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Abstract. Different security measurements for a steganographic sys-
tem, i.e. security (detectability), robustness and secrecy (difficulty of ex-
traction), are discussed in this paper. We propose a new measurement for
the security of stegosystems using variational distance which can upper
bound the advantage for passive attackers. It is proved that the hiding
capacity, which is also the measurement for robustness, is limited by
security. We think the extracting attack essentially is a kind of crypt-
analysis and define the secrecy of stegosystems as an analogue of secrecy
of cryptosystems. The relations of secrecy with capacity and security are
analyzed in the terms of unicity distance. And it is shown that there
is a tradeoff between secrecy and capacity while there is some kind of
consistency between secrecy and security.

1 Introduction

This paper is about steganography which is the oldest branch of information
hiding. The scientific study of steganography began with Simmons’ “Prison-
ers’ Problem” [1]. The survey about the history and current development of it
can be found in [2] and [3]. A general model of a steganographic system (i.e.
stegosystem) can be described as follows. The embedded data M is the message
that Alice wants to send secretly to Bob. It is hidden in an innocuous message
X̃, usually named cover-object, in the control of a stego-key K, producing the
stego-object X. And the receiver can extract M from X with the stego-key K.

The attacks to a stegosystem mainly include passive attack, active attack,
and extracting attack. A passive attacker only wants to detect the existence of
the embedded message, while an active attacker wants to destroy the embedded
message. The purpose of an extracting attacker is to obtain the message hidden
in the stego-object. So there are three kinds of security measurements for the
different attackers respectively, i.e. detectability, robustness and difficulty of ex-
traction. Usually the problem of steganography only concerns the detectability
so in many literatures detectability is referred to as the security of a stegosystem.
In this paper, we also call the detectability as security of a stegosystem and the
difficulty of extraction as secrecy of it. But so far the definitions of the three se-
curity measurements are still tangly and relations of them are still unclear. The
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main purpose of this paper is just to distinguish their definitions and analyze
relations between them.

So far there have been several literatures that define the security (detectabil-
ity) of stegosystems, such as [4,5,6,7], and the one of C.Cachin [5] is most in-
fluential. Cachin formulates the steganography problem as a hypothesis testing
problem and defines the security using the statistic distance between the cover-
object and stego-object which indeed catches the key of detectability. But, he
uses the relative entropy as the security measurement which, to some extent,
seems not appropriate. According to Cachin’s definition the stegosystem is ε-
secure when the relative entropy D(X̃||X) ≤ ε, and perfectly secure when ε = 0.
Supposing the false alarm probability (the probability of a cover-object being
mistaken as a stego-object) equals zero, Cachin uses the relative entropy to es-
timate the lower bound of missing probability (the probability of a stego-object
being mistaken as a cover-object). However, it is evident that the adversary will
not use a rule such that he makes the false alarm probability very small, because
this means he will leak the illegal messages in a large probability. For instance, in
Cachin’s model, when the stegosystem is perfect security, the probability of the
adversary finding the stego-object equals zero. But the fact is that even guessing
randomly, he could success with probability 1

2 .
S.Katzenbeisser and F.A.Petitcolas [8] defines security in computational set-

tings, and their definition still need a security measurement which is referred as
to the advantage for a adversary, i.e. the probability of the adversary’s success-
ful detection minus 1

2 . This description for stegosystem’s security is reasonable,
but it is a description in words. And the definition of R.Chandramouli and
N.D.Memon [9] can be though of as a mathematic version of description in [8],
and their definition is related with the strategy of attackers. In fact we hope
there is a metric that can reflect the adversaries’ advantage, and in this paper
we will propose such a metric with variational distance.

Information hiding with active attackers were analyzed by P.Moulin and
J.A.O’Sullivan [10] and M.Ettinger [11]. They defines the robustness using “hid-
ing capacity”. Robustness is mainly concerned in watermarking problem, but as
the measure of efficiency, capacity is also important for steganography. I.S.Mos-
koxitz et al. [7] proposed a two dimension security measure for steganography,
i.e. capability = (P, D) where P is the payload size and D is detectability thresh-
old. In this paper, we prove that the capacity is limited by detectability, and for
stegosystems with active attackers this shows a tradeoff between the security
and robustness.

The security and robustness have been greatly concerned. However there is
scarcely any literature about extracting attacks. We only know that R.Chandra-
mouli ever studied how to extract the hidden message for some kind of scenario
in [12], and J.Fridrich et al. recently presented a methodology for identifying the
stego-key in [13]. In fact, for most of stegosystems the message is asked to be
encrypted before it is embedded into the cover-object, so the secrecy is guar-
anteed by the cryptographic algorithm. So stegoanalysts only concern detection
and think extraction is the task of cryptanalysts, while the latter only process
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encrypted data. But how to extract the hidden message is a very difficult prob-
lem itself. We think the extracting attack essentially is a kind of cryptanalysis.
When facing the model of “encrytion+hiding”, a cryptanalyst has to analyze a
“multiple cipher”: he should extract the hidden messag (the ciphertexts) from
stego-objects, and then extract the plaintexts from the hidden message. In this
paper, we distinguish the secrecy of steganography from that of cryptography.
If the message has been encrypted, the extraction attacker is successful as long
as he can extract the cipertexts. So the secrecy of steganography is just the
difficulty of extraction. Because extracting attack is a kind of cryptanalysis, we
define the secrecy of steganography imitating Shannon’s definition for uncon-
ditional security of cryptosystems [14], i.e. measuring the secrecy with mutual
information I(M ; X) or I(M ; X, X̃). And we will analyze the relations between
security, capacity and secrecy.

The rest of this paper is organized as follows: Section 2 defines the security
of stegosystems with variational distance and estimates the upper bound of the
advantage for passive adversaries. Section 3 proves the tradeoff between the
security and capacity. Section 4 defines the perfect secrecy for only stego-object
extracting attack and known cover-object extracting attack respectively, and
analyzes the relations between capacity, security and secrecy in terms of unicity
distance. The paper concludes with a discussion in Sect. 5.

2 Security of Stegosystems

2.1 Notations and Statement of Problem

We use the following notations. Random variables are denoted by capital letters
(e.g. X), and their realizations by respective lower case letters (e.g. x). The
domains over which random variables are defined are denoted by script letters
(e.g. X ). Sequences of n random variables are denoted with a superscript n (e.g.
Xn = (X1, X2, · · · , Xn) which takes its values on the product set X n). The
probability mass function (p.m.f.) of random variable X is denoted by PX(x),
and when no confusion is possible, we drop the subscript.

Definition 1. [15] Let X̃ and X are two random variables on a discrete universe
X , then the variational distance between X̃ and X is defined to be

V D(X̃, X) = max
S⊆X

|P
X̃

(S) − PX(S)| .

Lemma 1. [16] Let X̃ and X are two random variables on a discrete universe
X , and T is another discrete universe, then for any function f : X → T ,
V D(f(X̃), f(X)) ≤ V D(X̃, X) .

In this paper, X̃ stands for cover-object, taking values in X . M denotes the
hidden message, K is the stego-key (embedding key). X, which is also defined
in X , denotes the stego-object. Here hidden message is what will ultimately
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be embedded into the cover-object which usually is encrypted data. And the
stego-key only refers to the embedding key excluding the encrytion key. E is the
embedding algorithm, with which the sender Alice embeds m into x̃ to get x
using k, i.e. x = E(x̃, m, k). And D is the extracting algorithm used by receiver
Bob, which satisfies m = D(x, k) = D(E(x̃, m, k), k). We denote a stegosystem
by a set with 6 elements: stegosystem(X̃, X, M, K, E, D).

The present paper mainly follows the view of Cachin [5] who formulated the
steganography problem with passive attackers as a hypothesis testing problem.
Alice, who maybe uses a stegosystem, sends data to Bob. The passive adversary
Wendy observes the data and makes a hypothesis testing. Here the original
hypothesis H0 is that the data is generated according to X̃, i.e. Alice sent a cover-
object. And the opposite hypothesis H1 is that the data is generated according
to X, i.e. Alice sent a stego-object. The probability that Wendy fails to detect a
stego-object is called missing probability and denoted by β. And the probability
that she thinks of a cover-texts as a stego-object is called false alarm probability
and denoted by α.

2.2 Security of Stegosystem

Variational distance can reflect the statistic difference of two probability distri-
butions as relative entropy does. What’s more, Variational distance is a distance
in the sense of mathematics and take values between zero and one. So with vari-
ational distance as the measurement, we can compare the security of different
stegosystems. We define the security of a stegosystem as follows.

Definition 2. A stegosystem(X̃, X, M, K, E, D) is called ε-secure, if

V D(X̃, X) ≤ ε .

And when ε = 0, the system is called perfectly secure.

With relative entropy as the security measure, Cachin [5] yields a lower bound
on the missing probability β, i.e. if D(X̃||X) ≤ ε and the false alarm probability
α = 0, then β ≥ 2−ε. But, as the analysis in the Sect. 1, what we need is the
estimation about the advantage for adversaries. To do this, we define the event
of successful attack as

SUCC = {H0 is true and Wendy accepts H0}
∪ {H1 is true and Wendy accepts H1} .

And its complementary event is defined to be

SUCC = {H0 is true and Wendy accepts H1}
∪ {H1 is true and Wendy accepts H0} .

It is reasonable for Wendy to suppose the prior probability of both H0 and
H1 is that P (H0) = P (H1) = 1

2 , because the event that which kind of object
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Alice will send is random for Wendy who wants to get some advantage through
the observed data. So the advantage for the adversary (Adv) is defined by

Adv = |P (SUCC) − 1
2
| . (1)

As for Adv, using the security measurement in definition 2 we can yield the
following result.

Theorem 1. If a stegosystem(X̃, X, M, K, E, D) is ε-secure, then the advan-
tage for the adversary satisfies Adv ≤ ε

2 . And when the system is perfectly secure,
i.e. ε = 0, then Adv = 0.

Proof. Note that the probabilities of two type errors made by
Wendy are just that α = P{Wendy accepts H1|H0is true}, and
β = P{Wendy accepts H0|H1 is true}.
Combing these two equalities with the fact P (H0) = P (H1) = 1

2 , we have
P (SUCC) = 1

2 (α + β) and then

P (SUCC) = 1 − 1
2
(α + β) . (2)

The probabilities of the two type errors, α and β can induce two 0 − 1 random
variables as follows:

0 1
X̃

′
α 1 − α

X
′

1 − β β

X̃
′
and X

′
can be get through a same function from X̃ and X, so using Lemma

1 we can obtain that V D(X̃
′
, X

′
) ≤ V D(X̃, X), i.e. 1−ε ≤ α+β ≤ 1+ε, which

with (2) implies that 1
2 − ε

2 ≤ P (SUCC) ≤ 1
2 + ε

2 , i.e. Adv ≤ ε
2 . ��

Theorem 1 shows that if a stegosystem is ε-security the advantage for a pas-
sive adversary using any decision rule over the adversary guessing randomly will
not larger than ε

2 . And if the stegosystem is perfectly secure, then any deci-
sion rule used by the adversary will not more effective than guessing randomly.
That means that the knowledge the adversary get through observing data about
whether Alice has sent stego-object or not is zero. So the metric given in Defi-
nition 2 accurately depicts the security of stegosystems.

3 Tradeoff between Security and Capacity

Moulin and O’Sullivan. [10] and Ettinger [11] view the information hiding prob-
lem as a capacity game between the users of a stegosystem and the active at-
tacker. According to formulations in [10], a strategy of the sender is just a “covert
channel”, i.e. a conditional p.m.f Q̃(x, u|x̃, k), subject to distortion D1. Here U

is an auxiliary random variable. Q̃ is the set of all such cover channels. The
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attacker’s output is denoted by Y , and a strategy of the attacker is described
as a “attack channel”, i.e. a conditional p.m.f Q(y|x), subject to distortion D2.
And The set of all such attack channels is denoted by Q. The hiding capacity
is defined as the upper-bound of rates of reliable transmission of the hidden
message. Moulin and O’Sullivan obtained a expression for the hiding capacity
as follows:

C = max
Q̃∈Q̃

min
Q∈Q

[I(U ; Y |K) − I(U ; X̃|K)] . (3)

where (U, X̃, K) → X → Y is a Markov chain.
In this section, we discuss the relation between the detectability (security)

and the capacity (robustness) of general information hiding problems. We think
the detectability of a information hiding code should include two parts: one is
the sensual detectability (transparency) which is needed by any information hid-
ing problem such as watermarking, steganography and fingerprint, the other is
statistic detectability which is just the security of steganography. The former
means the stego-object is a good estimation of the cover-object, so it can be
measured by the probability pe = P (X �= X̃) which is relative with the condi-
tional entropy H(X̃|X), and the latter can be measured by the advantage for
adversaries which, as we have proved in Sect. 2, is relative with the varational
distance V D(X̃, X). Theorem below shows that there is a tradeoff between the
detectability and the capacity.

Lemma 2. [16] Let X and X̃ are random variables on a discrete universe X ,
and V D(X̃, X) = ε. Then |H(X) − H(X̃)| ≤ H(ε) + ε log2(|X | − 1) .

Theorem 2. For a stegosystem(X̃, X, M, K, E, D), if P (X �= X̃) = pe,

V D(X̃, X) = ε and the hiding capacity is C, then we have

C ≤ H(pe) + H(ε) + (pe + ε) log2(|X | − 1) . (4)

Proof.

I(U ; Y |K) − I(U ; X̃|K)
(a)
≤ I(U ; X|K) − I(U ; X̃|K)

= [I(U ; X̃, X|K) − I(U ; X̃|X, K)] − [I(U ; X̃, X|K) − I(U ; X|X̃, K)]

= I(U ; X|X̃, K) − I(U ; X̃|X, K)

≤ I(U ; X|X̃, K)

≤ H(X|X̃, K)

≤ H(X|X̃)

= H(X) − I(X; X̃)

= [H(X) − H(X̃)] + H(X̃|X)
(b)
≤ H(ε) + ε log2(|X | − 1) + H(pe) + pe log2(|X | − 1)
= H(pe) + H(ε) + (pe + ε) log2(|X | − 1) .
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Where (a) follows from the data processing inequality applied to the Markov chain
(U, X̃, K) → X → Y. (b) is obtained from the Lemma 2 and Fano’s inequality.
And combining the inequality above with (3) just proves the theorem. ��

On account of the meaning of pe and Theorem 1, it is reasonable for us
to suppose that pe ≤ 1

2 and ε ≤ 1
2 . Under this condition, the right of (4)

increases with pe and ε. So Theorem 2 shows a tradeoff between the capac-
ity and detectability. And the upper-bound of hiding capacity includes two
symmetrical parts: the first part is a function of sensual detectability, i.e.
H(pe)+pe log2(|X |−1), and the second part is a function of statistic detectabil-
ity (security), i.e. H(ε) + ε log2(|X | − 1). Given pe, Theorem 2 means a tradeoff
between the security and capacity, and for information hiding problems with
active attackers this is just the tradeoff between the security and robustness.

4 The Relations between Capacity, Security, and Secrecy

Since the extracting attack to a stegosystem in principle is a kind of cryptanal-
ysis, we define the secrecy of stegosystems simulating the one of Shannon’s [14]
for cryptosystems.

Definition 3. a stegosystem(X̃, X, M, K, E, D) is perfectly secret for only
stego-object extracting attack if I(M ; X) = 0, and is perfectly secret for known
cover-object extracting attack if I(M ; X, X̃) = 0 .

J.Zölner et al. [4] ever defined the security of stegosystem using I(M ; X, X̃),
but what they wanted to describe was the detectability, which seemed not ap-
propriate because of the difference between the security and secrecy.

In this section, we only discuss the steganographic problem without active
attackers. And suppose that stego-key K is independent with M and X. In this
scenario, the result of [10] combined with the discussion in [17] implies that the
hiding capacity

C = max
P (X|X̃)

H(X|X̃) . (5)

We also suppose that both the source of cover-objects and the channel P (X|X̃)
are memoryless. This seems not realistic, but we can think that X and X̃ are both
stand for block data, and usually supposing blockwise memoryless is reasonable.

What the extracting attacker ultimately wants to obtain is just the stego-
key. Therefore we analyze the relations between capacity, security and secrecy
in the terms of unicity distance for the stego-key. And we begin with the known
cover-object extracting attack.

Lemma 3. For a stegosystem(X̃, X, M, K, E, D), if K is independent with X̃,
then H(K|X̃, X) = H(K) + H(M |X̃, K) − H(X|X̃) .
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Proof. Because X can be determined by (X̃, M, K), and M can be determined
by (X, K), we have H(X|X̃, M, K) = 0, and H(M |X, K) = 0. So

H(X̃, M, K) = H(X̃, M, K) + H(X|X̃, M, K)

= H(X̃, X, M, K)

= H(X̃, X, K) + H(M |X̃, X, K)

= H(X̃, X, K) .

Since K is independent with X̃, using the chain rules we have

H(X̃, M, K) = H(K) + H(X̃|K) + H(M |X̃, K)

= H(K) + H(X̃) + H(M |X̃, K) ,

and

H(X̃, X, K) = H(X̃) + H(X|X̃) + H(K|X̃, X) .

Combining the three equalities above, we can get

H(K|X̃, X) = H(K) + H(M |X̃, K) − H(X|X̃) .

��

Theorem 3. For a stegosystem(X̃, X, M, K, E, D), if K is independent with
X̃ and M , and both source of cover-objects and cover channel are memoryless,
then for given long enough sequence (the length is n) of pairs of cover-objects and
stego-objects, the expectation of spurious stego-keys Sn for known cover-object
extracting attack has the lower bound such that

Sn ≥ 2H(K)

2nC
− 1 , (6)

where C = max
P (X|X̃) H(X|X̃) is the hiding capacity.

Proof. For a given sequence of pairs of cover-objects and stegotexts (x̃n, xn) ∈
(X n × X n), defining the set of possible stego-keys as

K(x̃n, xn) = {k ∈ K|there is mn ∈ Mn such that P (mn) > 0, E(x̃n, mn, k) = xn} .

So the number of spurious stego-keys for observed (x̃n, xn) is |K(x̃n, xn) − 1|,
and the expectation of spurious stego-keys is given by

Sn =
∑

(x̃n,xn)

P (x̃n, xn)(|K(x̃n, xn) − 1|) =
∑

(x̃n,xn)

P (x̃n, xn)|K(x̃n, xn)| − 1 .

Using Jesen’s inequality, we can get
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H(K|X̃n, Xn) =
∑

(x̃n,xn)

P (x̃n, xn)H(K|x̃n, xn)

≤
∑

(x̃n,xn)

P (x̃n, xn) log2 |K(x̃n, xn)|

≤ log2

∑

(x̃n,xn)

P (x̃n, xn)|K(x̃n, xn)|

= log2(Sn + 1) .

On the other hand, Lemma 3 and the fact that source of cover-objects and cover
channel are memoryless implies that

H(K|X̃n, Xn) = H(K) + H(Mn|X̃n, K) − H(Xn|X̃n)

≥ H(K) − H(Xn|X̃n)

= H(K) − nH(X|X̃) .

Combing the two inequalities above, we have log2(Sn + 1) ≥ H(K) − nH(X|X̃),
i.e.

Sn ≥ 2H(K)

2nH(X|X̃)
− 1 .

Since C = max
P (X|X̃) H(X|X̃), we have

Sn ≥ 2H(K)

2nC
− 1 .

��

Definition 4. The unicity distance n0 for a stegosystem with known cover-
object extracting attackers is the length of pairs of cover-objects and stego-objects
at which one expects that the expectation of spurious stego-keys equals zero. And
the unicity distance n1 for a stegosystem with only stego-object extracting at-
tackers is the length of stego-objects at which one expects that the expectation of
spurious stego-keys equals zero.

It is easy to know that n1 ≥ n0, because H(K|X) ≥ H(K|X̃, X). What’s
more, in (6), let Sn = 0 and we have

n1 ≥ n0 ≥ H(K)
C

. (7)

Inequality (7) with Theorem 2 implies that

n1 ≥ n0 ≥ H(K)
H(pe) + H(ε) + (pe + ε) log2(|X | − 1)

. (8)

For a stegosystem, (7) shows a tradeoff between the secrecy and capacity,
while (8) shows some king of consistency of secrecy with security.
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5 Conclusion

In this paper, three kind of security measuremeasures of stegosystems are dis-
cussed together. The relations and differences between them are analyzed with
information theoretic method. We substitute variational distance for relative
entropy to measure the security (detectability) of a stegosystem. This new mea-
surement can upper bound the advantage for passive attackers. And it is proved
out that the capacity (i.e. the robustness for stegosystems with active attackers)
is limited by security. So an interesting problem is what the expression of hid-
ing capacity subject to some security level ε is. Recently, P.Moulin and Y.Wang
derived the capacity expression for perfectly secure (i.e. ε = 0) steganographic
systems [20].

Our definition for secrecy is an analogue of Shannon’s for cryptosystems. And
it is shown that there is a tradeoff between secrecy and capacity but some kind
of consistency of secrecy with security. However, the lower bound for unicity
distance in Sect. 4 is rough. And a more useful lower bound will be discussed
with the redundancy of cover channel in our upcoming paper.

Extracting attack is a problem that cryptanalysts have to face. So far there
have been many literatures about passive attacks (i.e. steganalysis) such as [18,
19], while there is few about extracting attack which should rely on the tech-
niques of both steganalysis and cryptanalysis. Our further work will also include
the study of different kinds of extracting attacks to stegosystems.
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