
32 OCSes and 600 racks, the running time results of SOCS,
MOCS-ori, MOCS-im and Leaf are 96.68 ms, 863.23 ms,
1262.77 ms and 268.70 ms, respectively. In Fig. 8, with the
Graph 500 dataset, when there are 16 OCSes and 400 racks,
the running time results of SOCS, MOCS-ori, MOCS-im and
Leaf are 205.94 ms, 2750.83 ms, 2758.33 ms and 485.52 ms,
respectively. Compared with MOCS-ori and MOCS-im, Leaf
reduces the running time by 82.36% and 82.41%, respectively.
We should note that, the theoretical reason for the running
time results of Leaf is the complexity of proposed algorithm.
Since the algorithm of Leaf is based on the efficient greedy
algorithm, and the time complexity is only O(km(logm+n)),
while the algorithms of MOCS-ori and MOCS-im are both
based on Blossom algorithm, the time complexity of which is
O(kn(n log n +m)). Here k, n,m is the number of OCSes,
the number of nodes and the number of edges, respectively.
Thus, it is obvious that our proposed algorithm is less time

consuming and can perform well when facing traffic dynamics.
In conclusion, the two groups of experiments check both

the throughput and efficiency of Leaf . The experiments show
the superior performance of Leaf with different datacenter
network sizes and different datasets. Overall, compared with
SOCS, MOCS-ori and MOCS-im, Leaf can improve through-
put by about 547.51%, 238.65% and 175.49%, respectively.
In addition, Leaf can reduce the running time by 82.36% and
82.41%, compared with MOCS-ori and MOCS-im, respec-
tively. Therefore, in terms of QoS, Leaf can bring a significant
improvement compared with existing solutions.

VI. CONCLUSION

This paper presents Leaf , making reconfigurable datacenters
more practical and efficient. We formulate the problem as a
k-weight limited matching problem, and we also prove its
NP-hardness and inapproximability. Based on the classical
greedy-iteration algorithm, we propose a new approximation
algorithm with bounded approximation ratio and low time
complexity. Furthermore, we conduct extensive experiments
based on both real-world and synthetic datasets to show the
superior performance on throughput and running time.
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