
SMART: Dual-channel Southbound Message
Delivery in Clouds with Rate Estimation

Luyao Luo1,2 Gongming Zhao1,2 Hongli Xu1,2 Chun-Jen Chung3 Liguang Xie4
1School of Computer Science and Technology, University of Science and Technology of China

2Suzhou Institute for Advanced Research, University of Science and Technology of China
3 Vancouver Research Center, Huawei Technologies Inc, Canada

4 Virginia Tech, USA

Abstract—Driving southbound messages from a cloud control
plane down to the distributed data plane on every compute
node is one of the critical challenges in public clouds. Existing
message delivery solutions solely based on remote procedure call
(RPC) or message queue (MQ) tend to overlook strict resource
constraints, e.g., network bandwidth and CPU capacity. This
often results in extensive overhead in the control plane or message
redundancy in the data plane, especially when a cloud receives
highly concurrent user requests or experiences a rapid expansion.
To this end, we design a dual-channel southbound message
delivery framework, namely SMART, which combines an RPC
channel with an MQ channel, to maximize the resource utilization
in the cloud network. In the control plane, we implement a
message parsing mechanism and propose a delivery channel
selection algorithm based on the deep reinforcement learning
(DRL) approach to support efficient dual-channel delivery under
resource constraints. In the data plane, we design a message
agent on each compute node to ensure the order preservation and
state consistency of southbound messages. Both experimental and
large-scale simulation results show that SMART demonstrates a
reduction in control plane overhead by 64% compared to RPC
and redundant messages by 45% compared to MQ, respectively.

Index Terms—Southbound Message Delivery, Message Queue,
Remote Procedure Call, Virtual Private Cloud.

I. INTRODUCTION

In a multi-tenant cloud, tenants deploy virtual machines
(VMs) on compute nodes in the distributed cloud data plane
and manage the VMs through unified restful APIs by the cloud
control plane [1], [2]. The control plane processes tenants’
requests, and sends network configuration messages, also
called southbound messages, to compute nodes [3]. Over the
past decade, we are observing rapid growth of the number of
customers and the continuous expansion of individual network
size. As a result, the number of southbound messages is
mounting a rapid pace [4]–[6]. Thus, how to achieve efficient
and resource-saving southbound message delivery has become
a critical issue for hyper-scale cloud deployments [7]–[9].

With the development of cloud computing, many distributed
end-to-end communication protocols have emerged, such as
message passing interfaces (MPI) [10], JMS (Java Message
Service) [11], and remote procedure call (RPC) [12]–[14].
As one of the most common and efficient protocols in dis-
tributed systems, RPC establishes TCP connections between
controllers and compute nodes. In this way, each compute
node directly communicates with controllers and receives

all the required configuration messages without redundancy.
The downside is that, each TCP connection with a compute
node requires a certain amount of resources (e.g., CPU and
bandwidth) [15]. With the increasing network scale, the direct
communication method will cause a high load on the control
plane, leading to message congestion or loss, especially when
the burst southbound traffic happens [8], [9]. We perform the
testbed experiments on gRPC [16], a widely used open-source
RPC framework, in Section VII-D. The experimental results
show that too many connections will lead to a significant delay
in the southbound message delivery.

As an alternative, the message-oriented middleware (MOM)
model [17], [18] has become one of the most widely adopted
solutions for building cloud infrastructures and tenant appli-
cations in a large-scale cloud (e.g., Azure Queue and Ama-
zon Message Queuing Service) [19]. It reduces southbound
control overhead and improves system ability to deal with a
large amount of southbound messages by decoupling the data
plane from the control plane with the help of a messaging
middleware [7], [19], [20]. Message Queue (MQ), as the
most common messaging middleware implementation, sets up
multiple queues in the MQ server for storing and forwarding
southbound messages between the control plane and the data
plane. Under this model, the controller pushes southbound
messages to the MQ server, while compute nodes pull south-
bound messages from one or more queues on demand, thus
avoiding high overhead on the control plane [21], [22].

However, an MQ server commonly supports a relatively
small number of queues due to its capacity constraint (e.g.,
disk I/O) [23], [24]. For example, the experimental results
in [21] show that setting up a few hundred queues will
cause the Apache Kafka server [23] (a well-known open-
source message queue) to crash frequently. Considering a
large number of southbound messages, we should send several
types of messages to one queue [5]. In this way, once a
compute node pulls messages from a queue, it has to receive
all messages in this queue so as to catch valid messages.
As a result, some useless messages from this queue may
be received. It means, the limit on the number of queues
causes inevitable message redundancy on compute nodes.
Accordingly, the redundant messages will occupy valuable
network bandwidth and memory of compute nodes, leading
to the increased delay in southbound message delivery.

From the observation above, though RPC provides
redundant-free southbound message delivery, it may cause a
massive overhead on the control plane and unacceptable delay
when the cloud network scales up to a certain amount. On the
contrary, MQ provides lower control overhead, but it will lead
to a considerable overhead in the data plane due to redundant
messages. In order to integrate their pros, but mitigate the
cons of these two solutions, we design an efficient southbound
message delivery system with respect to both the overhead
on control and data planes. However, given the multitude of
messages and strict resource constraints, devising an efficient
message delivery channel selection is not trivial. To solve the
problem, a complete message delivery system and an efficient
channel selection algorithm are both needed.

II. BACKGROUND AND MOTIVATION

A. Network Configuration Messages in Clouds

In cloud networks, network configuration messages (south-
bound messages) play a crucial role in enabling efficient and
dynamic virtual cloud network. These messages are respon-
sible for conveying critical information and instructions that
shape the behavior and configuration of network devices and
services within the cloud infrastructure. Network configura-
tion messages can be categorized into unicast and multicast
messages, each serving distinct purposes.

Unicast messages are used for point-to-point communica-
tion, where a message is sent from a source to a specific
destination. These messages enable targeted and individualized
configuration updates, such as assigning specific IP addresses
or routing information to a particular network device or virtual
machine. For example, a unicast message may be used to
instruct a network device to update its firewall rules or to
inform a virtual machine about its assigned network resources.

In contrast, multicast messages are employed for one-to-
many communication, allowing the simultaneous delivery of
a message to multiple recipients. These messages are partic-
ularly useful for network-wide configuration updates or an-
nouncements that need to reach a group of devices or services
simultaneously. For instance, a multicast message can be used
to distribute network policy changes or to propagate routing
information across multiple network switches or routers. By
utilizing both unicast and multicast messages, cloud networks
can achieve a fine-grained and scalable network configuration
management. Unicast messages ensure precise and targeted
updates, while multicast messages provide efficient and syn-
chronized dissemination of configuration changes across the
network infrastructure.

B. Resource Constraints in Southbound Message Delivery

In general, both the bandwidth and CPU resources of
the control plane are limited. Specifically, the bandwidth of
sending southbound messages to the data plane is typically
only tens of Gbps [8], which is insufficient compared to a large
amount of southbound messages in clouds (up to hundreds
of Gbps). Besides, a classic server typically offers generic
CPUs that fail to keep pace with the high-speed data stream

and numerous parallel threads between the server itself and
compute nodes in the data plane (range from tens of thousands
to hundreds of thousands). For example, a typical server with
Ubuntu 18.04 supports up to several thousand threads, each
of which will occupy system resources (mainly the CPU
resources) [25]. The overall network performance will drop
significantly when the control plane is overloaded.

Meanwhile, the bandwidth capacity in the data plane may
also be a potential bottleneck. In practice, since each compute
node usually uses a single dedicated port for receiving south-
bound messages while the remaining ports are configured for
normal packet processing between VMs [6], the bandwidth
for southbound messages is typically only a few hundred
Mbps. As a result, we should consider the bandwidth resource
constraint of each compute node for delivering southbound
messages. Besides, from the perspective of saving bandwidth
resources in the data plane, we need to reduce the overall
bandwidth consumption of the data plane for southbound
messages delivery.

C. Observations and Intuitions

We observe that the existing two typical models for south-
bound message delivery have pros and cons. Cloud networks
using RPC allow each compute node to receive the required
messages without redundancy, but lack sufficient resource
capacity to cope with the large cloud scale. On the other hand,
the use of MQ reduces the load on the control plane while
the load on the data plane (redundant messages) increases
significantly .

Besides, we find that there are two types of southbound
messages, unicast message and multicast message. More
specifically, when users need to configure a specific instance,
such as setting IP, adding or deleting ports, only the compute
node where the instance is deployed requires these messages.
That is, the controller needs to send each unicast message to
one compute node. Furthermore, when a user sets the subnet
or security group policy, all compute nodes that contain related
VMs need to receive these messages. The controller will send
the same multicast messages to multiple nodes. Obviously,
the performance of RPC and MQ is different when processing
different types of messages. That is, when delivering unicast
messages, RPC provides direct communication, while MQ
brings redundancy since all compute nodes subscribed to the
same topic will receive the same message. When delivering
a multicast message, MQ only needs to send it to the MQ
server once, while RPC treats it as multiple unicast messages
and sends them one by one.

A question immediately following the above discussion is
that can we do better by combining these two methods while
taking into account the resources constraints on both the
control and data planes? Intuitively, we can choose MQ to
send multicast messages to reduce the control plane overhead
and use RPC to deliver unicast messages to reduce the data
plane overhead. However, evaluation results in Section VII
show that this intuitive dual-channel selection method does
not work well due to resource constraints in the cloud.

Metadata

Database

User requsets

Node1

VMs

Node1

VMs

Node2

VMs

Node2

VMs

...

Node1

VMs

Node2

VMs

...

Message Scheduler

SMART Controller

Message Scheduler

SMART Controller

MQ ServerMQ Server

Network

Configuration

Manager

Messages

P-2:Set

 (topic info)

S-1:Get

 (topic info)

P/S-3.1:

RPC

P-3.2: Publish

S-2:

Subscribe

S-3.2:

Receive

P-1: Message scheduling

S-4:

N/Ack reply

Message

processing

L2&L3

programming

Message

Agent

Message

processing

L2&L3

programming

Message

Agent

Fig. 1: SAMRT architecture and workflow. Our work consists of mes-
sage parser, message scheduler and message agent. The southbound
message delivery mainly includes two stages: publish and subscribe
(P/S). The controller is responsible for processing configuration
messages (P-1), updating the database (P-2), and delivering messages
in two ways: operating RPC (P-3.1) or publishing to the MQ server
(P-3.2). Message agent on each node is responsible for accessing the
database (S-1), subscribing to topics (S-2), receiving messages (S-
3.1/3.2), and returning L2&L3 programming results via RPC (S-4).

Furthermore, enabling two delivery channels simultaneously
introduces additional challenges to the system design, such as
out-of-order messages and inconsistent states, which need to
be resolved in more details.

III. SMART OVERVIEW

We design and implement a dual-channel southbound mes-
sage delivery system, called SMART, to achieve efficient
message delivery under resource constraints (e.g., the band-
width resource constraint). To achieve this, we propose three
fundamental components, including a message parser and a
message scheduler in the controller and a message agent in
each compute node, as shown in Fig. 1.

• Message Parser in the controller (Section IV) provides
a unified southbound message abstraction and batching
mechanism. As the network configuration manager parses
the user’s requests into several messages, the message
parser uses a hash function to classify messages to
different categories based on their destinations. Besides, it
uses a counter to store the traffic amount of each category
of messages and periodically estimates the sending rate
of each category of messages for real-time monitoring of
message traffic.

• Message Scheduler in the controller (Section V) deter-
mines the message channel (queue) selection for each
message with resource constraints. When messages come
into the controller, the message scheduler utilizes the
deep reinforcement learning mechanism to make delivery
decisions for each message. According to the decision
result, the scheduler will send messages through RPC or
MQ server with the specific topic.

• Message Agent on each compute node (Section VI) is
mainly responsible for pulling and processing southbound
messages from the two channels. The processing logic is

TABLE I: Specifications for configuration message format.
Type Name Description

uint32 message id identify of a message
uint32 request id corresponding request id
uint32 vpc id VPC a message belongs to
string timestamp message generation time
Configuration configuration type type of the configurations
Operation operation type type of the operations

specially designed to ensure the orderliness and consis-
tency of the messages. The message agent uses the times-
tamps and concurrent locks in the message processing
flow. Noting that how to execute the southbound message
is not the focus of this paper.

The overall workflow of SAMRT is shown in Fig. 1. The
southbound message delivery mainly includes two stages:
publish and subscribe (P/S). In the publish stage, the scheduler
determines the message delivery channel regarding the current
network overhead and writes the corresponding topic mapping
into the database (P-2). Next, messages are delivered through
the RPC channel (P-3.1) or MQ channel (P-3.2) based on the
selection results. In the subscribe stage, the message agent
gets the subscription information from the database (S-1) and
subscribes to the corresponding topics (S-2). Then it receives
the messages from two channels (S-3.1 and S-3.2). Finally,
the L2&L3 programming results are returned via RPC (S-4).

IV. MESSAGE PARSER DESIGN

A. Unified Message Abstraction

Due to the variety of southbound messages, designing a
processing logic for each message type is laborious and time-
consuming. In actual situations, when delivering southbound
messages, our emphasis is not on the content, but the size,
sending rate, and destination of messages, since they are the
key indicators for resource optimization of the control and
data planes. To this end, we design a unified abstract model
to efficiently deliver and process southbound messages.

Abstraction. We observe that southbound (network configu-
ration) messages are diverse, involving different configuration
types (e.g., VPC, Subnet) and operation types (e.g., Delete,
Create). For the ease of message processing, we design a
unified abstraction for messages. Table I gives a specification
for the configuration message format. The message id is used
to identify different messages, and the request id corresponds
to the user’s request. The timestamp is set as the message
generation time to ensure the message order. Besides, config-
uration type and operation type are used to specify the content
of the configuration. For example, when a tenant requests the
creation of a subnet on two VMs and generates a subnet
configuration message, the message parser sets the current
system clock as the timestamp, and the configuration type and
operation type are set as Subnet and Create, respectively.

Benefits. Message abstraction offers benefits to both mes-
sage delivery and system design. For message delivery, the

Message Hashing
Update
Counter

Counter

ID 1 2 ...

Val 33 45 ...

ID

+1 Val
Timer

Wrapper

Reset

Wrapped
Message

Message

Fig. 2: Illustration of processing steps in message parser.

Algorithm 1 Processing steps for the rate estimation
1: Initialize the counter C for different message types
2: Initialize the timer and interval T
3: while TRUE do
4: for each interval of rate estimation do
5: for each incoming message m do
6: Encapsulate the message as in Table I
7: i← hash(m.hosts)
8: Counteri ← Counteri +m.size
9: end for

10: Calculate f(mi) =
Counteri

T for each message type
mi

11: Reset the timer.
12: end for
13: end while

controller and compute nodes use a unified interface for com-
munication and only need to pay attention to the configurations
and operations during transmission, not other details. For
system design, it abstracts message contents at the granularity
of configurations, which enables further configuration-level
processing of messages. We illustrate them in Section IV-B.

B. Destination-based Message Batching

Message Aggregation. Creating a separate thread for each
message and sending through TCP connection consumes a
certain amount of computing resources. Processing multiple
messages at the same time will occupy lots of computing
resources on the controller, which contradicts with the limited
computing resource and may result increased delivery delay.
In fact, if two or more messages have the same destination(s),
we can deliver them in one shot. For example, there is one
message for creating subnets on VMs distributed across two
compute nodes, and another message for creating routers
on the same compute nodes. Then, we aggregate the two
messages into one message with configuration type {Subnet,
Router}. Moreover, the parser uses a hash function to
classify the messages. For each message m, the parser hashes
the host IP list of m into ID i and updates the target value
in the counter by its size, as shown in Fig. 2. Messages
with the same ID are aggregated before delivery. As a result,
message aggregation will significantly reduce the controller’s
CPU consumption.

Rate Estimation. The sending rate of messages is a crucial
indicator for SAMRT to realize resource-optimal southbound

message delivery in Section V. To this end, SAMRT offers
a periodic estimation of the sending rate of messages. More
specifically, to estimate the sending rate f(mi) for message
type mi, SAMRT sets a timer for periodically checking the
current sending rate. For each time interval T , f(mi) is
estimated as f(mi) = Counteri

T , where T is the interval in
seconds and Counteri is the value in the counter with ID i.

SAMRT fine-tunes T with respect to traffic dynamics to
update its estimation and avoid over-provisioning resources.
The overall processing steps are described in Algorithm 1.
The counter and timer are first initialized (Lines 1-2). In each
interval, the parser encapsulates each incoming message as
in Table I (Line 6), hashes it based on its host IPs (Line 7),
updates the corresponding value in the counter by the message
size (Line 8), and estimates the sending rate f(mi) for each
message type (Line 9). After the end of each interval, the
parser resets the timer (Line 10).

V. MESSAGE SCHEDULER DESIGN

A. System Model

In general, SAMRT consists of the control plane and the
data plane. Specifically, the SAMRT controller in the control
plane manages the network, including southbound message de-
livery. We use Cb and Cp to represent the bandwidth and CPU
capacity for handling concurrent messages of the control plane.
The data plane consists of compute nodes and provides com-
pute resources to tenants. We use N = {n1, n2, ..., n|N |} to
represent the set of compute nodes. For each compute node n,
we denote its bandwidth as s(n). Since there are different types
of southbound messages, we use M = {m1,m2, ...,m|M |} to
denote the set of message types.

Two messaging protocols are used to implement southbound
messaging in SAMRT: RPC and MQ. The MQ server con-
tains a set of queues for storing and forwarding southbound
messages from the control plane to the data plane. Each
queue is identified by a topic. The topic set is defined as
T = {t1, t2, ..., tK}, where K = |T | is the number of queues
on the MQ server.

B. Problem Formulation

We present the dual-channel southbound message delivery
(DSMD) problem with the following three constraints. (1)
Channel Constraint. A message will only be delivered through
one channel and one queue if through the MQ channel.
(2) Bandwidth Constraint. The total traffic on the controller
and each compute node should not exceed their capacity
to prevent congestion. (3) CPU Constraint. Since each sent
message takes up a certain amount of CPU resources (e.g.,
threads, cycles), we hope the total number of concurrent
messages should not exceed the CPU capacity. Accordingly,
we formulate DSMD as follows:

min
∑
n∈N

b(n)

S.t

xm +
∑

t∈T yt
m = 1, ∀m ∈ M∑

m∈M f(m)(
∑

n∈N Γn
mxm +

∑
t∈T yt

m) ≤ Cb∑
m∈M (

∑
n∈N Γn

mxm +
∑

t∈T yt
m) ≤ Cp

ztn ≥ Γn
myt

m, ∀n, t,m∑
m∈M f(m)(Γn

mxm +
∑

t∈T yt
mztn) = b(n), ∀n ∈ N

b(n) ≤ s(n), ∀n ∈ N

xm, yt
m, ztn ∈ {0, 1}, ∀m, t, n

(1)
Where binary variable xm ∈ {0, 1} denotes whether or not

the controller will deliver message type m via RPC, binary
variable ytm indicates whether the message type m is published
to topic t or not, and ztn indicates whether the compute node
n subscribes topic t or not. The constant Γn

m presents whether
the compute node n requires the message type m or not.

The first set of inequalities indicates that each message
type needs to be delivered to nodes in one way (either
RPC or MQ). The second set of inequalities shows that the
total amount of messages sent by the controller should not
exceed its bandwidth capacity. The third set of inequalities
indicates that the number of concurrent messages sent by the
controller should not exceed its CPU capacity. The fourth
set of inequalities represents that compute node n should
subscribe to topic t if one or more messages it requires are
published to topic t. The fifth set of equalities represents the
message traffic amount on each compute node n, denoted as
b(n). The sixth set of inequalities expresses the bandwidth
constraint on each compute node n. Our objective is to
minimize the total message traffic amount on compute nodes,
that is, min

∑
n∈N b(n).

Theorem 1: The DSMD problem is NP-hard.
Proof: The proposed DSMD problem remains NP-hard

even if the resource constraints on the control plane are
ignored. Under this case, the problem turns to be a Weighted
Set Covering Problem (WSCP) [26] for each compute node.
More specifically, we can calculate the weight of each message
set as the message redundancy it introduces if we put all
messages from the set into the same queue. Then the problem
can be described as selecting message sets so as to cover all
messages. Since WSCP is a special case of our problem, we
can conclude that the DSMD problem is NP-hard too.

C. Feasibility of Solving DSMD using DRL

It is difficult to directly solve the DSMD problem in Eq. (1)
due to its NP-hardness. At the same time, the following three
characteristics of cloud networks also increase the difficulty
of solving DSMD. First, the multi-resource heterogeneity of
the cloud system poses a tough problem to provide users
with efficient messaging service because heterogeneous com-
pute nodes increase the hardness of message delivery. It is
challenging to design an efficient method to consider the
massive nodes in large-scale clouds. Second, a large number
of resource constraints may cause algorithms complicated
and even unsolvable [27]. Third, the time-varying network
conditions also aggravate the difficulty of this problem, which
requires fast responsive algorithms at runtime. The traditional

approaches using predefined rules or heuristics lack the ability
to quickly respond to traffic changes.

Fortunately, we found that a learning-driven method (e.g.,
deep reinforcement learning) helps deliver southbound mes-
sages while satisfying resource constraints with the abundant
network. In fact, deep reinforcement learning (DRL) method
has been widely adopted and proven to be feasible in the
large-scale networks [28]–[30]. By constructing optimization
objectives reasonably, DRL can learn an optimal strategy
for message delivery that satisfies resource constraints in
continuous iterations. Moreover, the message aggregation and
rate estimation mechanisms given in Section IV-B provide
the premise for designing a environment-adaptive algorithm,
which ensures a fast response to changes in network traffic.
Hence, we propose a design using a DRL-based method to
learn an effective solution for the DSMD problem.

D. DRL-based Algorithm Design for DSMD

To implement DRL techniques, we first specify the state
space, the action space, and the reward function below.

1) State space: Assume that the input state at epoch i
is represented by Si = (X(i), Yt(i), Cb(i), Cp(i), S(i)),
where X(i) = {x1(i), x2(i), ..., xm(i)} and Y (i) =
{yt1(i), yt2(i), ..., ytm(i)} denote the current channel se-
lection to deliver each message. Cb(i) and Cp(i) denote
the available bandwidth and CPU resource on controller.
S(i) = {s1(i), s2(i), ...sn(i)} represents the available
bandwidth on compute nodes.

2) Action set: On receiving a message m, the scheduler
needs to take an action ai from the action set for channel
selection. The action set encoding the channel selection
decision can be represented as A = {x̂, ŷ1, . . . , ŷt},
where x̂ means ”delivering through RPC channel”, and
ŷt means ”delivering through MQ with topic t”.

3) Reward function: At each training epoch i, the system
will get a reward r(si, ai) under a certain state si after
executing action ai. In practice, the reward function
should be positively correlated with the system objective.
As in Eq. (1), the objective function of this work is
to minimize the total amount of messages received by
compute nodes. Hence, the reward function should be
negatively correlated with the

∑
n∈N b(n). Moreover, a

reward penalty should be incorporated into the reward
function if resource constraints are violated. We define
the reward function as:
r(si, ai) =

κ

1 +
∑

n∈N bn(i)

− β[

∑
m∈M f(m)(

∑
n∈N Γn

mxm(i) + ytm(i))− Cb(i)

Cb(i)
]+

− β[

∑
m∈M (

∑
n∈N Γn

mxm(i) + ytm(i))− Cp(i)

Cp(i)
]+

− β[
∑
n∈N

bn(i)− sn(i)

sn(i)
]+

(2)

Virtual

Machines

MQ
Channel

L2&L3 Programming

Containers

M
e

s
s
a

g
e

 A
g

e
n

t

C
o

m
p

u
te

 N
o

d
e

Order-preserving procedure

Dynamic

Subscription

Packed

Reply

RPC

Channel

Fig. 3: Architecture and workflow of a message agent. Three types
of data streams are processed during runtime.

where [x]+ ≜ max(0, x), κ = 100 and β = 50 are two
positive constants as in [28]. The positive constant hy-
perparameters are typically determined through empirical
studies or prior knowledge and are chosen to provide a
good balance between exploration and exploitation in the
reinforcement learning algorithm. The first term on the
right-hand of Eq. (2) indicates that the reward function
should be positively correlated with the system objective.
The remaining three terms incorporate the reward penalty
for constraint violation, including bandwidth and CPU
capacity constraints on the control plane, the bandwidth
constraints on each compute node.

Given the design of state space, action set, and reward
function, we adopt the efficient framework for DRL as in
[31], [32] to train the model and solve DSMD. The DRL-
based method aims to learn a general action set based on the
current system state and the given reward. At each epoch i, it
observes a state si, takes an action ai and receives a reward
ri by executing the action. The objective is to find a policy
mapping a state to an action that maximizes the cumulative
reward as R0 =

∑I
i=0 γ

ir(si, ai), where r(·) is the reward
function, I is the number of epochs until model convergence
and γ ∈ [0, 1] is a discount factor of the future reward.

The SMART system implements a two-phase approach
consisting of offline training and online execution to ensure the
stability of the cloud control plane system. The offline-training
procedure is specifically designed to mitigate any negative
impact caused by the training process on system stability.
During this phase, the system leverages historical data and
machine learning techniques to train a model that learns the
optimal policy for making control decisions.

VI. MESSAGE AGENT DESIGN

The message agent is deployed on each compute node and
offers a stable and consistent southbound messaging service.
The overall architecture of the message agent is shown in
Fig. 3, where two monitoring programs (RPC and MQ) are
in charge of continuously listening to the ports and receiving
messages. There are three types of data streams that are
processed. 1) The agent receives SubscribeInfo messages
through the RPC channel and dynamically configures MQ’s

subscriptions to cope with the time-varying cloud network.
2) It receives southbound configuration messages through
two channels in parallel and then processes them in an
order-preserving procedure to avoid out-of-order situations. 3)
The L2&L3 programming results are aggregated into packed
replies and sent back through the RPC channel to ensure
eventual consistency.

A. Dynamic Subscription

To realize the decoupling of control and data planes, we rely
on a metadata database to store the topic mapping information
as shown in Fig. 1, which enables the agent to quickly establish
a connection with the MQ server when it initializes or recovers
from a crash. Considering the dynamic of user requests and
the environment-adaptive selection method in Section V-B,
SAMRT requires a real-time update of the topic subscription.
To this end, we design a SubscribeInfo metadata to
specify the corresponding topic subscription. Table II lists the
detailed properties of subscription messages, which specifies
1) the MQ server’s IP address, 2) topic and subscription names
that the node needs to subscribe to, and 3) the corresponding
operation.

Once the SAMRT controller decides to update the topic
subscription of a certain compute node, it will push
a SubscribeInfo message to the corresponding node
through RPC and modify the database at the same time.
However, in order to achieve the lossless dynamic subscription,
the agent does not immediately update the subscription when
receiving a message. Instead, the agent checks the timestamps
of messages delivered through the MQ channel and waits
until receiving a configuration message generated after the
SubscribeInfo message. In this way, the compute node
can quickly switch to the specified topic without message loss.

B. Order Preservation of Messages

Due to the variable network and system load, the message
delivering delay is unpredictable. As a result, the order of mes-
sage delivery between RPC and different queues of MQ cannot
be strictly guaranteed. Once the out-of-order occurs, it may
cause serious consequences. Therefore, for order-preserving
of southbound messages in compute nodes, SAMRT controller
sets a timestamp in each delivered message. The compute node
itself maintains a local cache that stores the latest timestamp
for each configuration resource. When receiving a message,
the compute node inspects its timestamp and determines if
it’s the latest message . If not, the node discards it and reports
an out-of-order error to the controller. Otherwise, it performs
L2&L3 programming based on the message content.

However, the order-preserving procedure may lead to the
read/write conflicts in a scenario when the compute node
receives two messages simultaneously through two channels,
and they configure the same resource. Therefore, we add
concurrent locks for each resource in the cache to avoid the
conflict. Fig. 4 shows an example where two configuration
messages for Subnet #2 through two channels at the same
time. The first message locks the resource key for Subnet #2

TABLE II: Specification for the SubscribeInfo message format.

Type Name Description

string url url of the MQ server
string topic topic name
string subscription subscription name
string timestamp generation time
bool operation subscribe/unsubscribe

and updates the timestamp in the cache. The second message
is blocked until the resource key is released. However, as the
timestamp of the second message is earlier than the timestamp
of the same resource in the cache, the agent needs to drop this
message and send an error to the controller in a packed reply.

C. Packed Reply for Consistency

In the SMART system, ensuring eventual consistency of
programming results is crucial for the stability and reliability
of the cloud control plane. However, the message-oriented
middleware (MQ) lacks a callback channel for programming
results, which can lead to short-term state inconsistencies.
To address this limitation, the SMART system employs a
combination of asynchronous communication through MQ and
synchronous Remote Procedure Call (RPC) for packing and
returning programming results to the controller.

After processing messages in the data plane, the compute
nodes generate programming results, which need to be eventu-
ally returned to the controller. Instead of immediately sending
individual programming results through RPC, the SMART
system packages these results in the past short period of time
and returns them together through synchronous RPC. This
approach reduces the frequency of RPC calls, leading to lower
CPU and bandwidth consumption for programming results.

However, there might be cases where a specific compute
node does not receive the programming results through RPC
within a period of time. In such situations, the compute node
takes the initiative to feed the programming results back to
the controller. For this purpose, an RPC server is established
on the controller side. Compute nodes can send the packed
reply, containing the accumulated programming results, to
the controller through the RPC channel using the provided
API. In response to error reports, the controller will initiate
reprogramming requests to the affected compute nodes. These
requests instruct the nodes to update their state and apply any
necessary modifications to ensure the system’s consistency.

VII. IMPLEMENTATION AND EVALUATION

A. System Implementation

We implement SAMRT framework based on Linux 5.4
kernel. The Message Scheduler are written in Java code for
simplicity and high portability. The Message Agent is written
in C++ for ease of deployment on compute nodes. Besides, we
implement MQ and RPC channels using widely used open-
source frameworks Apache Pulsar (version 2.6.1) [24] and
gRPC (version 3.8.0) [16], respectively.

Lock
resource

key

Get timestamp
in message

Reset timestamp
in cache

Lock
resource

key

Get timestamp
in message

Drop if not the
latest

Unlock
resource

key

...

Resource TimeStamp

VPC #1 1639916702150

Subnet #2 1639920333157

Programming

Block

Release

Get/Set

Get

Packed Reply......

Message

Message

Unlock
resource

key

Fig. 4: An example of order-preserving procedure and packed reply
where two messages update Subnet #2 at the same time.

In the DRL training, we implement a prototype on top of
Pytorch [33] and use a 2-layer fully-connected feed-forward
neural network to serve as the actor network, which utilizes
the Rectified Linear Unit (ReLU) for activation. In the output
layer, we employ tanh as activation function. For the critic
network, a 2-layer fully-connected feed-forward neural net-
work is adopted. The offline training takes 7 hours on a server
with Intel Xeon 6152 CPU, RTX 3090 and 128G memory to
converge in a scenario with five thousand compute nodes. The
online execution model takes about 0.5 milliseconds on our
server to make decisions.

B. Performance Metrics and Benchmarks

This paper studies how to deliver southbound messages
in clouds with the lowest redundant messages in the data
plane, considering both constraints in control and data planes.
We adopt six main metrics for performance evaluation. The
first set of metrics is about control plane overhead, including
(1) the traffic on controller, (2) the number of southbound
messages and (3) the CPU utilization. Specifically, the traffic
on controller represents the bandwidth resource consumption
of the controller for sending southbound messages. We record
the total traffic amount of southbound messages as the traf-
fic on the controller. The number of southbound messages
represents the total number of southbound messages sent
by the controller. Note that a multicast message is sent as
multiple unicast messages using RPC while it only needs
to be sent once using MQ. Thus, this metric can indicate
the CPU resource consumption of the controller for sending
southbound messages. The CPU utilization is recorded as
the CPU resource consumption, which is measured as the
multi-core CPU utilization by the System Activity Reporter
(SAR) command. The second set of metrics is about data
plane overhead, including (4) the total traffic on CNs (compute
nodes) and (5) the maximum traffic on CNs. We measure
the traffic amount of southbound messages received by each
compute node and calculate the total (or maximum) traffic
amount of all compute nodes. Furthermore, we test (6) the
message delivering delay to show the efficiency of the SAMRT
system. We also measure the time interval for each southbound
message from the controller to the compute node and record
the 95th percentile as the message delivering delay.

10%/90% 50%/50% 90%/10%
0

2

4

6

8

10
Tr

af
fic

 o
n

C
on

tr
ol

le
r (

G
bp

s)
RPC
MQ
IDCS
SMART

Fig. 5: Traffic on Controller vs.
Percentage of Multicast/Unicast

10%/90% 50%/50% 90%/10%
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

N
o.

 o
f S

en
t M

es
sa

ge
s

(x
10

3)

RPC
MQ
IDCS
SMART

Fig. 6: No. of Sent Messages vs.
Percentage of Multicast/Unicast

10%/90% 50%/50% 90%/10%
0

10

20

30

40

To
ta

l t
ra

ffi
c

on
 C

N
s

(G
bp

s) RPC
MQ
IDCS
SMART

Fig. 7: Total Traffic on CNs vs.
Percentage of Multicast/Unicast

10%/90% 50%/50% 90%/10%
0

20

40

60

80

M
ax

. t
ra

ffi
c

on
 C

N
s

(x
10

M
bp

s)

RPC
MQ
IDCS
SMART

Fig. 8: Max. Traffic on CNs vs.
Percentage of Multicast/Unicast

We compare SAMRT with three state-of-the-art bench-
marks.

1) The first one is RPC [15], which is a widely used
method in distributed microservice system framework.
RPC establishes TCP connections between the controller
and all compute nodes in clouds. Messages are sent from
the controller to compute nodes one by one.

2) The second one is VITA [34], which performs south-
bound message delivery using a message queue server.
To deal with a limited number of message queues on
the server, VITA divides messages into certain groups
according to their VPC ID. Messages of the same group
are sent to the same specified topic. Each node subscribes
to the topics due to the their own needs.

3) The third one is an intuitive dual-channel selection
scheme, denoted by IDCS. We use a simple channel
selection method to compare the effect of our DRL-based
algorithm. By default, IDCS sends all unicast messages
through RPC and sends all multicast messages through
MQ. We compare IDCS and SAMRT in large-scale
simulations to evaluate the superiority of our proposed
dual-channel selection algorithm.

C. Large-scale Simulations

Simulation Settings. We refer to a private cloud deployed
in CERN (European Organization for Nuclear Research) [4]
to design our simulation. The CERN cloud contains 5,500
compute nodes, 12000 virtual machines, and 1900 VPCs. We
assume that the VMs are distributed on the compute nodes
randomly. The expected message traffic intensity for each VPC
is set as 1Mbps. Moreover, we use power law for the message-
size distribution, where 20% of all messages account for 80%
of traffic volume as observed in [35], and the average message
size is set to be 512kB. Unless otherwise specified, the
proportional relationship between multicast/unicast messages
is 50%/50%. The number of topics of the message queue
server is set to 1000 by default.

Simulation Results. In the large-scale simulation, we ob-
serve the traffic on the controller, the number of sent mes-
sages, and the total/maximum traffic on CNs by changing
the proportional relationship between multicast and unicast
messages while the total amount of messages remains the
same. The results are shown in Figs. 5-8. These figures show
that the RPC method achieves the lowest data plane overhead
with the highest control overhead (both in traffic amount and

the number of southbound messages). Furthermore, as the
proportion of multicast messages increases, the traffic on the
controller significantly increases, which may cause congestion
of the controller with high probability. This is because RPC
sends multicast messages multiple times according to the
destination nodes. In contrast, VITA has the lowest overhead
on the controller, and the results remain the same when
the proportional relationship between multicast and unicast
messages changes. However, it results in the greatest message
redundancy on the data plane since each original unicast
message is sent to all nodes subscribed to the same topic.
The enormous message redundancy will lead to an increase in
overall latency and probability of compute node overload. This
set of experiments shows that regardless of the proportional
relationship between multicast and unicast messages, dual-
channel-based methods (SAMRT and IDCS) achieve lower
control overhead than RPC and lower message redundancy
than VITA. For example, when the percentage of multicast
messages is 50%, the traffic on the controller is 5.82Gbps and
2.11Gbps for RPC and SAMRT, respectively. That is, SAMRT
reduces traffic on the controller by 63.7% compared to RPC.
Meanwhile, the total traffic on compute nodes for VITA and
SAMRT is 28.3Gbps and 11.4Gbps, respectively, which means
SAMRT reduces the total traffic on compute nodes by 59.7%
compared to VITA. This is because dual-channel-based meth-
ods can leverage the pros of two message channels compared
with RPC and VITA. In addition, SAMRT always performs
better than IDCS since SAMRT comprehensively considers the
resource constraints of the control and data planes compared
with IDCS. We should note that too much overhead on the
control plane (e.g., RPC) or too much overhead on the data
plane (e.g., VITA) can break the resource constraints, resulting
in long message delivery delay. Furthermore, even though the
control overhead of SAMRT is higher than that of VITA, the
message delivery delay is not affected because the controller
is not overloaded. These scenarios will be verified in Section
VII-D.

D. Testbed Evaluation

Implementation on the Platform. In general, we use ten
servers running Ubuntu 18.04 with Linux kernel 5.4 to build
the testbed. All the servers are equipped with a 22-core Intel
Xeon 6152 processor, 128GB memory, and an Intel X710
10GbE NIC. Two servers are used as the controller and
the message queue server, respectively. The remaining eight

64 128 256 512 1024
of VPCs

0

20

40

60

80

100
Tr

af
fic

 o
n

C
on

tr
ol

le
r (

M
B

/s
)

RPC
VITA
SMART

(a) Traffic on Controller vs. # of VPCs

64 128 256 512 1024
of VPCs

0

200

400

600

800

1000

1200

C
PU

 U
til

iz
at

io
n

(%
) RPC

VITA
SMART

(b) CPU Utilization vs. # of VPCs

64 128 256 512 1024
of VPCs

0

100

200

300

400

500

600

700

800

Tr
af

fic
 o

n
C

N
s

(M
B

/s
) RPC

VITA
SMART

(c) Total Traffic on CNs vs. # of VPCs

64 128 256 512 1024
of VPCs

0

20

40

60

80

100

120

140

D
el

iv
er

in
g

D
el

ay
 (m

s) RPC
VITA
SMART

(d) Delivering Delay vs. # of VPCs

Fig. 9: Performance of Scalability vs. Number of VPCs

0 60 120 180 240 300
Time(s)

0

20

40

60

80

100

Tr
af

fic
 o

n
co

nt
ro

lle
r(

M
B

/s
)

RPC
VITA
SMART

(a) Traffic on Controller vs. Time

0 60 120 180 240 300
Time(s)

0

200

400

600

800

1000

1200

1400
C

PU
 U

til
iz

at
io

n(
%

)

RPC
VITA
SMART

(b) CPU Utilization vs. Time

0 60 120 180 240 300
Time(s)

0
100
200
300
400
500
600
700
800

Tr
af

fic
 o

n
C

N
s(

M
B

/s
)

RPC
VITA
SMART

(c) Traffic on CNs vs. Time

0 60 120 180 240 300
Time(s)

0
10
20
30
40
50
60
70
80

D
el

iv
er

in
g

D
el

ay
(m

s)

RPC
VITA
SMART

(d) Delivering Delay vs. Time

Fig. 10: System Performance Timeline under Different Work Load

servers are used as the data plane. We take a small cloud
deployed in GoDaddy [36] as a reference, which contains 350
compute nodes. To expand the testing topology and collect
testing data conveniently, we rely on virtualization technology
for system implementation. Specifically, we deploy 350 VMs,
each equipped with one vCPU and 1GB memory, as compute
nodes on the remaining servers.

Testbed Settings. Unless otherwise specified: the number of
VPCs and topics is by default set to 512 and 200, respectively;
the expected traffic intensity for each message is set to 1Mbps,
and the bandwidth constraint of each compute node is 1Gbps
by default. The message-size distribution is the same as
that of simulations, where 20% of all messages account for
80% of traffic amount. According to [37], we generate two
types of messages: (1) unicast messages, whose sources and
destinations are randomly picked, e.g., IP address segment
configuration messages; (2) multicast messages, which sim-
ulate the traffic with multiple destinations, e.g., subnet and
security group configuration messages. Each type of message
accounts for half of the total traffic amount.

Scaling Provisioning. We measure the traffic on the con-
troller, the CPU utilization, the total traffic on CNs, and the
message delivering delay by scaling the number of VPCs
from 64 to 1024. The error bars represent the maximum and
minimum delivering delay.The number of messages increases
linearly with the increase in the number of VPCs. Fig. 9 reports
the detailed results. As shown in Figs. 9(a)-9(b), RPC has the
highest control overhead (both on bandwidth and CPU), which
leads to a relatively high delivering delay at 512 and 1024
VPCs as shown in 9(d). This is because RPC communicates
directly with compute nodes and sends each message one by
one, creating a bottleneck in the controller. As for VITA,
it achieves slightly less control overhead than SAMRT as

the number of VPC increases as shown in Figs. 9(a)-9(b).
However, the message redundancy of VITA is quite huge, as
shown in Fig. 9(c). As a result, Fig. 9(d) shows that SAMRT
scales better than the other two methods with the number of
VPCs increasing. For example, SAMRT achieves a message
delivering speedup of 3.1x than RPC and 1.9x than VITA at
512 VPCs.

To summarize, Figs. 9 show that SAMRT scales well when
the number of VPCs increases in the cloud. That means,
by leveraging the dual-channel southbound message delivery,
SAMRT offers significant delivering delay reduction compared
to both RPC and VITA, especially in larger-scale scenarios.

Dealing with the Burst Traffic. Fig. 10 shows the results
where messages are delivered during a 300-second period. It
is divided into five 60-second phases with different sending
rates: 50%, 80%, 95%, 80%, 50% of 30MB/s, to simulate
medium, medium-heavy and heavy workloads of the system.
Although Figs. 10(a) and 10(b) show that the traffic and CPU
utilization on the controller of VITA are quite good, Fig. 10(c)
indicates that the total traffic on compute nodes of VITA
is much more than the other two methods. High load on
compute nodes results in higher delivering delay shown in
Fig. 10(d). On the contrary, RPC has the lowest traffic on
compute nodes but brings the highest CPU utilization and
bandwidth consumption as shown in Figs. 10(a) - 10(c). Fig.
10(d) shows that the message delivering delay of SAMRT is
smaller than the other approaches throughout the five phases.
More specifically, SAMRT offers a 1.9x and 3.2x speedup
compared with VITA and RPC with the medium-heavy load.
Moreover, SAMRT provides a relatively stable delay guarantee
since the delay is not significantly affected when the workload
varies.

VIII. CONCLUSION

In this paper, we design the dual-channel southbound mes-
sage delivery system, which consists of three main mod-
ules: Message Parser/Scheduler on the controller and On-host
Message Agent. Both the simulation and experimental results
clearly indicate the high efficiency of our proposed system.

ACKNOWLEDGEMENT

The corresponding authors are Gongming Zhao and Hongli
Xu. This work was supported in part by the National Science
Foundation of China(NSFC) under Grant 62372426 and Grant
62102392, in part by the National Science Foundation of
Jiangsu Province under GrantBK20210121, in part by the
Hefei Municipal Natural Science Foundation under Grant
2022013, in part by the Youth Innovation Promotion Associ-
ation of Chinese Academy of Sciences under Grant 2023481.

REFERENCES

[1] M. Dalton, D. Schultz, J. Adriaens, A. Arefin, A. Gupta, B. Fahs,
D. Rubinstein, E. C. Zermeno, E. Rubow, J. A. Docauer et al., “An-
dromeda: Performance, isolation, and velocity at scale in cloud network
virtualization,” in 15th {USENIX} Symposium on Networked Systems
Design and Implementation ({NSDI} 18), 2018, pp. 373–387.

[2] T. Koponen, K. Amidon, P. Balland, M. Casado, A. Chanda, B. Fulton,
I. Ganichev, J. Gross, P. Ingram, E. Jackson et al., “Network virtual-
ization in multi-tenant datacenters,” in 11th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 14), 2014, pp.
203–216.

[3] S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving secure, scalable,
and fine-grained data access control in cloud computing,” in 2010
Proceedings IEEE INFOCOM, 2010, pp. 1–9.

[4] T. Bell, B. Bompastor, S. Bukowiec, J. C. Leon, M. Denis, J. van Eldik,
M. F. Lobo, L. F. Alvarez, D. F. Rodriguez, A. Marino et al., “Scaling
the cern openstack cloud,” in Journal of Physics: Conference Series,
vol. 664, no. 2. IOP Publishing, 2015, p. 022003.

[5] L. Luo, G. Zhao, H. Xu, L. Xie, and Y. Xiong, “Vita: Virtual network
topology-aware southbound message delivery in clouds,” in IEEE IN-
FOCOM 2022-IEEE Conference on Computer Communications. IEEE,
2022.

[6] A. D. Ferguson, S. Gribble, C.-Y. Hong, C. Killian, W. Mohsin,
H. Muehe, J. Ong, L. Poutievski, A. Singh, L. Vicisano et al.,
“Orion: Google’s {Software-Defined} networking control plane,” in 18th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 21), 2021, pp. 83–98.

[7] H. Qu, O. Mashayekhi, C. Shah, and P. Levis, “Decoupling the control
plane from program control flow for flexibility and performance in cloud
computing,” in Proceedings of the thirteenth euays conference, 2018, pp.
1–13.

[8] K. Zheng, L. Wang, B. Yang, Y. Sun, and S. Uhlig, “Lazyctrl: A
scalable hybrid network control plane design for cloud data centers,”
IEEE Transactions on Parallel and Distributed Systems, vol. 28, no. 1,
pp. 115–127, 2016.

[9] S. Maheshwari, P. Netalkar, and D. Raychaudhuri, “Disco: Distributed
control plane architecture for resource sharing in heterogeneous mobile
edge cloud scenarios,” in 2020 IEEE 40th International Conference on
Distributed Computing Systems (ICDCS). IEEE, 2020, pp. 519–529.

[10] Y. Gong, B. He, and J. Zhong, “Network performance aware mpi
collective communication operations in the cloud,” IEEE Transactions
on Parallel and Distributed Systems, vol. 26, no. 11, pp. 3079–3089,
2013.

[11] S. Seleznev and V. Yakovlev, “Industrial application architecture iot and
protocols amqp, mqtt, jms, rest, coap, xmpp, dds,” International Journal
of Open Information Technologies, vol. 7, no. 5, pp. 17–28, 2019.

[12] R. Thurlow, “Rpc: Remote procedure call protocol specification version
2,” RFC 5531, May, Tech. Rep., 2009.

[13] P. Stuedi, A. Trivedi, B. Metzler, and J. Pfefferle, “Darpc: Data center
rpc,” in Proceedings of the ACM Symposium on Cloud Computing, 2014,
pp. 1–13.

[14] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki, A. Bruno,
J. Hu, B. Ritchken, B. Jackson et al., “An open-source benchmark suite
for microservices and their hardware-software implications for cloud
& edge systems,” in Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2019, pp. 3–18.

[15] A. Pourhabibi Zarandi, M. J. Sutherland, A. Daglis, and B. Falsafi,
“Cerebros: Evading the rpc tax in datacenters,” in Proceedings of the
54th International Symposium on Microarchitecture (MICRO’21), no.
CONF, 2021.

[16] “grpc,” https://www.grpc.io/.
[17] N. Naik, “Choice of effective messaging protocols for iot systems: Mqtt,

coap, amqp and http,” in 2017 IEEE international systems engineering
symposium (ISSE). IEEE, 2017, pp. 1–7.

[18] S. Lima, A. Rocha, and L. Roque, “An overview of openstack archi-
tecture: a message queuing services node,” Cluster Computing, vol. 22,
no. 3, pp. 7087–7098, 2019.

[19] W. Lu, J. Jackson, and R. Barga, “Azureblast: a case study of developing
science applications on the cloud,” in Proceedings of the 19th ACM
International Symposium on High Performance Distributed Computing,
2010, pp. 413–420.

[20] G. Fu, Y. Zhang, and G. Yu, “A fair comparison of message queuing
systems,” IEEE Access, vol. 9, pp. 421–432, 2020.

[21] P. Dobbelaere and K. S. Esmaili, “Kafka versus rabbitmq: A comparative
study of two industry reference publish/subscribe implementations: In-
dustry paper,” in Proceedings of the 11th ACM international conference
on distributed and event-based systems, 2017, pp. 227–238.

[22] L. Malina, G. Srivastava, P. Dzurenda, J. Hajny, and R. Fujdiak, “A
secure publish/subscribe protocol for internet of things,” in Proceedings
of the 14th international conference on availability, reliability and
security, 2019, pp. 1–10.

[23] “Apache kafka,” https://kafka.apache.org/.
[24] “Apache pulsar,” https://pulsar.apache.org/.
[25] D. B. De Oliveira, R. S. De Oliveira, and T. Cucinotta, “Untangling the

intricacies of thread synchronization in the preempt rt linux kernel,”
in 2019 IEEE 22nd International Symposium on Real-Time Distributed
Computing (ISORC). IEEE, 2019, pp. 1–9.

[26] V. Chvatal, “A greedy heuristic for the set-covering problem,” Mathe-
matics of operations research, vol. 4, no. 3, pp. 233–235, 1979.

[27] C. H. Papadimitriou and K. Steiglitz, Combinatorial optimization:
algorithms and complexity. Courier Corporation, 1998.

[28] Z. Meng, H. Xu, M. Chen, Y. Xu, Y. Zhao, and C. Qiao, “Learning-
driven decentralized machine learning in resource-constrained wireless
edge computing,” in IEEE INFOCOM 2021-IEEE Conference on Com-
puter Communications. IEEE, 2021, pp. 1–10.

[29] X. Li, F. Tang, J. Liu, L. T. Yang, L. Fu, and L. Chen, “{AUTO}:
Adaptive congestion control based on {Multi-Objective} reinforce-
ment learning for the {Satellite-Ground} integrated network,” in 2021
USENIX Annual Technical Conference (USENIX ATC 21), 2021, pp.
611–624.

[30] M. Cheng, J. Li, and S. Nazarian, “Drl-cloud: Deep reinforcement
learning-based resource provisioning and task scheduling for cloud ser-
vice providers,” in 2018 23rd Asia and South pacific design automation
conference (ASP-DAC). IEEE, 2018, pp. 129–134.

[31] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience
replay,” arXiv preprint arXiv:1511.05952, 2015.

[32] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971, 2015.

[33] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” Advances in
neural information processing systems, vol. 32, pp. 8026–8037, 2019.

[34] G. Zhao, L. Luo, H. Xu, C.-J. Chung, and L. Xie, “Southbound message
delivery with virtual network topology awareness in clouds,” IEEE/ACM
Transactions on Networking, 2022.

[35] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, “The
nature of data center traffic: measurements & analysis,” in Proceedings
of the 9th ACM SIGCOMM conference on Internet measurement, 2009,
pp. 202–208.

[36] “Godaddy,” https://www.godaddy.com/.
[37] S. Paul, R. Jain, M. Samaka, and J. Pan, “Application delivery in

multi-cloud environments using software defined networking,” Computer
Networks, vol. 68, pp. 166–186, 2014.

