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Abstract— The surging scale of distributed training (DT) incurs
significant communication overhead in datacenters, while a
promising solution is in-network aggregation (INA). It leverages
programmable switches (e.g., Intel Tofino switches) for gradient
aggregation to accelerate DT tasks. Due to switches’ limited
on-chip memory size, existing solutions try to design the memory
sharing mechanism for INA. This mechanism requires gradients
to arrive at switches synchronously, while network dynamics
make it common for the asynchronous arrival of gradients,
resulting in existing solutions being inefficient (e.g., massive
communication overhead). To address this issue, we propose
GOAT, the first-of-its-kind work on gradient scheduling with
collaborative in-network aggregation, so that switches can effi-
ciently aggregate asynchronously arriving gradients. Specifically,
GOAT first partitions the model into a set of sub-models, then
decides which sub-model gradients each switch is responsible for
aggregating exclusively and to which switch each worker should
send its sub-model gradients. To this end, we design an efficient
knapsack-based randomized rounding algorithm and formally
analyze the approximation performance. We implement GOAT
and evaluate its performance on a testbed consisting of 3 Intel
Tofino switches and 9 servers. Experimental results show that
GOAT can speed up the DT by 1.5× compared to the state-of-
the-art solutions.

Index Terms— In-network aggregation, gradient schedul-
ing, distributed training, datacenter network, programmable
network.

I. INTRODUCTION

WITH the increasing complexity of machine learning
(ML) applications, such as computer vision [2], nat-

ural language processing [3] and recommender systems [4],
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the scale of ML tasks is growing explosively. In practice,
distributed training (DT) [5], consisting of multiple workers
and parameter servers (PS), is proposed to meet the needs
for training large-scale ML tasks. In DT, workers train deep
neural network (DNN) models locally and send gradients to
the PS(s) for aggregation. After that, the PS(s) will send the
aggregated gradients to workers. Due to a large volume of
exchanged traffic during distributed training, communication
overhead has become the main bottleneck [6], [7], [8], [9]. For
example, for a DT task training BERT on 10Gbps links, 67%
of the training time is occupied for communication [7].

Triggered by the recent rise of programmable network-
ing [10], in-network aggregation (INA) [6], [7], [11], [12] has
been proposed as a promising solution to alleviate the com-
munication bottleneck. Instead of implementing aggregation
purely in the PS(s), INA utilizes programmable switches (e.g.,
P4-based [13] and FPGA-based [14]) to aggregate gradients
within the network. Specifically, workers send gradients over
the network, where programmable switches can aggregate
gradients from multiple workers and send only the aggregated
result to the PS. By doing so, INA helps to reduce the
communication overhead from workers to the PS(s), increasing
training throughput and speeding up distributed training [11].

The major challenge of INA is that programmable switches
only have limited on-chip memory. A typical switch has tens
of MBs memory size, while the gradient size of DNN models
could be hundreds to thousands of MBs [7]. One intuitive
solution is to increase the on-chip memory size directly. But
it requires chip modification and raises the cost significantly.
Alternatively, TEA [15] proposes the idea of extending the
switch memory with external server memory. However, it does
not consider the characteristics of INA workload (e.g., the mas-
sive throughput demands) and will introduce a new bottleneck
on the bandwidth towards the external memory.

To overcome the limitation of switch memory, existing INA
solutions [6], [7], [16] design the complex memory sharing
mechanism to enable gradient aggregation with programmable
switches. However, this kind of mechanism could be easily
disturbed by synchronization delay and worker stragglers [16].
For example, ATP [6] partitions the memory into isolated
units, and each gradient fragment (a set of gradient elements)
will be aggregated in a memory unit. Since the gradient
size is larger than the size of programmable switch memory,
one memory unit may be responsible for storing multiple
gradient fragments. To guarantee the training correctness,
programmable switches can not aggregate asynchronously
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arriving gradient fragments in the same memory unit, degrad-
ing the throughput of in-network aggregation (see Sec. III-A
for details). In the extreme case, where all workers’ gradi-
ents arrive at switches asynchronously, the PS will aggregate
all gradients without performance gain of in-network aggre-
gation., existing solutions may be inefficient for practical
scenarios.

To deal with this issue, some works [6], [7] propose main-
taining synchronization among workers. However, we argue
that it will require considerable effort to keep the workers
synchronized due to network dynamics. For instance, ATP [6]
adopts ACK-based congestion control to modify the sending
window of workers. However, it can not synchronize the
pace of workers in time. So there still exists a considerable
number of asynchronously arriving packets, leading to high
aggregation overheads in the PS. Since network dynamics are
common in datacenters [17], it is necessary to design alterna-
tive solutions to perform efficient in-network aggregation.

We find that the above solutions try to optimize memory uti-
lization for each programmable switch individually, incurring
inefficient aggregation in asynchronous scenarios. In practice,
one model can be divided into a set of sub-models (e.g., model
layers), whose gradient will be aggregated independently [18].
Our key idea is to schedule sub-model gradients to multiple
switches for collaborative in-network aggregation. This makes
programmable switches possible to store all gradients and
aggregate asynchronously arriving gradients.

To this end, this paper proposes GOAT, which sched-
ules sub-model gradients to multiple programmable switches
for collaborative in-network aggregation. Specifically, GOAT
simultaneously decides (1) which sub-model gradients each
programmable switch is responsible for aggregating exclu-
sively and (2) to which programmable switches (or the PS)
each worker should send these sub-model gradients. By doing
these, GOAT can collaboratively utilize the on-chip memory of
multiple switches and retain the efficiency of INA. However,
it is non-trivial to realize GOAT. On the one hand, we uti-
lize multiple programmable switches to aggregate gradients,
thereby needing to balance the benefits of in-network aggrega-
tion and the routing costs of gradients to switches. On the other
hand, the in-network aggregation will change the total amount
of forwarded traffic, making existing routing methods [19]
ineffective. Therefore, it is challenging to design an efficient
gradient scheduling scheme with collaborative in-network
aggregation to mitigate the communication bottleneck of DT.
We summarize the main contributions of this paper as follows:

1) We design GOAT, the first-of-its-kind work that per-
forms gradient scheduling with collaborative in-network
aggregation to efficiently aggregate asynchronously
arriving gradients and speed up the distributed training.

2) We formulate the problem of Gradient Scheduling
for In-Network Aggregation (GINA) and present a
knapsack-based randomized rounding algorithm, called
KRGS, to solve this problem. KRGS achieves the
approximation factor of O(log |S|), where |S| is the
number of programmable switches in the network.
Under a proper assumption, the bound of the approx-
imation factor can be tightened to 4.

3) We formulate the problem under the asynchronous
distributed training scenario to determine the optimal
number of participating workers in each epoch and prove
its convergence. We present a greedy algorithm to solve
the problem.

4) We conduct a small-scale testbed based on Intel
Tofino switches and a large-scale simulation based on
real-world network topologies. Both experimental and
simulation results show that GOAT dramatically reduces
the communication overhead by 81.2% and speeds up
the distributed training by 1.5× compared with the state-
of-the-art solutions.

The rest of this paper is organized as follows. Section II
presents some related works for this paper. Section III dis-
cusses the limitations of the related studies and explains
our motivation. Section IV gives the formulation of Gra-
dient Scheduling for In-Network Aggregation and pro-
poses a knapsack-based randomized rounding algorithm.
Section V formulates the problem under the asynchronous dis-
tributed training scenario and presents an efficient algorithm.
Section VI illustrates the implementation of GOAT and
Section VII evaluates the effectiveness of the proposed
algorithm. We conclude the paper in Section VIII.

II. RELATED WORK

This section first introduces the situation of distributed
training. Then, we illustrate how to speed up the distributed
training through in-network aggregation.

A. Distributed Training

A DNN model consists of multiple network layers, each of
which contains a large number of parameters. Training a DNN
model requires hundreds of epochs over the dataset to achieve
convergence [20]. In each epoch, the compute node trains
the DNN model over a dataset to generate the gradient, via
a training algorithm (e.g., stochastic gradient descent (SGD)
or its variants [21], [22], [23], [24], [25]). We take SGD
as an example. The compute node calculates gradient g =
▽F (wt), where ▽ denotes vector differential operator and
F (wt) represents the value of loss function related to model
wt in epoch t, and updates the model parameter according to
the gradient.

Distributed training [26] is proposed to split the whole
dataset into multiple datasets, and parallelize the training with
multiple compute nodes to speed up the DNN training.1 For
the data parallelism distributed training, there are two kinds
of compute nodes: workers and parameter servers [5]. In each
epoch, workers train the DNN model over their partition of the
dataset to generate gradients and push gradients to parameter
servers. Afterward, parameter servers aggregate all gradients
with global aggregation algorithms [27], [28], [29], [30] and
update the model parameters. For example, in synchronous
SGD (SSGD) [31], the PS receives the gradients of workers
and performs aggregation by calculating 1

N

∑N
n=1 g

n
t , where

1There are two types of parallelism schemes: model parallelism and data
parallelism. This paper focuses on the data parallelism distributed training.
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N is the number of workers and gnt is the gradient of worker
n in epoch t. At last, workers pull the updated results from
parameter servers for the next training epoch.

As the scale of the distributed training task grows, the
communication overhead becomes the main bottleneck [6],
and in-network aggregation is proposed to reduce the traffic
amount.

B. In-Network Aggregation

INA offloads part of gradients aggregated to programmable
network devices (e.g., Intel Tofino programmable switch [13])
to reduce the amount of transferred data, alleviating the
communication bottleneck. A lot of works have focused
on implementing in-network aggregation in programmable
switches [6], [7], [11], [32]. For instance, SHARP [32]
implements INA based on Mellanox’s SiwtchIB-2 ASIC.
iSwitch [11] designs an FPGA-based programmable switch
to aggregate gradients of distributed reinforcement learning.
As another option, P4-based programmable switches [13]
attract a lot of attention. SwitchML [7] focuses on the
in-network aggregation of a single rack and offloads gradient
aggregation to the top-of-rack (ToR) switch. ATP [6] allows
gradients to be aggregated either on near-worker ToR switches
or near-PS ToR switches.

INA also exposes a novel system resource requirement:
switch on-chip memory. The programmable switch needs to
allocate its memory to store the intermediate results of gradient
aggregation. Due to the gap between model size and on-chip
memory size, current works [6], [7], [16], [33], [34] usually
consider sharing memory for multiple model gradients (See
Sec. III-A for details). For example, SwitchML [7] pro-
poses to allocate the switch memory dedicated for a gradient
aggregation until the switch finishes the job. INAlloc [33]
proposes to periodically modify the switch memory allocation
with the time granularity between a few seconds to a few
minutes. ATP [6] ignores the newly arrived gradients if the
corresponding memory area is occupied. ESA [16] designs
a priority-based algorithm to decide which gradient will be
allocated to the switch memory. However, these works mainly
focus on how to allocate the on-chip memory of a single
programmable switch. In fact, there are usually multiple
programmable switches in datacenters. Considering that the
gradients of model layers can be aggregated independently,
the gradient aggregation can be scheduled into multiple pro-
grammable switches. Therefore, this paper designs GOAT to
study the problem of gradient scheduling with collaborative
in-network aggregation.

III. MOTIVATION AND GOAT OVERVIEW

This section first illustrates the pros and cons of the memory
sharing scheme, then presents a motivating example. At last,
we present the overview and workflow of GOAT.

A. Memory Sharing Scheme

Due to the limited size of switch memory, existing solu-
tions [6], [7], [16] adopt the memory sharing scheme to
conduct in-network aggregation. In particular, the switch mem-
ory is divided into N memory units, each of which can

Fig. 1. Illustration of memory sharing scheme: the switch memory can be
divided into N memory units. Correspondingly, a gradient can be partitioned
into M gradient fragments, each assigned to a memory unit via hash function
for aggregation. Since the size of switch memory is usually smaller than
the size of gradient, multiple gradient fragments will be hashed to the same
memory unit.

store a part of gradients (i.e., gradient fragments) at a time,
as illustrated in Fig. 1. Correspondingly, the gradient is divided
into M fragments, each having the same size as the memory
unit. When one fragment arrives at a switch, it will be hashed
to a specific unit according to its index (e.g., fragment i
will be hashed to memory unit i%N ). Given that the switch
memory size is usually smaller than the gradient size (i.e.,
N<M ), multiple gradient fragments will be hashed to the same
memory unit, which means one memory unit needs to serve
multiple gradient fragments during one DT job.

Ideally, workers’ gradient fragments will arrive at the switch
in sequence. For gradients hashed to the same memory unit,
when one gradient fragment arrives, the memory unit has
already released the previous gradient fragment, therefore no
collision will happen. However, the memory sharing scheme
may be inefficient when gradient fragments arrive at switches
asynchronously. As mentioned above, each memory unit has
room for only one fragment. Once a unit is occupied, it is
unavailable to other fragments until it is released (i.e., finish
aggregating the current fragment). As a result, fragments
encountered hash collision will be directly forwarded to the
PS. In practice, it is common that gradients arrive at switches
asynchronously because of network dynamics. Therefore, the
memory sharing scheme will cause a significant volume of
gradient fragments to be aggregated in the PS without fully
utilizing the benefits of in-network aggregation.

B. A Motivating Example

Given that ATP is a popular INA solution with memory
sharing, this section presents a motivating example to
demonstrate the pros and cons of both ATP and GOAT.
Consider a DT task with 1 PS, 4 workers (i.e., W1-W4) and
3 programmable switches (i.e., S1-S3), as shown in Fig. 2(a).
For simplicity, we assume that worker Wi needs to send the
gradient, divided into 3 fragments (i.e., Ai, Bi and Ci) to the
PS, and each switch’s memory can store only one gradient
fragment at a time.

We first introduce ATP, which performs the first-come-
first-served strategy for gradient fragments allocated to the
same memory unit [6]. In ATP, the near-worker switch
needs to aggregate all gradients of connected workers and
the near-PS switch needs to aggregate all gradients of
downstream switches. For the synchronous scenario, the frag-
ments of W1 and W2 arrive at S1 with the sequence of
{A1, A2, B1, B2, C1, C2}. S1 first aggregates A1 with the
incoming fragment A2 and outputs the aggregated fragment
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Fig. 2. The left subplot shows the network topology of a distributed training task containing 1 PS, 4 workers (i.e., W1-W4) and 3 programmable switches
(i.e., S1-S3). Worker Wi needs to send 3 gradient fragments (i.e., Ai, Bi and Ci) to the PS. Each programmable switch can aggregate one gradient fragment
at a time. In the middle and right subplots, we present the sequence of incoming and output fragments of programmable switches. We use A1,2 to denote the
aggregated fragment of A1 and A2. The middle subplot shows that S3 outputs 7 gradient fragments to the PS and the right subplot shows that S3 outputs
3 gradient fragments to the PS, which is optimal.

A1,2. Then it aggregates B1 with B2 and outputs B1,2. Finally
it aggregates C1 with C2 and outputs C1,2. S2 and S3 have
similar processes.

However, due to network dynamics (e.g., traffic con-
gestion [35], [36] or equal-cost multipath routing [37],
[38]), the traffic of W1 and W2 may arrive at S1 asyn-
chronously, where the incoming fragment sequence of S1 is
{A1, B1, C1, A2, B2, C2}, as shown in Fig. 2(b). In this sce-
nario, S1 first stores A1, then directly forwards the subsequent
fragments B1 and C1 to S3 because these fragments do not
match the stored fragment A1. Finally, the output fragment
sequence of S1 is {B1, C1, A1,2, B2, C2}. So does S2. For S3,
it first receives and aggregates fragment B1 with the incoming
fragment B3 and then buffers the intermediate aggregation
result B1,3 in its memory. Since S3 cannot aggregates the sub-
sequent fragments C1 and C3 with fragment B1,3, it directly
sends C1 and C3 to the PS. At last, the PS will receive 7 gradi-
ent fragments, i.e., {C1, C3, A1,2, A3,4, B,C2, C4}. To handle
asynchrony, workers regard the updated fragments from the PS
as an ACK packet in ATP. Once a worker receives multiple
out-of-order ACK packets, it regards that unreceived out-of-
order packets have been lost. As a result, it will retransmit
unreceived packets and modify the window size for synchro-
nization. However, since this method needs extra RTTs for
synchronizing worker sending rates [35], we argue that it
cannot prevent massive traffic aggregated by the PS in time.

Since one programmable switch cannot store the entire
gradient, we intend to utilize multiple programmable switches
to aggregate gradients. Specifically, we schedule gradient
fragments A, B and C to switches S1, S2 and S3, respec-
tively. In this way, workers W1-W4 need to send fragments
A1-A4 to switch S1, whose incoming fragment sequence
is {A1, A2, B1, B2, C1, C2, A3, A4}, as shown in Fig. 2(c).
S1 will aggregate all gradient fragments Ai and forward the
other fragments to the corresponding switches, i.e., outputs
{B1, C1, B2, C2, A}. For S2, in addition to all fragments of
W3 and W4, it also receives fragments B1 and B2 from
S1 and sends the aggregated fragment B along with the
other fragments. The aggregation process of S3 is similar
to that of S1 and S2. As a result, the PS only receives
3 fragments, i.e., {C,A,B}. This example shows that our
scheme reduces the aggregation overhead of the PS by 57%
(from 7 to 3) and the total communication overhead by 24%
(from 17 to 13) compared with ATP. Thus, we conclude
that scheduling gradients to perform collaborative in-network
aggregation is more efficient than utilizing memory sharing
mechanisms in asynchronous scenarios. Motivated by this

example, we design the scheme of gradient scheduling with
collaborative in-network aggregation, called GOAT.

Discussion. The above example illustrates the idea of
gradient scheduling with collaborative in-network aggregation.
In practice, one DNN model can be partitioned according to
their model layers and spread sub-model to multiple devices
to speed up the distributed training. For example, DADS [39]
considers the DNN model layers as a directed graph and
splits the DNN layers considering network conditions (e.g.,
link bandwidth). DINA [40] proposes a fine-grained adaptive
partitioning scheme which divides a DNN in pieces that can be
smaller than a single layer to reduce the communication over-
head. We can partition the model into sub-models with current
methods [39], [40], [41], [42], [43], then schedule correspond-
ing gradients to multiple switches for aggregation. Moreover,
we intend to utilize a small number of programmable switches
to aggregate a whole model collaboratively. For example, the
gradient size of ResNet-50 [2] is 98MB and the memory size
of Intel Tofino 2 [44] is 64MB. So it only takes 2 switches to
aggregate ResNet-50’s gradients. For large models, we can co-
exist with methods such as gradient quantization [45] to reduce
the gradient size. Besides, considering that programmable
switches are becoming popular in datacenters, we can aggre-
gate large models with more switches if needed.

C. Overview of GOAT

Fig. 3 depicts the overview of GOAT, including the control
plane and the data plane. Specifically, GOAT’s control plane
leverages the collected network information (e.g., the available
routing path set) and predefined model partition to determine
the gradient scheduling policy, i.e., to which programmable
switches (or the PS) each worker should send its sub-model
gradients. GOAT’s data plane consists of workers, pro-
grammable switches and the PS. Workers divide models into
a sub-model set and send gradients of sub-models to the PS.
Programmable switches filter and aggregate the received gra-
dient fragments. The PS is responsible for global aggregation.

Note that the core of GOAT is to determine the gradient
scheduling policy, which will be described in Section IV. For
the data plane, we can implement aggregation operations based
on existing solutions [6], [7]. Due to space limitations, we omit
the design details of the data plane and present the workflow
in Sec. III-D.

D. Workflow of GOAT

Fig. 3 also describes the workflow of GOAT, which mainly
consists of 5 steps as follows.
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Fig. 3. System overview of GOAT. GOAT is composed of two parts. The
control plane is responsible for determining the gradient scheduling policy.
The data plane is responsible for collaborative in-network aggregation.

1) Policy calculation: The controller determines the gradi-
ent scheduling policy and publishes it to the data plane.
Note that, the gradient scheduling policy is published
only once, and the data plane will iteratively execute the
following 4 steps in the DT task. In the following, we use
aggregation nodes to represent programmable switches
and the PS, since they will both aggregate gradients.

2) Model partition: Workers partition the model into
sub-models and label the gradient fragments of
sub-models according to the gradient scheduling pol-
icy. Each fragment will be identified by the tuple of
<aggregation node id, sub-model id, fragment id>. The
aggregation node id denotes the assigned aggregation
node. The sub-model id represents the index of the sub-
model. The fragment id represents the index of gradient
fragments of the belonging sub-model.

3) Gradient filtering: Once a gradient fragment arrives, the
programmable switch filters the fragment by matching
the fragment’s aggregation node id with its id. If they
match, the programmable switch will perform gradient
aggregation. Otherwise, the switch will directly forward
the fragment according to the forwarding table.

4) Gradient aggregation: The programmable switches allo-
cate the gradient fragments to specific memory units via
HASH (<aggregation node id, sub-model id, fragment
id>) mod memory size for aggregation.

5) Global aggregation: The PS collects all gradient frag-
ments (aggregated by programmable switches and
directly sent from workers) and performs aggregation.

IV. COLLABORATIVE IN-NETWORK AGGREGATION

To achieve collaborative in-network aggregation, we first
formulate the problem of Gradient Scheduling for In-Network
Aggregation. Then we propose a knapsack-based randomized
rounding algorithm named KRGS. At last, we analyze the
approximation performance of KRGS.

A. System Model

Parameter Server Architecture. A parameter server
architecture consists of the PS α and a worker set W ={
w1, w2, . . . , w|W |

}
. Workers train models locally and send

gradients to the PS for global aggregation.

TABLE I
TABLE OF NOTATIONS

DNN Model Training. A DNN model is partitioned into
a set of sub-models, whose gradient can be denoted as G ={
g1, g2, . . . , g|G|

}
. Each sub-model gradient has the size of

b(g), and is aggregated independently.

Programmable Network. We consider a datacenter con-
taining four elements: a compute node set, a programmable
switch set, a link set and a network controller.

1) Compute nodes host workers and the PS for model
training and global aggregation.

2) Programmable switches are responsible for gradient
filtering and aggregation. Let S =

{
s1, s2, . . . , s|S|

}
denote the programmable switch set. Each switch s has
a limited on-chip memory with the size of B(s) to store
gradients.

3) Compute nodes and programmable switches are con-
nected via a set of links. We define the distance of two
nodes as the number of links in the shortest path of
two elements. Let Dw(s) and Ds(α) denote the distance
of worker w to aggregation node s ∈ S ∪ {α} and
the distance of programmable switch s to the PS α,
respectively.

4) The network controller (e.g., the PS) can be a logical
controller used to manage the whole network, e.g.,
deciding aggregation nodes of sub-model gradients.

B. Problem Formulation

This section describes the Gradient Scheduling for
In-Network Aggregation (GINA) problem. The notations used
in this paper are summarized in Table I. The key step of GINA
is determining to which aggregation nodes each worker should
send its sub-model gradients. Thus, let ysw,g ∈ {0, 1} represent
whether aggregation node s aggregates worker w’s gradient g,
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or not. Let xsg ∈ {0, 1} represent whether sub-model gradient
g is aggregated in aggregation node s, or not. The problem
can be formulated as follows.

min
∑
g∈G

(
∑
w∈W

∑
s∈S∪{α}

ysw,g ·Dw(s)+
∑
s∈S

xsg ·Ds(α)) · b(g)

S.t.



∑
s∈S∪{α}

xsg ≥ 1, ∀g ∈ G∑
s∈S∪{α}

ysw,g = 1, ∀w ∈W, g ∈ G

ysw,g ≤ xsg, ∀w ∈W, g ∈ G, s ∈ S ∪ {α}∑
g∈G

xsg · b(g) ≤ B(s), ∀s ∈ S

xsg ∈ {0, 1}, ∀g ∈ G, s ∈ S ∪ {α}
ysw,g ∈ {0, 1}, ∀w ∈W, g ∈ G, s ∈ S ∪ {α}

(1)

The first set of inequalities denotes that each gradient
fragment should have a candidate aggregation node set. The
aggregation nodes can be a programmable switch or the PS.
The second set of equations represents that each worker needs
to select one aggregation node for its sub-model gradients. The
third set of inequalities guarantees that for each worker’s sub-
model gradient, the aggregation nodes are selected from the
candidate aggregation node set. The fourth set of inequalities
means that the size of stored gradient fragments in one
programmable switch should be smaller than its memory size.
Considering that communication is the main bottleneck of
DT, our goal is to minimize the communication overhead in
the network, including the non-aggregated gradients sent from
workers to aggregation nodes and the aggregated gradients sent
from programmable switches to the PS.

C. Algorithm Design

The path from workers to the PS can be splitted into two
parts: the path from workers to programmable switches and
the path from switches to the PS. Supposing that there is no
in-network aggregation, the total traffic can be calculated as
Eq. (2), by summing the traffic from workers to switches and
the traffic from switches to the PS.∑

w∈W

∑
g∈G

∑
s∈S∪{α}

ysw,g · (Dw(s) +Ds(α)) · b(g) (2)

And our goal is converted to maximize the traffic reduced
by in-network aggregation.

To minimize the total size of transferred gradients in the net-
work, we need to maximize the traffic of aggregated gradients.
Since the in-network aggregation mainly reduce the traffic
among the second part of path (the switch receives multiple
gradients but only needs to send one aggregated gradient to the
PS), we subtract Eq. (2) from the objective of Eq. (1) to obtain
the amount of traffic reduced by in-network aggregation.∑
g∈G

∑
s∈S

(
∑
w∈W

ysw,g − xsg) ·Ds(α) · b(g)

+
∑
g∈G

∑
w∈W

yαw,g ·Dα(α) · b(g) (3)

Considering that the distance from the PS α to itself is zero
(i.e., Dαα = 0), we remove

∑
g∈G

∑
w∈W

yαw,g · Dα(α) · b(g) in

Eq. (3). As a result, we can convert Eq. (1) into maximizing
the traffic amount of in-network aggregation as follows.

max
∑
g∈G

∑
s∈S

(
∑
w∈W

ysw,g − xsg) ·Ds(α) · b(g)

S.t.



∑
s∈S∪{α}

xsg ≥ 1, ∀g ∈ G∑
s∈S∪{α}

ysw,g = 1, ∀w ∈W, g ∈ G

ysw,g ≤ xsg, ∀w ∈W, g ∈ G, s ∈ S ∪ {α}∑
g∈G

xsg · b(g) ≤ B(s), ∀s ∈ S

xsg ∈ {0, 1}, ∀g ∈ G, s ∈ S ∪ {α}
ysw,g ∈ {0, 1}, ∀w ∈W, g ∈ G, s ∈ S ∪ {α}

(4)

We propose a knapsack-based randomized rounding
algorithm to solve the converted GINA problem. Our
algorithm consists of three steps. The first step relaxes Eq.
(4) to a linear program by replacing {xsg, ysw,g} with their
fractional versions. We can solve it with a linear program
solver (e.g., PULP [46]) and the optimal solution is denoted
as {x̃sg, ỹsw,g}. After that, we determine the set of assigned
programmable switches for each sub-model gradient based
on the optimal solution. For each gradient g, we first cal-

culate k(g) =
⌊ ∑
s∈S

x̃sg

⌋
, which is the required number of

programmable switches to aggregate gradient g. Then we put
variables x̃sg (∀g ∈ G) into k(g) knapsacks with min-max sum.
For each knapsack a, sub-model gradient g will be scheduled
to switch s with probability

x̃s
g

Sa
, where Sa is the sum of xsg

in knapsack a. We denote the set of assigned switches for
sub-model gradient g as S(g). Finally, for each worker w’s
gradient g, we calculate the probabilities of selecting switch
s ∈ S(g) to aggregate as pn(s) = ỹs

w,g

x̃s
g

and of selecting the PS
as pn(α) = 1−

∑
s∈S(g) pn(s). Then we select an aggregation

node s ∈ S∪{α} with the probability of pn(s). The proposed
algorithm is summarized in Alg. 1.

D. Performance Analysis

Theorem 1: Alg. 1 can guarantee that for each sub-model
gradient, at least one aggregation node will be assigned.

Proof: We consider two situations according to whether
the PS is selected as the optimal solution, or not. We first
consider the situation that worker w’s gradient g is not
scheduled to the PS, i.e., x̃αg = 0. According to the first set of
inequalities in Eq. (4) and the definition of k(g), we have:

1 ≤ k(g) =

 ∑
s∈S∪{α}

x̃sg

 =

⌊∑
s∈S

x̃sg

⌋
≤

∑
s∈S

x̃sg (5)

Each gradient chooses one programmable switch from k(g)
knapsacks. Thus, there are k(g) switches selected.
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Algorithm 1 KRGS: Knapsack-Based Randomized Rounding
for Gradient Scheduling

1: Step 1: Solving the Relaxed Problem
2: Construct a LP by replacing with xs

g, y
s
w,g ∈ [0, 1].

3: Obtain the optimal solution {x̃s
g, ỹ

s
w,g}.

4: Step 2: Assigning Switches for Sub-Model Gradients
5: for each sub-model gradient g ∈ G do

6: Let k(g) =

⌊∑
s∈S

x̃s
g

⌋
.

7: Put xs
g (∀s ∈ S) into k(g) knapsacks with min-max sum.

8: for each knapsack a do
9: Let A denote the variables in knapsack a.

10: Calculate Sa =
∑

x̃s
g∈A x̃

s
g .

11: Choose s for x̃s
g ∈ A with probability

x̃s
g

Sa
.

12: Set x̂s
g = 1 for chosen aggregation node s.

13: end for
14: Let S(g) = {s ∈ S|x̂s

g = 1} denote the set of switches
responsible for aggregating sub-model gradient g.

15: end for
16: Step 3: Determining Aggregation Nodes for Workers’ Sub-

Model Gradients
17: for each worker w ∈W do
18: for each gradient g ∈ G do
19: Set the probabilities of selecting switch s ∈ S(g) and the

PS to pn(s) =
ỹs

w,g

x̃s
g

and pn(α) = 1 −
∑

s∈S(g) pn(s),
respectively.

20: Select an aggregation node s ∈ S∪{α} with the probability
of pn(s).

21: end for
22: end for

We then consider the situation that worker w’s gradient g
is scheduled to the PS, i.e., x̃αg = 1. We have:

0 ≤ k(g)− 1 =

⌊∑
s∈S

x̃sg

⌋
≤

∑
s∈S

x̃sg (6)

According to line 17 of Alg. 1, even if each gradient does not
choose one switch for aggregation, it will be aggregated in the
PS (pαn = 1−

∑
s∈S(g)

pn(s) = 1).

As a result, we can guarantee that for each sub-model
gradient, there is at least one node for aggregation.

Theorem 2: Alg. 1 guarantees that for each worker, each
sub-model gradient is aggregated in one aggregation node.

Proof: According to line 17 of Alg. 1, for each worker’s
sub-model gradient, the sum of probabilities of selecting
aggregation nodes is:∑

s∈S(g)

pn(s) + (1−
∑
s∈S(g)

pn(s)) = 1,∀w ∈W (7)

Eq. (7) shows that, each sub-model gradient will select one
aggregation node. Therefore, the theorem holds.

Lemma 3: For each knapsack a, the lower bound of Sa is
greater than 0.5.

Proof: By the definition of k(g), we have:∑
s∈S

x̃sg = k(g) + ε, 0 < ε < 1 (8)

Then, we define two sets as follows:{
X1 =

{
x̃sg|0.5 < x̃sg < 1, s ∈ S

}
X2 =

{
x̃sg|0 < x̃sg < 0.5, s ∈ S

} (9)

Supposing that we select two variables denoted as x1
m and

x2
m from X2 randomly. The value of x3

m = x1
m+x2

m is either
greater than 0.5 or less than 0.5. If x3

m > 0.5, then X1 =
X1 + x3

m and X2 = X2 −
{
x1
m, x

2
m

}
. Otherwise, X2 = X2 −{

x1
m, x

2
m

}
+x3

m. We repeat the above operations until |X2| ≤
1. Supposing that there is one variable in X2, there are at most
k(g) − 1 variables in X1. According to the definition of X1,
the value of variables in X1 are all less than 1. Thus, we have:∑

x̃s
g∈X1

x̃sg < k(g)− 1 (10)

∑
x̃s

g∈X2

x̃sg < 0.5 (11)

Combining Eq. (10) and Eq. (11), we have:∑
s∈S

x̃sg < k(g)− 0.5 (12)

However, Eq. (12) contradicts Eq. (8). Thus, there are at
least k(g) variables in X1. Since we put variables to knapsacks
with the min-max sum, the sum of knapsack a must be greater
than 0.5.

In order to facilitate the description of approximation anal-
ysis, we give a famous lemma for probability analysis.

Lemma 4: Chernoff Bound [47]: Given n independent
variables: y1, y2, . . . , yn,∀yi ∈ [0, 1]. Let τ = E [

∑n
i=1 yi].

Then, Pr [
∑n
i=1 yi ≥ (1 + ϱ)τ ] ≤ e

−ϱ2τ
2+ϱ , where ϱ is an

arbitrary positive value.
Theorem 5: Alg. 1 will not exceed the memory constraint

of programmable switches by an approximation factor of
O(log |S|).

Proof: We first prove that for each gradient g ∈ G
and programmable switch s ∈ S, we have E

[
x̂sg

]
≤ 2 · x̃sg .

According to Alg. 1, we choose switch s with the probability
of

x̃s
g

Sa
, thereby E

[
x̂sg

]
= x̃s

g

Sa
. According to Lemma 3, we can

obtain E
[
x̂sg

]
= x̃s

g

Sa
≤ 2 · x̃sg .

Then we define δsm = x̂sg · b(g) as the size of gradient g
aggregated in the programmable switch s. Since each gradient
g selects the programmable switch s independently, we have
E

[∑
g∈G δs

]
=

∑
g∈G

x̃s
g

Sa
· b(g). By the definition of δs,

we can get the expected workload of each programmable
switch s ∈ S:

E

∑
g∈G

δs

 =
∑
g∈G

x̃sg
Sa
· b(g)

≤ 2 ·
∑
g∈G

x̃sg · b(g) ≤ 2 ·B(s) (13)

Let Bmin denote the minimum memory capacity among
the programmable switches. We then define a constant value
ν = min{ 2·Bmin

b(g) ,∀g ∈ G} to normalize the expected on-chip
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memory workload. Combining Eq. (13) and the definition of
ν, we have: 

δs · ν
2 ·B(s)

∈ [0, 1]

E

∑
g∈G

δs · ν
2 ·B(s)

 ≤ ν (14)

By applying Lemma 4, we have:

Pr

∑
g∈G

δs · ν
2 ·Bs

≥ (1 + ϱ) · ν

 ≤ e−ϱ2ν
2+ϱ

⇒ Pr

∑
g∈G

δs
2 ·Bs

≥ (1 + ϱ)

 ≤ e−ϱ2ν
2+ϱ (15)

We want to find ϱ for which the probability upper bound
above becomes very small. Specifically, we assume that:

Pr

∑
g∈G

δs
2 ·Bs

≥ (1 + ϱ)

 ≤ e−ϱ2ν
2+ϱ ≤ 1

|S|
(16)

which means that the upper bound approaches quickly to zero
as the network grows. By solving Eq. (16), we have:

ϱ ≥
log |S|+

√
log2 |S|+ 8ν log |S|

2ν
, (|S| ≥ 2)

⇒ ϱ ≥ log |S|
ν

+ 2, (|S| ≥ 2) (17)

In practice, the on-chip memory size of Intel Tofino 2 is
64MB [44]. According to the default model partition of BERT
in PyTorch [48], the average size of sub-model gradients
is 2MB, i.e., b(g) = 2. Under this setting, ν = 2·64

2 ≈
64. We assume the number of programmable switches in a
datacenter is |S| = 20 [49], so 3 · log |S| ≈ 3.9. Combining
these assumptions, we can obtain that ν ≥ 3 · log |S|. As a
result, we have:

ϱ ≥
log |S|+

√
log2 |S|+ 8ν log |S|

2ν

⇒ ϱ ≥
log |S|+

√
(2ν − log |S|)2 + 12ν log |S| − 4ν2

2ν

⇒ ϱ ≥
log |S|+

√
(2ν − log |S|)2
2ν

⇒ ϱ ≥ 1 (18)

We can draw that the approximate factor of the memory
constraint is 2 · (ϱ + 1) = 2·log|S|

ν + 6 = O(log |S|). Under
the proper assumption (i.e., ν ≥ 3 · log |S|), the bound can be
tightened to 4.

Theorem 6: After rounding, the communication overhead
will not exceed the fractional solution by an approximate
factor of O(log |W · S|).

Proof: We first prove that for each worker w’s gradient g ∈
G and programmable switch s ∈ S, we have E

[
ŷsw,g

]
≤ 2 ·

ỹsw,g . For each worker w, we choose the switch s to aggregate

gradient g with the probability of
ỹs

w,g

x̃s
g

, where switch s must be
assigned for aggregating gradient g. Thus, we have E

[
ŷsw,g

]
=

ỹs
w,g

x̃s
g
· x̃

s
g

Sa
. According to Lemma 3, we can obtain E

[
ŷsw,g

]
=

ỹs
w,g

Sa
≤ 2 · ỹsw,g . Then we can analyze the approximation ratio

performance based on the randomized rounding method. Since
the proof process is similar to that of Theorem 5, we omit it
here.

V. AGGREGATE WITH ASYNCHRONOUS TRAINING

In this section, we show that GOAT can be adopted into
the asynchronous training scenario to speed up distributed
training tasks. We first provide the problem formulation of
collaborative in-network aggregation in asynchronous training
scenario. Then, we analyze the convergence of collaborative
in-network aggregation under asynchronous training. At last,
we present an efficient algorithm to solve the problem.

A. Problem Formulation

Although we can aggregate asynchronously arrived gradi-
ents with collaborative in-network aggregation, the PS still
needs to wait for the gradients of stragglers. In this section,
to facilitate the distributed training, we allow the PS to aggre-
gate the gradients of the fastest Kt workers in each epoch,
where Kt represents the number of participating workers in
epoch t. We use ztw ∈ {0, 1} to denote whether the worker w
participates in the gradient aggregation in epoch t or not. Let
H(w, g, t) denote the arrival time of worker w’s sub-model
gradient g in epoch t. The completion time of epoch t is
calculated as:

H(t) = max{ztw ·H(w, g, t)}+H(α),∀t ∈ [T ] (19)

where H(α) denotes the global aggregation time of the PS.
Eq. (19) means that the duration of each epoch is regarded

as the longest arrival time among participated workers plus
the aggregation time. Since the global aggregation time takes
up a small ratio during the training procedure [11], here
we assume the aggregation time is stable among all training
epochs (i.e., H(α) is a constant). According to the above
definitions, we formulate the problem as the following:

min
T∑
t=1

H(t)

S.t.



F (xT ) ≤ F
H(t) = max{ztw ·H(w, g, t)}+H(α), ∀t ∈ [T ]
Kt =

∑
w∈W

ztw, ∀t ∈ [T ]

Ks
t =

∑
w∈W

∑
g∈G

ysw,g · ztw, ∀t, s

ztw ∈ {0, 1} , ∀t, w
(20)

The first set of inequalities expresses the convergence
requirement of workers, where F (xT ) is a user-specified loss
function (e.g., linear regression [50], logistic regression [51],
or support vector machine [52]), and F is the convergence
threshold of the loss value after T training epochs. The second
set of equations denotes the completion time of epoch t. The
third and fourth sets of equations mean that the PS and switch
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s aggregate Kt and Ks
t gradients in epoch t, respectively. Our

goal is to minimize the completion time of the distributed
training task.

B. Proof of Convergence

To analyze the feasibility of collaborative in-network aggre-
gation with asynchronous training, we present the convergence
analysis in this section.

Assumptions. In the datacenter, the training dataset is
usually uniformly partitioned and distributed to workers inde-
pendently [6], [7], [12], we assume that each worker trains
the model on the independent and identical distributed dataset.
The objective is to minimize the result of the loss function as
follows:

min
x∈Rd

F (x) =
1
n

n∑
i=1

Eξw∼Dw
[f(x, ξw)] (21)

where x ∈ Rd is the model parameters shared by all workers,
and Dw represents the local dataset of worker w, and f(x, ξw)
is the value of loss function associated with model parameters
x and a batch ξw of the local dataset Dw. Then, our analysis
is based on three popular assumptions, which are widely used
in literatures [53], [54], and [55].

Assumption 1 (Smoothness): The loss function f is smooth
with a constant L > 0, which implies that ∀x, y, we have:

f(y)− F (x) ≤ ⟨∇F (x), y − x⟩+ L

2
∥y − x∥2 (22)

Assumption 2 (Unbiased Local Gradient): For each
worker w with local data, the stochastic gradient is locally
unbiased:

Eξw∼Dw
[∇f(x, ξw)] = ∇fw(x) (23)

Assumption 3 (Bounded Variance): The variance of the
local gradient of worker w is bounded uniformly by:

Eξw∼Dw

[
∥∇F (x, ξw)−∇Fw(x)∥2

]
≤ σ2 (24)

and the variance between local and global gradient satisfies:

∥∇Fi(x)−∇F (x)∥2 ≤ β2 (25)

where β2 quantifies the deviation between local and global
gradient. We consider β2 = 0 when the training data are
identically distributed among workers [55].

Convergence analysis. We first provide the following
useful lemma [55] to characterize the gradient bias caused
by ignoring the aggregation of straggler gradients.

Lemma 7: The variance between the average gradient of
|W | workers and K workers is characterized as follows:

E
[∥∥Ḡ− Ḡ′∥∥2

]
≤ |W | −K
|W | ·K

σ2 (26)

If the global gradient is estimated based on the results of K
workers, the corresponding variance can be bounded to:

E
[∥∥Ḡ′ −∇F (x)

∥∥2
]
≤ 1
K
σ2 (27)

We then prove that the DNN model converges to a critical
point when there are Kt workers participate in epoch t.

Lemma 8: Let Km = mint∈{1,...,T}Kt and x∗ denote the
optimal model. Under Assumption 1, if the PS aggregates
gradients from random Kt workers in epoch t with learning
rate η ≤ 1

L , the convergence result is as follows:

1
T

T−1∑
t=0

E
[
∥∇F (xt)∥2

]
≤ 2(F (x0)− F (x∗))

ηT
+

σ2

Km
(28)

Proof: By the smoothness property in Assumption 1 and
the definition of aggregated gradients Ḡt, we have:

E [F (xt+1)− F (xt)]

≤ ⟨∇F (xt),E [xt+1 − xt]⟩+
L

2
E

[
∥xt+1 − xt∥2

]
= −η

〈
F (xt),E

[
Ḡt

]〉
+
Lη2

2
E

[∥∥Ḡt∥∥2
]

= −η ∥F (xt)∥2 +
Lη2

2
∥∇F (xt)∥2

+
Lη2

2
E

[∥∥Ḡt −∇F (xt)
∥∥2

]
(29)

According to Lemma 7, we have:

E [F (xt+1)− F (xt)]

≤ −η(1− Lη

2
) ∥∇F (xt)∥2 +

Lη2σ2

2Kt
(30)

Rearrange the terms, we have

η(1− Lη

2
)E

[
∥∇F (xt)∥2

]
≤ E [F (xt)− f(xt+1)] +

Lη2σ2

2Kt
(31)

Given the fact that 1
Kt
≤ 1

Km
, we have

E [F (xt)− f(xt+1)] +
Lη2σ2

2Kt

≤ E [F (xt)− f(xt+1)] +
Lη2σ2

2Km
(32)

Summing from t = 0, . . . , T − 1, we have the convergence
result as following:

1
T

T−1∑
t=0

E
[
∇∥F (xt)∥2

]
≤

∑T−1
t=0 E [F (xt)− f(xt+1)]

ηT (1− Lη
2 )

+
Lησ2

(2− Lη)Km

≤ 2(f(x0)− f(x∗))
ηT

+
σ2

Km
(33)

which completes the proof.
Theorem 9: Eq. (20) guarantees that the PS will receive Kt

gradients from programmable switches, and the DNN model
will converge to a critical point.

Proof: With collaborative in-network aggregation, each
programmable switch is responsible for aggregating the
sub-model gradients of workers. According to the fourth set of
equations in Eq. (20), we can guarantee that the participating
worker’s all sub-model gradients will be received by the PS.
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Therefore, the PS will receive at least Kt gradients in each
epoch. Based on the Lemma 8, we can prove that the DNN
model will be converged after T epochs.

From Theorem 9 we observe that we can exhibit better
convergence performance as both Km and T become larger.
However, increasing the values of both Km and T will lead
to long training time. Thus, it is challenging to determine the
optimal value of Km and T to maintain a similar convergence
performance with acceptable training time.

C. Algorithm Design

We first show that the number of epochs in the distributed
training task is related to the completion time of each epoch
by approximating the problem. Specifically, we set the upper
bound of the mean square gradient to be less than a certain
threshold (e.g., ϵ ≥ 0), which is equivalent to meeting
F (xT ) ≤ F . Subsequently, we have:

2(F (x0)− F (x∗))√
nT

+
σ2

Km
≤ ϵ (34)

Then, we rearrange the items and obtain:

T ≥ 4K2
m(F (x0)− F (x∗))2

n(ϵKm − σ2)2
(35)

Here, we define:

ψ(Km) =
4K2

m(F (x0)− F (x∗))2

n(ϵKm − σ2)2
(36)

To maintain a similar convergence performance and build
the relationship between Km and T , we set T = ψ(Km).
Therefore, the objective can be reformulated as follows:

min
ψ(Km)∑
t=1

H̄ (37)

where H̄ represents the average completion time of each
epoch. With Km = mint∈{1,...,T}Kt, we approximate the
problem of Eq. (20) as:

min
ψ(Km)∑
t=1

H̄

S.t.



F (xT ) ≤ F
H(t) = max{ztw ·H(w, g, t)}+H(α), ∀t ∈ [T ]
Kt =

∑
w∈W

ztw, ∀t ∈ [T ]

Ks
t =

∑
w∈W

∑
g∈G

ysw,g · ztw, ∀t, s

ztw ∈ {0, 1} , ∀t, w
(38)

To decide the optimal value of Kt, we present a
greedy-based algorithm in Alg. 2. We adopt the history gra-
dient arrival time of workers to estimate the future gradient
arrival time and the completion time of each epoch. By search-
ing the candidate Kt ∈ {1, 2, . . . , n}, we find the optimal Kt

to minimize the total training time.
Specifically, for the PS, we use pw to denote the history

interval between distributing the parameters and receiving the

Algorithm 2 Online Searching for the Optimal Number of
Participating Workers

1: Hmin ← +∞
2: for each K ∈ {1, 2, 3, . . . , |W |} do
3: for each m ∈ {1, 2, 3, ..,M} do
4: Set ht ← p(Km)

5: for each w ∈W do
6: if pw ≥ ht then
7: p′w ← pw − ht

8: else
9: p′w ← pw

10: end if
11: end for
12: Set H̄ ←

∑
0≤t′<t ht′

t
13: end for
14: Set T ← ψ(Km)
15: Set H ← T · H̄
16: if H ≤ Hmin then
17: Update Hmin ← H
18: Set Kt+1 ← K
19: end if
20: end for
21: Return Kt+1

last gradient from worker w, and p′w to represent the estimated
interval between the current moment and receiving the worker
w’s updated gradient. Let P = {p1, p2, . . . , pw} and P ′ =
{p′1, p′2, . . . , p′w} represent the set of history and estimated
intervals of workers, respectively. We sort the elements in
P in ascending order, representing the interval of workers is
increasing.

For each candidate K ∈ {1, 2, . . . , n}, we first initiate the
estimated interval p′w of worker w as its history interval pw.
Then we run M rounds to simulate the completion time of the
following M epochs and obtain an average completion time
H̄ . In practice, we can set M as the number of workers to
ensure fast execution of our searching method. In each round,
we set the completion time of epoch t as the estimated interval
of Km-th fastest worker (i.e., ht ← p(Km)) to simulate that
the PS aggregates gradients from Km workers. If the estimated
interval of worker w is greater than the completion time of the
epoch, we reduce the estimated interval by ht, which means
the gradient of worker w will take additional time (i.e., pw−ht)
to arrive at the PS. Once we obtain the average completion
time H̄ of the epoch, we can compute the value of epochs T
with selected Km according to Eq. (36). Finally, we determine
the optimal value of Kt+1 by Km that achieves the minimum
value of training time H = T · H̄ .

VI. IMPLEMENTATION

We implement the KRGS algorithm in the control plane and
calculate the gradient scheduling policy via PuLP [46], where
the sub-model set is defined by the default model partition
of PyTorch [48]. We publish the policy by installing the
corresponding entries to programmable switches with Bare-
foot Runtime Interface (BRI). Besides, for the asynchronous
training, the PS will launch another thread to publish the value
of Ks

t to each programmable switch via BRI. To simulate
the network dynamics, the PS generates delayed latency and
publishes them to workers via Secure Shell (SSH) connection
before each training epoch. In the data plane, we implement
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the collaborative in-network aggregation with 583 LoCs of P4
in programmable switches. Specifically, we use 16384 registers
for gradient aggregation and 2 match-action tables (MATs) for
gradient filtering. We run PyTorch on each server to perform
DT tasks. We obtain the parameter array of models by invok-
ing the parameters_to_vector of PyTorch and partition the
array into a set of gradient fragments. In the communication
backend, we encode the gradient fragments into self-defined
packet headers for in-network processing. Similar to [6] and
[7], each gradient fragment contains 64 elements.

VII. PERFORMANCE EVALUATION

In this section, we evaluate GOAT with testbed and simu-
lation experiments and highlight our findings as follows:
• GOAT speeds up distributed training by up to 1.77× com-

pared with existing solutions when performing practical
DT tasks under network dynamics (Exp#1).

• GOAT reduces per epoch time by up to 52.7% (Exp#2)
and the aggregation overhead of the PS by 93.8% (Exp#3)
compared with other alternatives.

• By applying to the asynchronous training scenario, GOAT
improves the training throughput by 49.7% (Exp#4) and
speeds up the task by 2.02× (Exp#5), compared with the
synchronous scenario.

• GOAT offloads most of the gradient aggregation into
programmable switches, increasing the in-network aggre-
gation amount by up to 4× compared with benchmarks
(Exp#6).

• GOAT reduces the communication overhead by 31.1%-
63.1% compared with the state-of-the-art solutions when
encountering network dynamics (Exp#7).

A. Experimental Setup

Metrics. We adopt the following metrics for performance
comparison: (1) training throughput; (2) test accuracy; (3)
per epoch time; (4) communication time; (5) aggregation
overhead of the PS; (6) in-network aggregation amount; and
(7) communication overhead.

We measure the number of processed samples (e.g., images)
per second as training throughput and compute the ratio
between the number of the samples correctly predicted by
the model to the number of all samples in the test set as
test accuracy. Then, we record the average duration between
two consecutive epochs as per epoch time. In each epoch,
we measure the average duration from the time a worker sends
the gradient until the time that the worker finishes receiving
the updated model as communication time. Besides, we use
iftop [56] to monitor the total traffic amount of the PS, denoted
as aggregation overhead of the PS. We calculate the size of
gradients aggregated in programmable switches by subtracting
the aggregation overhead of the PS from the total size of
models as in-network aggregation amount. We sum the traffic
size of gradients through links as communication overhead.

Benchmarks. We compare GOAT with four bench-
marks. The first benchmark is a communication scheduling
scheme without considering in-network aggregation, called
Geryon [57]. Geryon computes the shortest path from each

Fig. 4. Topology of the testbed consisting of 1 PS, 8 workers (W1-W8)
and 3 programmable switches (S1-S3). All the components are connected
via 100 Gbps links.

worker to the PS under resource constraints to transfer gra-
dients. The second one, called ATP [6], performs in-network
aggregation at top-of-rack programmable switches. For fair-
ness, we let each worker sends the gradient to the PS via
the shortest paths, where the gradient is aggregated in the
first encountered aggregation node with available memory
capacity. The third solution is the latest INA solution, called
ESA [16]. It designs a priority-based preemption mecha-
nism for asynchronously arriving gradients, where a gradient
fragment with a high priority will evict the low priority
fragment at the memory. For the asynchronous distributed
training scenario (Section VII-C), we adopt a typical solution
named K-SGD [53], as the fourth benchmark. K-SGD collects
gradients from K fastest workers and discard stragglers in each
epoch, to alleviate the influence of stragglers.

B. Testbed Settings and Results

Settings. We build the testbed with 3 Wedge100BF-32x
programmable switches and 9 servers, as shown in Figure 4.
The testbed topology is similar to the examples in Fig. 2(a),
where 1 switch connects with 1 server hosting the PS and
the other 2 switches connect with 4 servers hosting workers,
respectively. Specifically, each switch features an Intel Tofino
chip with Software Development Environment 9.3.1 and has
the available memory of ∽20MB [13]. Each server has an
NVIDIA GeForce RTX 3090, a 22-core Intel Xeon 6152 pro-
cessor, and a Mellanox ConnectX-6 100G dual-port NIC. All
servers run Ubuntu 18.04 with CUDA 11.3 and install the
NIC driver with Mellanox driver OFED 5.5-1.0.3.2. Moreover,
all programmable switches and servers are connected via
100Gbps links.

Workloads. We train two DNN models [2]: ResNet-18
with a size of 44MB and ResNet-50 with a size of 98MB on
the Cifar-100 dataset [58]. Specifically, the dataset contains
60000 images (50000 for training and 10000 for testing),
labeled in 100 classes. Similar to [7], we set the batch size
to 64 and perform 200 training epochs for each DT task by
default. Each programmable switch has the available memory
of ∽20MB [13]. As a result, it needs 3 switches to collabo-
ratively aggregate gradients of ResNet-18 and 5 switches to
aggregate gradients of ResNet-50.

(Exp#1) Overall training performance. We measure the
overall performance of DT tasks by evaluating the training
throughput and test accuracy. The evaluation results are shown
in Figs. 5-7. In Fig. 5, we set the number of workers to
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Fig. 5. Training Throughput vs. Models.

Fig. 6. Training Throughput vs. No. of Workers.

Fig. 7. Test Accuracy vs. Training Time.

8 and run several popular models: ResNet-18, ResNet-34,
ResNet-50, DenseNet-121, DenseNet-169 and DenseNet-201
[2], [59]. The experimental results show that GOAT can obtain
the highest training throughput among these benchmarks. For
example, GOAT achieves a throughput of 276 images/s on
average when training DenseNet-121, while ESA, ATP and
Geryon obtain throughputs of 240 images/s, 219 images/s and
180 images/s, respectively. To save space, we only conduct a
detailed performance comparison of all solutions with ResNet-
18 and ResNet-50 in the following. In Fig. 6, we increase
the number of workers from 4 to 16 with an increment of 4.
The experimental results show that GOAT always achieves
the highest training throughput as the number of workers
increases. For example, given 16 workers in Fig. 6(a), the
training throughputs of GOAT, ESA, ATP and Geryon are 931,
585, 512 and 465 images/s, respectively. In Fig. 7, we further
record the test accuracy versus training time for the DT task
containing 16 workers. It shows that GOAT takes the least
time to complete the training task and achieves a similar test
accuracy compared with other alternatives. For example, given
ResNet-50 in Fig. 7(b), GOAT first reaches an accuracy of
0.7896 in 802.4s while the times of ESA, ATP and Geryon are
1208.48s, 1312.6s and 1416.9s, respectively. The results show
that GOAT can speed up distributed training by 1.34×, 1.39×
and 1.77×, compared with ESA, ATP and Geryon, respec-
tively. The reason is that GOAT can aggregate more gradients
in programmable switches through collaborative in-network
aggregation, reducing the total communication overhead.

(Exp#2) Comparison on training time. This set of eval-
uations compares the training time performance of different
solutions by varying the number of workers. Fig. 8 shows
that, as the number of workers increases, the per epoch time
increases too. Under the fixed number of workers, GOAT
obtains the least per epoch time among all solutions. Given

Fig. 8. Per Epoch Time vs. No. of Workers.

Fig. 9. Communication Time vs. No. of Workers.

Fig. 10. Aggregation Overhead of the PS vs. No. of Workers.

16 workers in Fig. 8(a), the per epoch times of GOAT,
ESA, ATP and Geryon are 2.2s, 3.5s, 4s and 4.65s, respec-
tively. We further estimate the communication time of each
epoch. In Fig. 9(a), when the number of workers is 16, the
communication times of GOAT, ESA, ATP and Geryon are
0.36s, 1.34s, 1.64s and 1.95s, respectively. Thus, by decreasing
the communication time, GOAT reduces per epoch time by
37.14%, 45% and 52.7% compared with ESA, ATP and
Geryon, respectively. Note that, each epoch consists of local
training, communication and global aggregation. Our method
does not optimize the local training time but can co-exist with
solutions decreasing local training time if needed.

(Exp#3) Comparison on aggregation overhead of the
PS. This set of evaluations estimates the average aggregation
overhead of the PS in each epoch. Fig. 10 shows that GOAT
can consistently achieve the least aggregation overhead of
the PS compared with other alternatives. For example, given
16 workers in Fig. 10(a), the aggregation overheads of the
PS of GOAT, ESA, ATP and Geryon are 44MB, 167.2MB,
198MB and 704MB, respectively. As a result, GOAT reduces
the aggregation overhead of the PS by 73.6%, 77.8% and
93.8% compared with other benchmarks. The reason is that in
Geryon all workers’ gradients are sent to the PS without in-
network aggregation. Besides, we find that workers’ gradient
packets arrive at switches asynchronously in real DT tasks.
According to experimental results, in a task with 16 workers,
the asynchronicity of the PS receiving gradients can reach up
to 1.83s. Therefore, many asynchronously arriving gradients
are sent to the PS without in-network aggregation in ESA
and ATP, incurring higher aggregation overhead of the PS
compared with GOAT.

Summary. Through collaboratively in-network aggrega-
tion, GOAT can achieve the highest training throughput, the
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Fig. 11. Training Throughput vs. No. of Workers.

least training time, and the least aggregation overhead of the
PS compared with other benchmarks.

C. Asynchronous Training Settings and Results

Settings. We run asynchronous distributed training tasks
with different numbers of workers, and compare the per-
formance of GOAT under the normal scenario and the
asynchronous training scenario (GOAT-Async). By default,
we set the number of workers to 8 and run each distributed
training task for 200 epochs. We vary the number of workers
to 4, 8, 12, 16, separately. Similar to the work [60], we use
normal distribution probability to simulate the existence of
stragglers. Specifically, we randomly add ratio ∈ [0, 1] sec-
onds latency to all workers before sending gradients, where
ratio follows the normal distribution. We set the standard
deviation of the normal distribution to 0.2. For each asyn-
chronous training task, we run Alg. 2 to obtain the number of
participations, and the PS will send the number of per-switch
participations to the corresponding switch in each epoch. The
PS only distributes the updated model to participating workers
of the epoch. Note that, our algorithm can cooperate with
other asynchronous training optimization frameworks [55],
since we only decide the number of participating workers for
each switch and do not involve the local training and global
aggregation steps.

(Exp#4) Comparison on training throughput. We mea-
sure the training throughput of DT tasks under different
numbers of workers (4)-(16). The evaluation results are shown
in Fig. 11. It shows that GOAT-Async can achieve higher
training throughput as the number of workers increases. For
example, given 16 workers in Fig. 11(b), the training through-
puts of GOAT, K-SGD and GOAT-Async are 512, 668 and
766 images/s, respectively. GOAT-Async increases training
throughput by 49.7% and 14.7%, compared with GOAT
and K-SGD, respectively. The reason is that GOAT-Async
determines the number of participated workers in each epoch,
reducing per-epoch time, and thereby increasing the training
throughput.

(Exp#5) Comparison on time-to-accuracy. In Fig. 12,
we record the test accuracy versus training time for the DT
tasks containing 16 workers. It shows that GOAT-Async takes
the least time to complete the training task among three
solutions with a litter sacrifice in test accuracy compared
with GOAT. Fig. 12(a) shows that, given 200 training epochs,
GOAT-Async takes 207.7s to complete, while K-SGD and
GOAT cost 324s and 420.4s, respectively. The results show
that, GOAT-Async can speed up distributed training by 2.02×
and 1.29×, compared with K-SGD and GOAT. Although the

Fig. 12. Test Accuracy vs. Training Time.

final test accuracy of GOAT is greater than that of GOAT-
Async (≈ 5% improvement), GOAT-Async can achieve greater
test accuracy than GOAT within the same training duration.
For example, in Fig. 12(a), when the time is 200s, GOAT-
Async’s test accuracy is 0.7252, while that of GOAT is only
0.6856. The test accuracy of GOAT-Async outperforms that
of GOAT by 5.78%. The reason is that GOAT-Async will
calculate the optimal number of participations in each epoch,
therefore the test accuracy will be improved faster than the
synchronized training.

Note that, Fig. 12(b) shows some exceptions that the DNN
model in GOAT convergeces faster than in GOAT-Async when
the time is 310s. We think the reason is that ResNet-50 has
more parameters than ResNet-18, increasing the complexity
of convergence, which takes more epochs for GOAT-Async to
train the DNN model to achieve higher test accuracy.

Summary. By calculating the optimal number of partici-
pating workers and deciding per-switch participations, GOAT
can be applied to asynchronous training and speed up the
distributed training tasks. Although the final model accuracy
in GOAT-Async is smaller than that in GOAT, GOAT-Async
can achieve faster model convergence given the same training
time.

D. Simulation Settings and Results

Settings. Our simulations are implemented on a physical
server equipped with an Intel Core i9-10900 processor and
64GB RAM. Similar to Sec. VII-B, we adopt the LP solver
PuLP [46] to compute the gradient scheduling policy. To verify
the theoretical performance of GOAT, we select two practical
topologies. The first topology is a leaf-spine topology [61],
which consists of 20 switches (10 spine switches and 10 leaf
switches) and 50 servers. The second one is a fat-tree topol-
ogy [49], which contains 80 switches (32 edge switches,
32 aggregation switches and 16 core switches) and 192 servers.
Considering the practical situation, we randomly select 20%
of the switches as programmable switches with a memory of
64MB (same as the memory size of Intel Tofino 2). Each
worker sends the traffic of 221MB (same as the gradient size of
AlexNet [62]) to the PS. To simulate network dynamics, we set
sending rates of workers with a normal distribution probability,
similar to the work [60]. Specifically, we let the average
sending rate of workers be 10Gbps. For each worker, we set
its sending rate as ratio×10Gbps, where ratio ∈ [0, 1] is
obtained by the probability of normal distribution. By default,
we set the standard deviation of the normal distribution to 0.2.

Note that, although network emulator mininet [63] supports
replacing normal switches with software P4 switches (i.e.,
bmv2 [64] switches) to simulate the network, it faces a
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Fig. 13. Aggregation Overhead of the PS vs. No. of Workers.

Fig. 14. In-network Aggregation Amount vs. No. of Workers.

critical performance problem. Specifically, when the scale of
topologies increases to tens of hosts, the bandwidth of bmv2
switches will degrade to several Mbps with high packet loss
rates. The experimental results of the work [65] also confirmed
this conclusion. Therefore, we do not choose to perform
large-scale simulations through bmv2 and mininet, but through
running the algorithm simulations.

(Exp#6) Comparison on gradient aggregation amount.
We measure the gradient aggregation amount of four solutions,
and the results are shown in Figs. 13-14. Fig. 13 shows that
GOAT obtains the least aggregation overhead of the PS com-
pared with other alternatives. For example, in the leaf-spine
topology with 35 workers, the PS aggregation overheads of
GOAT, ESA, ATP and Geryon are 60MB, 5.7GB, 6.7GB and
8.4GB, respectively. GOAT reduces the aggregation overhead
of the PS by 98.9%, 99.1% and 99.2%, compared with ESA,
ATP and Geryon, respectively.

Then, we consider the traffic aggregated by programmable
switches (i.e., in-network aggregation amount). Since Geryon
does not perform in-network aggregation, we omit it in Fig. 14.
We can see that GOAT achieves the highest in-network aggre-
gation amount compared with other alternatives in Fig. 14.
For example, in the fat-tree topology, given 40 workers, the
in-network aggregation amounts of GOAT, ESA and ATP
are 9.6GB, 3.2GB and 1.9GB, respectively. Our algorithm
considers multiple switches to collaboratively perform in-
network aggregation, moving the most traffic aggregated in
programmable switches.

(Exp#7) Comparison on communication overhead. In
this set of evaluations, we show the communication overhead
of four solutions. Fig. 15 shows that GOAT achieves the least
communication overhead compared with other benchmarks.
Given 35 workers in the leaf-spine topology, the communica-
tion overheads of GOAT, ESA, ATP and Geryon are 13.7GB,
19.8GB, 20.9GB and 37.1GB, respectively. GOAT reduces
communication overhead by 31.1%, 34.3% and 63.1% com-
pared with ESA, ATP and Geryon, respectively. The reason
is that GOAT schedules gradients to switches to minimize
communication overhead.

Fig. 15. Communication Overhead vs. No. of Workers.

Fig. 16. Communication Overhead vs. Standard Deviations.

In Fig. 16, we fix the number of workers and vary the nor-
mal distribution’s standard deviation to evaluate the influence
of network dynamics. As the degree of network dynamics
increases, we can see that the communication overheads of
ESA and ATP increase either. When the standard deviation is 0
(all workers have the same sending rates), ESA and ATP will
aggregate all gradients in each worker’s nearest programmable
switches, thus gaining less communication overhead than
GOAT. As the standard deviation increases, more and more
traffic of ATP and ESA is aggregated in the PS, incurring
massive communication overhead.

Summary. Through selecting optimal aggregation nodes
for workers, GOAT can achieve the highest in-network
aggregation amount and the least communication over-
head compared with alternatives when encountering network
dynamics.

VIII. CONCLUSION

In this paper, we present GOAT, a novel in-network aggre-
gation approach with gradient scheduling. GOAT minimizes
the communication overhead in the network by collabora-
tively conducting INA on multiple programmable switches.
We further propose a knapsack-based randomized rounding
algorithm for gradient scheduling and analyze its approxi-
mation performance. To speed up the distributed training,
we extend GOAT to the asynchronous training scenario and
present a greedy algorithm to determine the optimal number
of participating workers in each epoch. Extensive testbed
experimental and simulation results show that GOAT can
efficiently aggregate asynchronously arriving gradients and
accelerate the distributed training.
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