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A Double Layered “Plus-Minus One”
Data Embedding Scheme

Weiming Zhang, Xinpeng Zhang, and Shuozhong Wang

Abstract—In image steganography, a pixel can carry secret bits
by choosing adding/subtracting one to/from the gray value. This
kind of “+1 steganography” can hide a longer message than simple
LSB embedding. We propose a double-layered embedding method
for implementing “+1 steganography,” in which binary covering
codes and wet paper codes are used to hide messages in the LSB
plane and the second LSB plane, respectively. We show that this
method can achieve the upper bound on the embedding efficiency
of “+1 steganography” when the employed binary covering codes
reach the upper bound on that of LSB steganography. Applications
using random and structured covering codes show that the new
method outperforms previous ones and can approach the upper
bound.

Index Terms—Covering codes, embedding efficiency, steganog-
raphy, wet paper codes.

I. INTRODUCTION

TEGANOGRAPHY is used to convey secret messages
Sunder the cover of digital media such as images. Although
only the most insignificant components are altered, many
analytical techniques can reveal existence of the hidden mes-
sage by detecting statistical difference between the cover and
stego objects. The following two measures may be taken in
developing steganographic schemes to combat steganalysis:

1) avoid conspicuous parts when embedding messages into

the cover;

2) improve embedding efficiency, i.e., embed more informa-

tion per modification to the cover data.

The first can be achieved by, for example, using the “wet
paper codes” [1], [2]. In this letter, we consider the second mea-
sure, which can also be done based on various coding mech-
anisms such as those described in [3]-[9]. All these are es-
sentially binary covering codes with syndrome coding [5], [6]
applicable to LSB steganography. In LSB embedding, stego-
coding methods are used in the LSB plane, in which adding 1 to
a pixel value is equivalent to subtracting 1 from the pixel value
for carrying one secret bit.
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In fact, by choosing adding/subtracting one (1 for short),
every pixel can carry not just one bit but log, 3 bits of informa-
tion, that is, a ternary digit, with the pixel gray value modulo 3.
In other words, ternary covering codes in “£1 steganography”
can produce better embedding efficiency than binary covering
codes. To take this advantage, Willems et al. [10] propose to use
the ternary Hamming and Golay codes. Zhang et al. [11] and
Fridrich et al. [12] independently introduce the same method
that includes ternary Hamming coding as a subset. Mielikainen
[13] presents a different solution in which the choice of whether
to add or subtract one to/from a pixel value depends both on the
original gray values and a pair of two consecutive secret bits.

In the present letter, we propose a double-layered embedding
method to further improve the embedding efficiency of “+1
steganography,” which embeds the secret message in the LSB
plane and the second LSB plane by using binary covering
codes and wet paper codes, respectively. We prove that this
new method can achieve the upper bound on the embedding
efficiency of “+1 steganography” when the selected binary
covering codes reach the upper bound on that of LSB steganog-
raphy. Applications using random and structured covering
codes also indicate that this double-layered embedding mecha-
nism outperforms previous methods and can approach the upper
bound on the embedding efficiency of “+1 steganography.”

II. PRELIMINARIES

An (R, n, k) embedding scheme F' consists of an embedding
function and an extraction function. The sender can embed &
bits into n pixels with at most R changes using the embedding
function, and the receiver can extract the embedded message
using the extraction function. We limit ourselves to the =1 em-
bedding in which a pixel is modified by at most one and mea-
sure the distortion energy with the average number of embed-
ding changes R, that is the expected number of changes over
uniform distributed messages. Define average distortion D =
R, /n, embedding rate « = k/n, and embedding efficiency
e = k/R, = a/D. Using syndrome coding for a covering code
can lead to such an embedding scheme [5], [6]. For example,
the (7,4) Hamming code means a (1, 7, 3) embedding scheme,
which can embed 3 secret bits into 7 pixels by changing one
LSB with probability 7/8, and therefore, R, = 7/8, D = 1/8,
a = 3/7,and e = 24/7. To apply an (R, n, k) scheme to an
image with N pixel, we can divide the image into N/n blocks
each having n pixels, assuming N is an integer multiple of 7.

The above-mentioned embedding schemes based on covering
codes are used to improve the embedding efficiency. On the
other hand, the wet paper codes as described in [1] and [2] are
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designed for the case in which the cover image has some con-
strained (wet) pixels. If, for example, & pixels are changeable
(dry) and the other N — k pixels are constrained (wet), a total of
k bits can be embedded and received successfully using a wet
paper code without sharing the knowledge about the positions
of constraints between the sender and the receiver. We denote a
wet paper coding scheme by W.

III. PROPOSED METHOD

We introduce the following double-layered embedding
(DLE) method to fully exploit the information capacity of “+1
steganography.” Suppose we want to embed a sequence of
secret bits into a gray scale image with N pixels (z1,...,2y).
For a pixel value x;, denote its LSB by L(z;) and its second
LSB by S(z;).

In the first layer embedding, select an embedding scheme F’
with embedding rate o, embedding efficiency e, and average
distortion D, and embed aN bits (my, ..., mqn) into the LSB
plane

(mlv"'7maN):F[L(wl)v"wL(xN)]' (l)

Since the average distortion of F' is D, we need, on average,
to modify DN pixels to satisfy (1). Without loss of generality,
assume both N and DN are integers and exactly DN pixels
need to be changed. In case L(z;) is changed, the pixel value
x; can either be increased or decreased by one. Note that, by
choosing addition or subtraction, we have the control on the
second LSB S(z;). Specifically, for an odd z;, adding/sub-
tracting one flips/keeps S(z;). If z; is even, a contrary effect
on S(z;) results.

By appropriately selecting addition or subtraction in the first
layer embedding, we can freely alter the second LSBs at DNV
positions, i.e., exploit the second layer for embedding. The re-
maining (1— D) N second LSBs are not changeable. Borrowing
the terms of wet paper coding, we may say that these are DN
dry positions and (1 — D) N wet positions. Note that, if the pixel
value z; is saturated, e.g., z; = 0 or 255 in an 8-bit gray scale
image, it can only be changed in one direction. In this case, the
second LSB of z; will always be labelled as a wet position.
Nonetheless, the effect of this situation on the overall perfor-
mance is neglected if saturated pixels are rare. Therefore, we
assume that there are exactly DN dry positions and (1 — D)N
wet positions after the first layer embedding. We can embed DN
extra-bits (man41,- - ., M(a4p)n) into the second LSB plane
with a wet paper coding scheme W

(ma]\q_l, [N ,m<a+D)N) = W[S(fl)l), ey S(.Z‘N)] (2)

Thus, the embedding rate becomes o + D, while the average
distortion remains D since no additional modifications to the
cover data are needed to satisfy (2). As a consequence, the em-
bedding efficiency is increased by one, which is the ratio be-
tween embedding rate and average distortion. Performance of
the described DLE method is stated in the following theorem.

Theorem 1: Let F' be an embedding scheme with an embed-
ding rate o, embedding efficiency e, and average distortion D.
The DLE method using F' has the embedding rate a + D and
embedding efficiency e + 1 and keeps the same average distor-
tion D.

We now prove that the DLE method can exploit the informa-
tion capacity of “£1 steganography” with the highest efficiency
if F' is the most efficient for LSB steganography.

LSB steganography has the following upper bound [7] on
the embedding efficiency e with respect to a given embedding
rate a:

e(a) < ()’ 0<a<l 3)
where H(y) = —ylog, y — (1 —y) logy(1 —y) is the binary-en-
tropy function, and H —1 is the inverse function of H. In [10],
Willems et al. give the upper bound on the embedding rate of
“+1 steganography” subject to the constraint of an average dis-
tortion D

G(D),
log, 3

D <

D > @)

C(D) = {
where G(D) = H(D) + D. To evaluate the embedding effi-
ciency, we rewrite (4) as an upper bound on the embedding ef-
ficiency e depending on a given embedding rate «

[SSI[ SOVl

?

a
e(a) < i)’ 0<ac<log,3 5)
where G~! is the inverse function of G.

Summarizing these results, we have the following theorem.

Theorem 2: If an embedding scheme [’ reaches the upper
bound (3), the DLE method using F' achieves the upper bound
(5).

Proof: Assume that the embedding rate of F' is a. Since

F' can achieve the bound (3), its embedding efficiency is
a/H~ (). Average distortion of F is H~'(«) because em-
bedding efficiency is the ratio between the embedding rate
and average distortion. According to Theorem 1, the average
distortion of DLE using F is also H~'(«), and the embedding
rate is a + H (). Therefore, its embedding efficiency is

a+ H Y a)
H~Ya) ~

Moreover, because G~ (a + H~(a)) = H~!(«), the DLE
with F' achieves the upper bound (5).

Theorem 2 establishes that the DLE is optimal for “+£1
steganography” provided the binary embedding scheme used
is optimal for LSB steganography. For instance, the plain LSB
embedding scheme inserts one secret bit into each host pixel
and needs to modify on average half of them. It has an embed-
ding rate 1 and embedding efficiency 2, which is a trivial case
achieving the bound (3). By Theorem 2, employing the plain
LSB embedding scheme in the DLE can achieve the bound (5)
with an embedding rate 1.5 and embedding efficiency 3.

Moreover, since binary random linear codes achieve the
bound (3) asymptotically [5], [7], Theorem 2 leads to the
following theorem.

Theorem 3: DLE methods using binary random linear codes
can asymptotically achieve the bound (5).

A drawback of random codes is the unavailability of fast al-
gorithm for encoding. However, Fridrich [7] provides a fea-
sible embedding method with random codes for large embed-
ding rates with @ — 1. In [7], a random parity check matrix in a
systematic form H,,_1)xn = In—x X D is used for syndrome
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Fig. 1. Performance comparisons between random linear codes and the corre-
sponding DLE methods for & = 10 and & = 4 with n < 165.

coding, where I, is an (n — k) X (n — k) identity matrix,
and only the sub-matrix D is randomly generated. H,,_¢)xn
can embed n — k secret bits into n pixels with a computation
load O(n2*). The code dimension k should be small to keep low
complexity. In other words, the embedding rate & = (n — k) /n
must be large enough.

Fig. 1 illustrates the performances of random linear codes
and the corresponding DLE methods for £k = 10 and &k = 14
with n < 165. It is observed that, by increasing k£ and 7, the
embedding efficiency of random linear codes becomes close to
the bound (3) and the corresponding embedding efficiency of
DLE methods close to the bound (5), justifying Theorem 3.

Theorem 2 also implies that we only need to search for good
binary covering codes rather than ternary ones to efficiently
use the information capacity of “+1 steganography.” There
are many efficient binary covering codes suitable for stegano-
graphic applications such as those described in [3]-[9], which
can be employed in this DLE method. Another advantage of
this new method over ternary coding [10] and the methods in
[11] and [12] is that it can embed binary messages directly,
while those in [10]-[12] require conversion of the messages to
ternary or d-ary digits. In Section IV, we shall show that the
proposed method can outperform previous ones.

IV. APPLICATIONS USING STRUCTURED COVERING CODES

The well-known matrix coding used in [4] is essentially an
application of the binary Hamming code. It can embed & se-
cret bits into 2 — 1 pixels by changing only one LSB with
probability (2F — 1)/2*, therefore incurring average distortion
1/2% with an embedding rate k/(2¥ — 1) and embedding ef-
ficiency k2%/(2F — 1). According to Theorem 1, the corre-
sponding embedding rate and embedding efficiency in DLE are
k/(2F — 1) + 1/2% and k2% /(2% — 1) + 1, respectively. When
k = 1, it is just the case of DLE using the plain LSB embed-
ding as described in the preceding section. Fig. 2 shows that the
embedding rate and embedding efficiency of binary Hamming
codes are both significantly improved by using the DLE mech-
anism that also outperforms the LSB MR method in [13].
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Fig. 2. Performance comparisons between the binary Hamming coding, the
LSB MR method of [13], the EMD method of [11], and the DLE method using
(6), (7), and binary Hamming codes.

Other structured binary covering codes, such as those dis-
cussed in [3]-[9], can also be used in the DLE method for con-
structing more efficient schemes. For example, the following are
a family of embedding schemes presented in [6]:

(3,31,12)

(3,127,18) (3,511,24) (6)

and a set of BCH codes proposed in [8]

[31,11] [35,11] [45,29]. 7
With the method of [8], we estimate the average number of
embedding changes R, for the (3, 31, 12) embedding scheme

by

O3 O3 03y + C31 + C3,
S+ o (1- SIS ) 207 9)

Therefore, its average distortion D = 2.97/31 = 0.10, em-
bedding rate « = 12/31 = 0.48, and embedding efficiency
e = 12/2.97 = 4.18. The parameters of the other two schemes
in (6) and the BCH codes in (7) can also be estimated in a sim-
ilar manner [8]. With these parameters and Theorem 1, we can
obtain the performances of DLE methods using (6) and (7).

We now make performance comparisons between the DLE
using (6), (7) and binary Hamming codes, the ternary Hamming
coding of [10], the EMD method of [11], and the Rainbow Col-
oring method of [12]. Both the EMD and Rainbow Coloring
methods provide the same family of schemes, which can embed
log,(2d + 1) bits of messages into d pixels with 2d/(2d + 1)
changes on average. Therefore, the corresponding embedding
rate and embedding efficiency are as follows:

_ log,(2d+ 1) (2d + 1) logy(2d + 1)
g= =21

d €= 2d ©)

where d is a positive integer. Note that, when d = (3" — 1)/2,
r > 1, (9) just yields the performance parameters of ternary
Hamming coding of [10]. Hence, we only need to compare the
DLE method with the EMD method of [11]. The comparison
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results in Fig. 2 show that the DLE with binary Hamming codes
is slightly more efficient than the EMD method, while the DLE
with (6) and (7) significantly exceed the EMD and are close to
the bound (5). Nonetheless, advantage of the DLE over the EMD
is most pronounced for large payloads but negligible for small
payloads because the EMD also approaches the upper bound
when the payload is small.

V. DISCUSSIONS

In this letter, we propose a DLE mechanism and prove that,
if the binary coding method for the LSB plane embedding
is optimal, the corresponding DLE method is optimal for
“£1 steganography.” Fridrich et al. [14] recently proposed a
new stego-coding method based on the low-density generator
matrices (LDGM) codes with performance very closed to the
bound (3). According to Theorem 2, application of this method
to the DLE will lead to performance approaching the bound
(5). Further studies on combining DLE method with LDGM
codes will be carried out.

Moreover, the DLE method can also be used to improve the
embedding efficiency of wet paper codes with a “double wet
paper coding” scheme, i.e., applying the wet paper coding to
DLE in both the first layer and the second layer embedding. In
[2], the random linear codes are adopted to increase embedding
efficiency of wet paper codes, called “block minimal method.”
Obviously, applying the block minimal method in DLE will
yield more efficient wet paper codes.
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