
680 IEEE COMMUNICATIONS LETTERS, VOL. 11, NO. 8, AUGUST 2007

Improving Embedding Efficiency of Covering Codes for
Applications in Steganography

Weiming Zhang, Shuozhong Wang, and Xinpeng Zhang

Abstract— In image steganography, each pixel can carry a
ternary message by choosing adding/subtracting one to/from the
gray value. Although ternary covering functions can provide
embedding efficiency higher than binary ones, it is necessary to
convert the binary message into a ternary format. We propose a
novel method that improves the embedding efficiency of binary
covering functions by fully exploiting the information contained
in the choice of addition or subtraction in the embedding. The
improved scheme can perform equally well with, or even outper-
form, ternary covering functions without ternary conversion of
the message.

Index Terms— Covert communication, steganography, embed-
ding efficiency, covering codes, matrix encoding.

I. INTRODUCTION

THE purpose of steganography is to send secret messages
by embedding data into some innocuous cover-objects

such as digital images. To reduce possibility of being detected
by any third party, it is desirable to increase the embedding
efficiency, which is the average number of message bits carried
by one embedding change in the cover data. This may be
accomplished by using an encoding technique proposed by
Crandall [1] who called it matrix encoding. As a typical
application of linear covering codes, matrix encoding was
used in the well-known steganographic algorithm F5 [2]. The
definition of covering codes can be found in [3]. Relations
between covering codes and steganography were studied in [4]
and [5], and some covering codes used in steganography with
good performance reported in [5]. Matrix encoding was also
used in large payload applications [6]. In [7], BCH codes were
applied to achieve a tradeoff between embedding complexity
and efficiency. Another example is the binary image steganog-
raphy scheme CPT [8] that uses the Varshamov-Tenengolts
codes. These encoding methods can improve the embedding
efficiency by hiding messages in a block-by-block manner.

All the above-mentioned methods are applications of binary
covering codes, which can be used in LSB steganography. For
LSB embedding, the stego-coding methods are used in the
LSB plane of an image, and adding 1 to a pixel is equivalent
to subtracting 1 from the pixel for carrying the secret bit. In

Manuscript received March 23, 2007. The associate editor coordinating
the review of this letter and approving it for publication was Prof. Deepa
Kundur. This work was supported in part by the National Natural Science
Foundation of China under Grants 60473022, 60372090, and 60502039, in
part by the Shanghai Rising-Star Program under Grants 06QA14022, and in
part by the Key Project of Shanghai Municipality for Basic Research under
Grant 04JC14037.

The authors are with the School of Communication and Information
Engineering, Shanghai University, 200076, China.

W. Zhang (corresponding author) is also with the Department of Informa-
tion Research, Information Engineering Institute, Zhengzhou 450002, China
(e-mail: nlxd 990@yahoo.com.cn).

Digital Object Identifier 10.1109/LCOMM.2007.070438.

fact, by choosing adding/subtracting 1 (±1 for short), every
pixel can carry not just one bit but log2 3 bits of information,
that is, a ternary digit, with the pixel gray value modulo
3. This implies that using ternary covering codes in this
“±1 steganography” can obtain better embedding efficiency
than binary covering codes. Willems, et al., [9] provided an
upper bound on the performance of “ ±1 steganography”
and proposed to use the ternary Hamming and Golay codes.
Zhang, et al., [10] brought up a method to improve embedding
efficiency by exploiting the modification direction (EMD),
which is a generalization of ternary Hamming codes. In all
these methods, however, the message to be hidden is usually
binary, and must be converted into ternary or m-ary digits
before embedding with a ternary covering code or the EMD
method.

The problem to be considered here is to make full use of
the available information capacity of “±1 steganography” by
directly embedding a binary message without converting into
ternary. Mielikainen [11] presented a method in which the
choice of whether adding or subtracting one to/from a pixel
value depends both on the original gray values and a pair
of two consecutive secret bits. In this letter, we propose a
novel embedding method that exploits the capacity of “±1
steganography” more efficiently by extending the block of
binary covering codes. This method can significantly improve
the embedding efficiency of binary covering codes, and per-
form equally well with, or even outperform, ternary covering
codes without binary-ternary conversion of the message.

II. PROPOSED METHOD

Matrix encoding embeds data with the parity check matrix
of a linear covering code. Let C be an [n, n− k] binary code
with the covering radius R and a parity check matrix H. Then
H implies a covering function [5] COV (R,n, k), which can
embed k bits (m1, . . . ,mk) ∈ F k

2 in the LSBs of n pixel gray
values (x1, . . . , xn) by at most R changes in the following
manner.

(m1, . . . ,mk)T = H · (b(x1), . . . , b(xn))T (1)

where b(xi) denotes the LSB of xi.
Note that the covering radius R is the largest number

of possible changes and the purpose of covering function
COV (R,n, k) is to minimize the average number of embed-
ding changes Ra. In other words, the goal is to maximize the
embedding efficiency k/Ra depending on the embedding rate
k/n. The distribution of the number of embedding changes is
equivalent to the distribution of the coset leaders’ weight of
the covering code. For perfect codes such as Hamming and
Golay codes, there are exactly

(
n
i

)
coset leaders with a weight

1089-7798/07$25.00 c© 2007 IEEE

ZHANG et al.: IMPROVING EMBEDDING EFFICIENCY OF COVERING CODES FOR APPLICATIONS IN STEGANOGRAPHY 681

i, 0 ≤ i ≤ R, so that the average number of changes can be
calculated as Ra = 1

2k

∑R
i=0 i

(
n
i

)
.

Now taking Hamming and Golay codes as examples, we
show how the performance of binary covering functions can
be improved by extending their blocks.

A. “Hamming+1” Scheme

The parity check matrix of a Hamming code yields a
covering function COV (1, 2k − 1, k), k ≥ 1, i.e., em-
bed k bits (m1, . . . ,mk) into the LSBs of 2k − 1 pixel
gray values (x1, . . . , x2k−1) using at most one change. This
covering function is defined by (m1, . . . ,mk)T = H ·
(b(x1), · · · , b(x2k−1))T , where H is the parity check matrix
of [2k − 1, 2k − 1 − k] Hamming code.

We propose the following “Hamming+1” scheme by ap-
pending one pixel after the block of Hamming covering
function. It embeds k + 1 bits (m1, . . . ,mk,mk+1) into 2k

pixel gray values (x1, . . . , x2k−1, x2k) using at most one
change:

(m1, . . . ,mk)T = H · (b(x1), · · · , b(x2k−1))
T (2)

mk+1 =
(⌊x1

2

⌋
+ · · · +

⌊x2k−1

2

⌋
+ x2k

)
mod 2 (3)

In this way, the first k bits are embedded into LSBs of the first
2k − 1 pixel values using the COV (1, 2k − 1, k) Hamming
covering function, and the (k + 1)-th bit is a function of all
2k pixels including the appended one. Note that, by adding or
subtracting one to/from a pixel value x, its LSB b(x) always
becomes the same binary value b(x) ⊕ 1, but �x/2� mod 2,
which is the second least significant bit of x, can either be 0 or
1. Therefore, when (2) does not hold, one pixel value, say, xi,
1 ≤ i ≤ 2k−1, has to be changed. By choosing xi+1 or xi−1,
both (2) and (3) can hold simultaneously without changing
x2k . On the other hand, when (2) holds but (3) does not, the
first 2k −1 pixels need not to be changed, and we can modify
x2k by randomly increasing or decreasing one to satisfy (3).
This means that we can embed k + 1 bits of message in 2k

pixels with at most one change. However, above embedding
process may fail when the pixel value xi is saturated, e.g.,
xi = 0 or 255 in an 8-bit gray scale image. For instance,
consider xi = 255 but unfortunately xi + 1 should be chosen
to make (3) hold. In this case, only xi − 1 is permitted, and
therefore we have to select xi−1 to satisfy (2) and change x2k

to satisfy (3) simultaneously. Nonetheless, the effect of this
additional change on the overall performance can be neglected
since these situations rarely occur.

Because with COV (1, 2k − 1, k) Hamming covering func-
tion, i pixels need to be modified with probability

(
2k−1

i

)
/2k,

i = 0 or 1, the average number of changes of the above
“Hamming+1” scheme can be calculated as

Ra = P {(2) does not hold} × 1
+ P {(2) holds} × P {(3) does not hold} × 1

=

(
2k−1

1

)
2k

+

(
2k−1

0

)
2k

× 1
2

=
2k+1 − 1

2k+1
. (4)

This means that, with the “Hamming+1” scheme, we can
embed one more bit than COV (1, 2k − 1, k) at the cost of

1/2k+1 more changes. The embedding efficiency is equal to
(k+1)2k+1/(2k+1−1), and the embedding rate is (k+1)/2k.
Fig. 1 shows that the performance of Hamming covering
functions is improved significantly by using the “Hamming
+1” scheme. Note that when taking k = 1, the “Hamming+1”
scheme becomes the method as described in [11].

B. “Golay+2” Scheme

The [23, 12] Golay code, whose covering radius is 3, implies
a COV (3, 23, 11) Golay covering function, which can also
be improved as the “Golay+1” scheme using the method
described in the previous subsection. Since the largest change
is 3 in the Golay covering function, we can try to append
two pixels to the block and get the “Golay+2” scheme, which
can embed 13 bits (m1, . . . ,m13) in 25 pixel gray values
(x1, . . . , x25) by making at most 3 changes as follows.

(m1, . . . ,m11)T = H · (b(x1), . . . , b(x23))
T (5)

(m12,m13) =
(⌊x1

2

⌋
+· · · +

⌊x23

2

⌋
+x24+x25

)
mod 4 (6)

where H is the parity check matrix of [23, 12] Golay code.
In this scheme, the first 11 bits are embedded in the LSBs of
the first 23 pixel values using the Golay covering function,
and the last two bits are denoted by a function of all 25 pixel
values as in (6).

To calculate the average number of changes, consider the
following 4 cases:

Case I. In the first 11 pixels, gray values of three pixels,
for example x1, x2, x3, need to be changed. By adding or
subtracting one to/from these three pixel values respectively,
(�x1/2�+ �x2/2�+ �x3/2�) mod 4 can take all the values in
Z4. In this case, (6) can always hold without changing x24

and x25.
Case II. Two pixel values, say x1 and x2, are changed. By

±1, (�x1/2� + �x2/2�) mod 4 can only take three values in
Z4. Therefore, to make (6) hold, one of x24 and x25 should
be modified with probability 1/4.

Case III. One pixel value, say, x1, is changed. By ±1,
�x1/2� mod 4 can only take two values of Z4, Therefore, to
make (6) hold, one of x24 and x25 should be modified with
probability 1/2.

Case IV. No change is made in the first 23 pixels. In this
case, both x24 and x25 must be modified when (6) does not
hold which has probability 3/4.

On the other hand, with COV (3, 23, 11) Golay covering
function, a total of i pixels need to be changed with probability(
23
i

)
/211, 0 ≤ i ≤ 3. Therefore the average number of changes

in the “Golay+2” scheme can be calculated as

Ra =

((
23
1

)
211

+

(
23
2

)
211

× 2 +

(
23
3

)
211

× 3

)

+

((
23
2

)
211

× 1
4

+

(
23
1

)
211

× 1
2

+

(
23
0

)
211

× 3
4
× 2

)

= 2.89 . (7)

Hence the “Golay+2” scheme can achieve the embedding
efficiency 13/2.89 = 4.50 with the embedding rate 13/25 =

682 IEEE COMMUNICATIONS LETTERS, VOL. 11, NO. 8, AUGUST 2007

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
2

3

4

5

6

7

8

9

10

11

12

Embedding rate

E
m

b
ed

d
in

g
 e

ff
ic

ie
n

cy

upper bound
binary Hamming
Hamming+1
binary Golay
Golay+1
Golay+2
lower bounds of "BF"
lower bounds of "BF+2"
ternary Hamming
method in [11]

Fig. 1. Performance comparison among improved schemes, some binary
covering functions, ternary Hamming covering function and the method in
[11].

0.52. And the pairs of performance parameters, (embedding
rate, embedding efficiency), for binary Golay and “Golay+1”
schemes are respectively (0.48, 3.86) and (0.50, 4.21). Obvi-
ously, both the embedding rate and the embedding efficiency
are improved by extending the block.

C. Improving Other Binary Covering Functions

It is clear that with the above method, we can improve
performance of other covering functions such as those in [5]
and [7]. Most known good covering functions have the largest
changes R such that R ≤ 3, and only a few with R = 4 or 5.
A covering function COV (R,n, k) can be improved either by
appending one pixel if R = 1, 2, or by appending two pixels
if R ≥ 3. For example, the following covering functions

COV (3, 31, 12), COV (3, 127, 18), COV (3, 511, 24) (8)

proposed by Bierbrauer and Fridrich [5], which we call “BF”
schemes for brevity, can be improved by appending two pixels
and called correspondingly “BF+2” schemes. For some cover-
ing functions COV (R,n, k), it is hard to calculate the average
number of changes Ra. In this case, we substitute the largest
changes R for Ra to calculate a lower bound of embedding
efficiency as k/R, and evaluate the embedding efficiency of

the “BF” and “BF+2” schemes with this lower bound. For the
“BF” schemes, the performance parameters, (embedding rate,
lower bound of embedding efficiency), are (0.39, 4), (0.14, 6)
and (0.05, 8), which are increased respectively to (0.42, 4.67),
(0.16, 6.67) and (0.05, 8.67) when using “BF+2”.

III. PERFORMANCE COMPARISON

Performance comparison has been made between these
improved schemes with the ternary Hamming covering func-
tions in Fig. 1 where the upper bound is derived from the
theoretic result of [9]. Using ternary Hamming codes, one can
get higher embedding efficiency than those previous binary
covering functions, but has to convert the binary message to
ternary digits first. Fig. 1 illustrates that the “Hamming+1”

approaches the performance of “ternary Hamming”, and the
“Golay+2” exceeds the “ternary Hamming”. The “BF+2”
schemes also provide better performance because the lower
bounds of the “BF+2” are even somewhat higher than the
“ternary Hamming”.

REFERENCES

[1] R. Crandall, “Some notes on steganography,” Posted on steganography
mailing list http://os.inf.tu-dresden.de/ westfeld/crandall.pdf (1998).

[2] A. Westfeld, “F5: a steganographic algorithm,” in Proc. 4th Int. Workshop
Information Hiding 2001, Lecture Notes in Computer Science, vol. 2137,
pp. 289-302, 2001.

[3] J. Bierbrauer, Introduction to Coding Theory, Section 14.2, Chapman and
Hall, CRC Press, 2005.

[4] F. Galand and G. Kabatiansky, “Information hiding by coverings,” in
Proc. IEEE Information Theory Workshop 2004, pp. 151-154, 2004.

[5] J. Bierbrauer and J. Fridrich, “Constructing good covering codes for appli-
cations in steganography,” available: http://www.math.mtu.edu/ jbierbra/
(2006).

[6] J. Fridrich and D. Soukal, “Matrix embedding for large payloads,” IEEE
Trans. Inf. Security Forensics, vol. 1, no. 3, pp. 390-394, Sept. 2006.

[7] D. Schönfeld and A. Winkler, “Embedding with syndrome coding based
on BCH codes,” in Proc. 8th ACM Workshop on Multimedia and Security,
pp. 214-223, 2006.

[8] Y.-C. Tseng, Y.-Y. Chen and H.-K. Pan, “A secure data hiding scheme
for binary images,” IEEE Trans. Commun., vol. 50, no. 8, pp. 1227-1231,
2002.

[9] F. Willems and M. Dijk, “Capacity and codes for embedding information
in gray-scale signals,” IEEE Trans. Inf. Theory, vol. 51, no. 3, pp. 1209-
1214, Mar. 2005.

[10] X. Zhang and S. Wang, “Efficient steganographic embedding by ex-
ploiting modification direction,” IEEE Commun. Lett., vol. 10, no. 11,
pp. 781-783, Nov. 2006

[11] J. Mielikainen, “LSB matching revisited,” IEEE Signal Processing Lett.,
vol. 13, no. 5, pp. 285-287, May 2006.

