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Abstract To study how to design a steganographic algorithm more efficiently, a new coding
problem — steganographic codes (abbreviated stego-codes) — is presented in this paper. The
stego-codes are defined over the field with q(q ≥ 2) elements. A method of constructing
linear stego-codes is proposed by using the direct sum of vector subspaces. And the problem
of linear stego-codes is converted to an algebraic problem by introducing the concept of the
tth dimension of a vector space. Some bounds on the length of stego-codes are obtained,
from which the maximum length embeddable (MLE) code arises. It is shown that there is a
corresponding relation between MLE codes and perfect error-correcting codes. Furthermore
the classification of all MLE codes and a lower bound on the number of binary MLE codes
are obtained based on the corresponding results on perfect codes. Finally hiding redundancy
is defined to value the performance of stego-codes.

Keywords Steganography · Stego-codes · Error correcting codes · Matrix encoding · MLE
codes · Perfect codes · Hiding redundancy

AMS Classification 14G50

1 Introduction

Nowadays the security of communication means not only secrecy but also concealment, so
steganography is becoming more and more popular in the network communication. Stega-
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nography is about how to send secret message covertly by embedding it into some innocuous
cover-objects such as digital images, audios and videos. In this paper we take the image
as example to describe our ideas. Usually the process of embedding a message will make
some changes to the cover-images. To reduce the possibility of detection, the sender hopes to
embed as many bits of message as possible by changing the least number of bits of the images.
This task can be accomplished through some encoding technique that was first suggested by
Crandall [1] who called it matrix encoding. And in the present paper we generalize the idea
of Crandall and formally define this kind of codes as “steganographic codes” (abbreviated
stego-codes).

Besides increasing the embedding efficiency, stego-codes can also enhance the security
of steganography in other aspects. Now some detecting methods on steganography can not
only detect the existence of the hidden message but also very accurately estimate its length
[2]. And there are even methods which can search for the stego-key [3]. However, if there
are a great many stego-codes that can be selected by the encoders as a part of the key, it will
be very hard for the attacker to estimate the message length or recover the stego-key. In fact,
Fridrich [3] pointed out that matrix encoding is an effective measure against key search.

Least Significant Bit (LSB) steganography is the most popular image steganographic
technique, in which the LSBs of pixels are replaced with the message bits. This traditional
technique can be viewed as coding two bits of message per changed pixel because in the
random case 50% pixels needn’t to be changed. A better method is described in the CPT
scheme [4,5], which is a steganographic algorithm on binary image and can conceal as many
as k bits of data in a host image of size 2k − 1 by changing at most 2 bits. Another more
effective example of stego-code is F5 [6], a LSB algorithm on JPEG image, which first
implements Crandall’s matrix encoding and can embed k bits of message in 2k − 1 DCT
coefficients by changing at most one of them.

To construct more effective stego-codes and study their properties, in the present paper we
define linear stego-codes over a finite field with q(q ≥ 2) elements by using multi-outputs
logic functions. First, as an example, a constructive method of linear stego-codes is proposed,
which can generate the codes of F5 in a special case and is more agile than the codes of CPT.
To study bounds on the length of linear stego-codes, we introduce the definition of the t th
dimension of a vector space that converts the problems of linear stego-codes to an algebraic
problems. Moreover a bound on the length of linear stego-codes is obtained, from which the
maximum length embeddable (abbreviated MLE) code arises. Furthermore, it is shown that
there is a 1–1 correspondence between linear MLE codes and linear perfect error-correcting
codes.

To study the non-linear stego-code, another direct definition for stego-codes is presented,
based on which we explain the relations and differences between stego-codes and error-
correcting codes in geometrical language and generalize linear MLE codes to the non-linear
case. We prove the relations between MLE codes and perfect codes with two constructive
proofs which can be used to construct MLE codes from perfect codes or construct perfect
codes from MLE codes. Furthermore from the well-known results on perfect codes, the clas-
sification of all MLE codes and a lower bound on the number of binary MLE codes are
obtained.

Usually a steganographic algorithm can be valued by both message rate and change den-
sity. Large message rate and small change density means a good algorithm. To evaluate the
performance of stego-codes more accurately, we introduce the concept of hiding redundancy
that can be viewed as a combination of message rate and change density. Furthermore based
on the result on hiding redundancy, another bound on the length of binary stego-codes is
obtained.
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A coding problem in steganography 69

The rest of the paper is organized as follows. The construction and properties of linear
stego-codes are analyzed in Sect. 2. Non-linear stego-codes and the relations between the
MLE codes and perfect codes are studied in Sect. 3. In Sect. 4 a measure — hiding redun-
dancy — is proposed to value the efficiency of stego-codes. And the paper concludes with a
discussion in Sect. 5.

2 Linear stego-codes

2.1 Definitions

To deal with the concepts that are introduced we adopt some notational conventions that are
commonly used. The finite field with q elements is denoted by G F(q). A vector is denoted
by bold italic letter (e.g. x). A set is denoted by script letters (e.g. S). Wt(x) denotes the
Hamming weight of a vector x ∈ G Fn(q).

For simplicity, we take LSB steganography on images as examples to describe the defi-
nitions and applications of stego-codes.

Definition 1 An (n, k, t) stego-coding function over finite field G F(q) is a vectorial func-
tion H(x) = (h1(x), h2(x), . . . , hk(x)) : G Fn(q) → G Fk(q) satisfying the following
condition: For any given x ∈ G Fn(q) and y ∈ G Fk(q), there exists a z ∈ G Fn(q) such that
Wt(z) ≤ t and H(x + z) = y. And H(x) is called a linear stego-coding function if every
component function hi (x) (1 ≤ i ≤ n) is a linear function.

Definition 2 Let H(x) be an (n, k, t) stego-coding function over G Fn(q). For y ∈ G Fk(q),
let H−1( y) = {x : H(x) = y}. Then call

S = {H−1( y) : y ∈ G Fk(q) and H−1( y) �= φ}
an (n, k, t) stego-code.

Stego-coding function in principle is the decoding function, and to hide message with it,
one also need an encoding algorithm. Generally, encoding algorithm can be implemented
through an encoding table B. For an (n, k, t) stego-coding function H(x) over G F(q),
encoding table B is a qn ×qk matrix, the index of its row is represented by x ∈ G Fn(q), and
the index of a column by y ∈ G Fk(q). In the position (x, y), save the vector z ∈ G Fn(q)

such that Wt(z) ≤ t and H(x + z) = y, i.e., y is encoded by replacing x with x + z. If
H(x) is a linear stego-coding function, because H(x + z) = H(x) + H(z), one only need
construct a 1 × qk encoding table, and denote the index of a column with w ∈ G Fk(q). In
this case, for given y and x, y is encoded by replacing x with x + z where z is the entry
in position w = y − H(x). Therefore generally there exists simpler encoding algorithm for
linear stego-codes. Crandall points out that the design of fast encoding algorithm are also an
open research area [1]. The following example shows a wonderful encoding method.

Example 1 (F5-Matrix Coding) F5 [6] is a LSB steganographic program that embeds binary
message sequences into the LSBs of DCT coefficients of JPEG images. F5 can embed k bits
of message in 2k − 1 DCT coefficients by changing at most one of them. The inputs are code
word (LSBs of DCT coefficients) x ∈ G F2k−1(2) and the block of message y ∈ G Fk(2).
The coding function is defined as

f (x) = 2k−1⊕
i=1

xi · i , (1)
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where, to do ⊕, the integer xi · i is interpreted as a binary vector. And the encoding procedure
is as follows: Compute the bit place that has to be changed as s = y ⊕ f (x) where the
resulting binary vector s is interpreted as an integer. And then output the changed code word

x′ =
{

x if s = 0
(x1, x2, . . . , xs ⊕ 1, . . . , x2k+1) if s �= 0

which satisfies y = f (x′).
According to Definition 1, (1) in fact is a (2k − 1, k, 1) linear stego-coding function

over G F(2). For instance, when k = 2, (1) is equivalent to the vectorial function H(x) =
(h1(x), h2(x)) where (h1(x) = x2⊕x3, h2(x) = x1⊕x3). And the corresponding stego-code
is

S = { {(000), (111)}, {(011), (100)},
{(010), (101)}, {(001), (110)} }.

CPT scheme [4,5] is an example of a non-linear (2k − 1, k, 2) stego-coding function. We
firstly study linear stego-coding function which has the following necessary and sufficient
condition.

Theorem 1 A linear vectorial function H(x) over G F(q) is an (n, k, t) stego-coding func-
tion if and only if for any given y ∈ G Fk(q), there exists a z ∈ G Fn(q) such that Wt(z) ≤ t
and H(z) = y.

Proof If H(x) is a linear stego-coding function over G F(q), Definition 1 implies that for
any given y ∈ G Fk(q) and 0 ∈ G Fk(q), there exists a z ∈ G Fn(q) such that Wt(z) ≤ t
and y = H(0 + z) = H(z).

Conversely, for any given x ∈ G Fn(q) and y ∈ G Fk(q) there exists a z ∈ G Fn(q) such
that Wt(z) ≤ t and H(z) = y − H(x), i.e. H(x + z) = y because H(x) is a linear function.
Therefore H(x) satisfies the condition of Definition 1. �	

An (n, k, t) linear vectorial function H(x) = (h1(x), h2(x), . . . , hk(x)) over G F(q),
where hi (x) = ai1x1 +ai2x2 +· · ·+ain xn (1 ≤ i ≤ k) can be represented by a k ×n matrix
over G F(q) such as

H =

⎡
⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n

· · ·
ak1 ak2 · · · akn

⎤
⎥⎥⎦ .

We call H an (n, k, t) stego-coding matrix. There is a 1–1 correspondence between stego-
coding functions and stego-coding matrices. And from Theorem 1, we can define the
stego-coding matrix directly as follows.

Definition 3 A k × n matrix H over G F(q) is called an (n, k, t) stego-coding matrix if for
any given y ∈ G Fk(q), there exists an x ∈ G Fn(q) such that Wt(x) ≤ t and H xtr = ytr .

If H is an (n, k, t) stego-coding matrix over G F(q), then for any y ∈ G Fk(q), equation
H xtr = ytr has solutions, which implies that the rank of H is k. From Definition 3 we can
get the following important property that is useful for the construction of linear stego-coding
functions.

Theorem 2 A k × n matrix H over G F(q) is an (n, k, t) stego-coding matrix if and only if,
for any y ∈ G Fk(q), ytr must be a linear combination of some t columns of H .
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2.2 A constructing method of linear stego-coding functions

Theorem 2 suggests that we can construct stego-coding matrix through the direct sum of
vector subspaces. To do that, we need the following lemma.

Lemma 3 If V is a k-dimensional vector space over G F(q) then there exists qk −1
q−1 vectors

x1, . . . , x qk −1
q−1

satisfying the following properties:

1. Any two of the qk −1
q−1 vectors are linear independence.

2. For any given y ∈ V , there exist a ∈ G F(q) and xi , such that 1 ≤ i ≤ qk −1
q−1 and y = axi .

Proof Take any nonzero vector x1 ∈ V , and denote the 1-dimensional subspace spanned by
x1 as V1; then take any non-zero vector x2 ∈ V \V1 and denote the 1-dimensional subspace
spanned by x2 as V2; and then take any nonzero vector x3 ∈ V \(V1 ∪ V2) · · · . Do as such
and finally we can get qk −1

q−1 1-dimensional subspaces V1, . . . , Vqk −1
q−1

because the number of

nonzero vectors in V is qk − 1 and every 1-dimensional subspace consist of q − 1 nonzero
vectors and the zero vector. Assume that subspace Vi is spanned by xi (1 ≤ i ≤ qk −1

q−1 ),
The procedure of constructing these subspaces implies that any two of these xi ’s are linear
independence and V = V1 ∪ V2 ∪ · · · ∪ Vqk −1

q−1

. Therefore for any given y ∈ V , there is Vi

satisfying y ∈ Vi , which means there exists a ∈ G F(q) such that y = axi . �	
Based on Lemma 3, we can get the following constructive algorithm of

(∑t
i=1

qki −1
q−1 , k, t

)
stego-coding matrix over G F(q).

Algorithm 1 The procedure of construction goes through the following three steps.

S1 Take a basis of k-dimensional vector space G Fk(q) over G F(q) such as
{x1, x2, . . . , xk}.

S2 Divide {x1, x2, . . . , xk} into t disjoint subsets Bi (1 ≤ i ≤ t) such that Bi consists of
ki vectors and

∑t
i=1 ki = k. Denote the ki -dimensional subspace spanned by Bi as

Vi , 1 ≤ i ≤ t .
S3 As doing in the proof of Lemma 3, take qki −1

q−1 nonzero vectors from every subspace

Vi (1 ≤ i ≤ t). Then we can get
∑t

i=1
qki −1

q−1 nonzero vectors in all. Then construct

a k ×∑t
i=1

qki −1
q−1 matrix H with all of these nonzero vectors as columns. H is just a(∑t

i=1
qki −1

q−1 , k, t
)

stego-coding matrix over G F(q).

In fact by Lemma 3, for any subspace Vi and any vector x ∈ Vi in Algorithm 1, there
exists a column of H which can linearly express xtr . On the other hand, G Fk(q) is the
direct sum of these t subspaces Vi ’s. Combine these two facts, it can be proved that, for any
y ∈ G Fk(q), ytr is the linear combination of t columns of H . Therefore by Theorem 2, H

is a
(∑t

i=1
qki −1

q−1 , k, t
)

stego-coding matrix over G F(q).

Let q = 2 and t = 1, with Algorithm 1 we can construct (2k −1, k, 1) linear stego-coding
functions over G F(2) which are just the functions used in F5 (Example 1).

2.3 The t th dimension of vector space – bounds on the length of linear stego-codes

To study bounds on the length of stego-codes, we generalize the concept of vector space’s
dimension to define the t th dimension.
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Definition 4 If V is a vector space over field F , x, x1, x2, . . . , xn ∈ V and there are
a1, a2, . . . , an ∈ F such that Wt ((a1, a2, . . . , an)) ≤ t and x = ∑n

i=1 ai xi , we say that
x can be expressed as t th linear combination of xi ’s; If for any x ∈ V , x can be expressed as
t th linear combination of xi ’s, we say that {x1, x2, . . . , xn} is a set of t th generators of V .

Definition 5 Let V is a vector space over field F and {x1, x2, . . . , xn} is a set of t th gen-
erators of V . If any another set of t th generators { y1, y2, . . . , ym} must satisfy that m ≥ n,
we call {x1, x2, . . . , xn} a minimum set of t th generators of V and call n the t th dimension
of V .

In the terms of t th dimension, Theorem 2 can be stated in the following forms.

Theorem 4 A k × n matrix H is an (n, k, t) stego-coding matrix over G F(q) if and only if
the set consisting of n vectors corresponding to the n columns of H is a set of t th generators
of G Fk(q).

Since a set of t th generators must be a set of (t + 1)th generators, it is clear that for vector
space G Fk(q) and t such that t ≥ k, the t th dimension is k, and every basis of G Fk(q) is
just a minimum set of t th generators of G Fk(q). In fact the t th dimension of G Fk(q) such
that t > k is insignificant for the problem of stego-codes.

The following theorem is easy to be get but is important, because it converts the problem
of linear stgeo-codes to an algebraic problem.

Theorem 5 If the tth dimension of vector space G Fk(q) over G F(q) is n, then for any
integer m ≥ n there exist (m, k, t) linear stego-codes.

From Theorem 5, we know that the key problems of linear stego-codes are just how to
estimate the t th dimension of G Fk(q) and how to construct the minimum set of t th generators
of G Fk(q). Generally, it is hard to get the exact t th dimension of G Fk(q), but we can obtain
some bounds on it, which is also the bounds on the length of linear stego-codes.

Theorem 6 If the tth dimension of vector space G Fk(q) over G F(q) is n, then

qk ≤ 1 + (q − 1)

(
n

1

)
+ (q − 1)2

(
n

2

)
+ · · · + (q − 1)t

(
n

t

)
. (2)

Proof Assume that {x1, x2, . . . , xn} is a set of t th generators of G Fk(q). Then for any
x ∈ G Fk(q), x can be expressed as t th linear combination of {x1, x2, . . . , xn}. On the other
hand, there are in total 1+(q −1)

(n
1

)+(q −1)2
(n

2

)+· · ·+(q −1)t
(n

t

)
t th linear combinations

of {x1, x2, . . . , xn} and qk vectors in G Fk(q). Therefore, we get the inequality (2). �	
As mentioned above the kth dimension of vector space G Fk(q) over G F(q) is k, so when

t = k the equality holds in (2). The following corollary shows that the equality also holds in
(2) with t = 1.

Corollary 7 The first dimension of vector space G Fk(q) over G F(q) is qk −1
q−1 , and any set

consisting of qk −1
q−1 vectors such that any two of them are linear independence is a minimum

set of the first dimension generators.

Proof For any given x1, . . . , x qk −1
q−1

∈ G Fk(q) such that any two of them are linear inde-

pendence, the proof of Lemma 3 means that
{

x1, . . . , x qk −1
q−1

}
is a set of the first generators
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of G Fk(q). Because when n = qk −1
q−1 and t = 1, the equality in (2) holds,

{
x1, . . . , x qk −1

q−1

}
is

a minimum set of the first generators. Therefore the first dimension of vector space G Fk(q)

is qk −1
q−1 . �	
By Lemma 3, Corollary 7 and Theorem 4, for any q ≥ 2 and k ≥ 1, the

(
qk −1
q−1 , k, 1

)
linear

stego-codes over G F(q) exist, and when q = 2, we get the codes of F5 once more.
By Theorems 4 and 6, an (n, k, t) linear stego-code over G F(q) must satisfy (2), which

provides a upper bound on the embedded message length. Therefore when equality holding
in (2), we get an important type of codes.

Definition 6 An (n, k, t) linear stego-code over G F(q) is called maximum length embed-
dable (abbreviated MLE) if equality holds in (2)

Note that the form of the bound in Theorem 6 is similar with that of Hamming Bound on
error-correcting codes.

Lemma 8 (Hamming Bound) A t-error-correcting (n, k) linear code over G F(q) must sat-
isfy that

qn−k ≥ 1 + (q − 1)

(
n

1

)
+ (q − 1)2

(
n

2

)
+ · · · + (q − 1)t

(
n

t

)
. (3)

Error-correcting codes are called perfect codes when equality holds in (3). The Crand-
all’s examples [1], which are obtained from perfect codes, are just linear MLE codes. The
following theorem will show the relations between linear MLE codes and linear perfect codes.

Theorem 9 An (n−k)×n matrix H is the parity check matrix of a t-error-correcting perfect
(n, k) code over G F(q) if and only if H is a stego-coding matrix of an (n, n − k, t) MLE
code over G F(q).

Proof If H is the parity check matrix of a t-error-correcting code, any two t th linear com-
binations of the n columns of H are different. And because H is the parity check matrix
of perfect code over G F(q), the number of all t th linear combinations of the H’s columns
satisfies that

1 + (q − 1)

(
n

1

)
+ (q − 1)2

(
n

2

)
+ · · · + (q − 1)t

(
n

t

)
= qn−k . (4)

That means that the set consisting of vectors corresponding to n columns of H is a set of
t th generators of G Fn−k(q). And by Theorem 4, H is an (n, n − k, t) stego-coding matrix.
Furthermore, (4) implies that H is a stego-coding matrix of an MLE code over G F(q).

Conversely, assume H is a (n, n −k, t) stego-coding matrix of an MLE code over G F(q).
As mentioned in Subsect. 2.1 the rank of H is n−k, which implies H is a parity check matrix
of an (n, k) linear error-correcting code. And by Theorem 4 the set of vectors corresponding
to n columns of H is a set of t th generators of G Fn−k(q), which, with the fact that (4) holds
by Definition 6, implies that any two t th linear combinations of the n columns of H are
different. Therefore the linear code with H as parity check matrix can correct t errors. Once
more by the fact that (4) holds, H is the parity check matrix of a perfect code over G F(q). �	
Example 2 Hamming codes are linear single-error-correcting codes. With the easy decoding
method for Hamming codes, we can get easy encoding method for corresponding stego-codes.
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For instance, when q = 2 and k = 3, the parity check matrix of binary (7,4) Hamming code
is

H =
⎡
⎣ 0 0 0 1 1 1 1

0 1 1 0 0 1 1
1 0 1 0 1 0 1

⎤
⎦ ,

which is just a (7,3,1) stego-coding matrix and can hides 3 bits message in a codeword of
length of 7 bits by changing at most 1 bit. Here we have taken the columns in the natu-
ral order of increasing binary numbers. For instance, when the inputs are codeword x =
(1, 0, 0, 1, 0, 0, 0) and message y = (1, 1, 0), compute

H xtr =
⎡
⎣ 1

0
1

⎤
⎦ ,

⎡
⎣ 1

0
1

⎤
⎦ ⊕

⎡
⎣ 1

1
0

⎤
⎦ =

⎡
⎣ 0

1
1

⎤
⎦ .

Note that the result is the binary representation of 3 and also is just the third column of
H . Then change the third position of x to output x′ = (1, 0, 1, 1, 0, 0, 0) that satisfies

H x′tr =
⎡
⎣ 1

1
0

⎤
⎦ = ytr.

In fact we can obtain another bound on the dimension of vector space G Fk(q) by Algo-
rithm 1.

Theorem 10 If the tth dimension of vector space G Fk(q) over G F(q) is n, then

n ≤ (q� k
t � − 1)(t − 1) + qk−� k

t �(t−1) − 1

q − 1
. (5)

Since (5) is an upper bound on the t th dimension of vector space G Fk(q), Theorem 5
implies that for any positive integer n such that

n ≥ (q� k
t � − 1)(t − 1) + qk−� k

t �(t−1) − 1

q − 1
,

(n, k, t) linear stego-codes over G F(q) exist.

3 Non-linear stego-codes

3.1 Definitions

The Definition 2 for stego-codes is based on stego-coding function. In fact we can define
stego-codes directly as follows, which is useful for us to study non-linear stego-codes. The
Hamming distance between two vectors x and y ⊆ G Fn(q) is denoted by Dist(x, y).

Definition 7 By an M-partition of G Fn(q), we mean a set {I0, I1, . . . IM−1} satisfying the
following two conditions:

1. I0, I1, . . . IM−1 are non-empty subsets of G Fn(q) and any two of the M subsets are
disjoint;

2. G Fn(q) = I0 ∪ I1 ∪ · · · ∪ IM−1.
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Definition 8 If I is a nonempty subset of G Fn(q) and x ∈ G Fn(q), define the distance
between x and I as Dist (x, I ) = min

y∈I
Dist (x, y).

Definition 9 An (n, M, t) stego-code over G F(q) is a set S = {I0, I1, . . . , IM−1} satisfying
the following two conditions:

1. {I0, I1, . . . IM−1} is an M-partition of G Fn(q).
2. for any x ∈ G Fn(q) and any i such that 0 ≤ i ≤ M − 1, Dist(x, Ii ) ≤ t .

For an (n, M, t) stego-code S = {I0, I1, . . . , IM−1} over G F(q), a corresponding stego-
coding function can be constructed as follows. Let m = ⌈

logq M
⌉

, and the M message sym-
bols can be expressed by M vectors in G Fm(q), for example, y0, . . . , yM−1. Define function
H : G Fn(q) → G Fm(q) such that, H(x) = yi , if x ∈ Ii , where 0 ≤ i ≤ M − 1. Then with
H as decoding function, Definition 9 implies that for any given message y ∈ G Fm(q) and
codeword x ∈ G Fn(q), y can be hidden into x (i.e. expressed by H(x)) by changing at most
t elements of x. Herein H is a vectorial function. And if every component function of H is a
linear function, we call H a linear stego-coding function and call the corresponding code S =
{I0, I1, . . . IM−1} a linear stego-code. For the linear stego-coding function H , if the rank of its
coefficients matrix is k, then |I0| = |I1| = · · · = |IM−1| = qn−k , which means that M = qk .
Therefore the linear stego-code can be simply denoted by (n, k, t) as we use in Sect. 2.

We say that two (n, M, t) stego-codes S = {I0 ∪ I1 ∪ · · · ∪ IM−1} and
T = {J0 ∪ J1 ∪ · · · ∪ JM−1} over G F(q) are equivalent if there is a permutation π of
the n coordinate positions and n permutations σ1, . . . , σn of q elements such that for any i
(0 ≤ i ≤ M − 1), there exists j (0 ≤ j ≤ M − 1) satisfying π(σ1(x1), . . . , σn(xn)) ∈ Ii if
(x1, . . . , xn) ∈ J j .

The conclusion in Subsect. 2.3 implies that there is relations between the stego-codes and
error-correcting codes. The general definition for error-correcting codes including linear and
non-linear codes is as follows.

Definition 10 [7] An (n, M, d) error-correcting code over G F(q) is a set of M vectors of
G Fn(q) such that any two vectors differ in at least d places, and d is the smallest number
with this property.

To understand the relations and differences between the error-correcting codes and stego-
codes, we think of these codes geometrically as MacWilliams did in [7]. The vector
(a1, a2, . . . , an) of length n gives the coordinates of a vertex of a unit cube in n dimen-
sions. Then An (n, M, d) error-correcting code is just a subset of these vertices while an
(n, M, t) stego-code is a partition of these vertices.

In this geometrical language, the error-correcting coding problem is to choose as many as
vertices of the cube as possible while keeping them a certain distance d apart. However, the
stego-coding problem is to divide vertices of the cube as many disjoint non-empty subsets
as possible while keeping any vertex closer to every subset. In fact, an (n, M, t) stego-code
make the sphere of radius t around any vertex intersects all these M subsets.

3.2 Maximum length embeddable (MLE) codes

With Definition 9 of stego-codes, we can generalize Theorem 6 and Definition 6 as following
Theorem 11 and Definition 11.

Theorem 11 An (n, M, t) stego-code over G F(q) must satisfy

M ≤ 1 + (q − 1)

(
n

1

)
+ (q − 1)2

(
n

2

)
+ · · · + (q − 1)t

(
n

t

)
. (6)
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Proof Let S = {I0 ∪ I1 ∪ · · · ∪ IM−1} be an (n, M, t) stego-code over G F(q). Then for any
given x ∈ G Fn(q), the sphere of radius t around x must intersect every Ii (0 ≤ i ≤ M − 1).
Note that this sphere contains 1 + (q − 1)

(n
1

) + (q − 1)2
(n

2

) + · · · + (q − 1)t
(n

t

)
vectors and

these M subsets Ii ’s are disjoint, and then we get the inequality (6). �	
Definition 11 An (n, M, t) stego-code over G F(q) is called maximum length embeddable
(abbreviated MLE) if equality holds in (6).

MLE codes have following two interesting properties, and the first can be obtained from
definitions of stego-codes and MLE codes directly.

Lemma 12 If S = {I0 ∪ I1 ∪ · · · ∪ IM−1} is an MLE (n, M, t) stego-code over G F(q), then
for any x ∈ G Fn(q), the sphere of radius t around x shares only one vector with every Ii

(0 ≤ i ≤ M − 1).

Lemma 13 For the MLE (n, M, t) codes over G F(q), there exists some integer k such that
M = qk.

Proof Let S = {I0 ∪ I1 ∪ · · · ∪ IM−1} be a (n, M, t) MLE stego-code over G F(q). Then
for any subset Ii (0 ≤ i ≤ M − 1) and any x ∈ Ii , Lemma 12 implies that, in any
I j (0 ≤ j ≤ M − 1, j �= i), there is only one vector, for example denote it by y,
satisfying Dist(x, y) ≤ t . Therefore the mapping f : Ii → I j such that f (x) = y if
Dist(x, y) ≤ t is a 1-1 correspondence between Ii and I j . So there exists integer A such that
|I0| = · · · = |IM−1| = A. Assume that the character of field G F(q) is p and q = pr , then

AM = A
t∑

i=0

(
n

i

)
(q − 1)i = qn = pnr .

Therefore there exists some integer j such that A = p j , and

M =
t∑

i=0

(
n

i

)
(q − 1)i = pnr− j .

Thus q−1 = pr −1 divides pnr− j −1, which implies that r divides j and M is a power of q . �	
In Subsec. 2.3 we have proved that there is a 1–1 correspondence between linear MLE

codes and linear perfect error-correcting codes. Therefore we guess that there are also cor-
responding relations between non-linear MLE codes and non-linear perfect codes.

Hamming bound for error-correcting codes (Lemma 8) and the definition of perfect codes
has general forms as follows. A t-error-correcting code over G F(q) of length n containing
M codewords must satisfy

M

(
1 + (q − 1)

(
n

1

)
+ · · · + (q − 1)t

(
n

t

))
≤ qn . (7)

If equality holds in (7), the t-error-correcting code over G F(q) of length n containing M
codewords is called perfect code. And it can be proved that the number of codewords of a
perfect code M is a power of q [7].

The following two theorems show the relations between the MLE codes and perfect codes.
And we provide two constructive proofs which can be used to construct MLE codes from
perfect codes or construct perfect codes from MLE codes.
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Theorem 14 If ℘ is a t-error-correcting (0 ≤ t ≤ n) perfect code over G F(q) of length
n containing qn−k (0 ≤ k ≤ n) codewords, then there exists a (n, qk, t) MLE code
S = {I0 ∪ I1 ∪ · · · ∪ Iqk−1} over G F(q) such that ℘ equals some Ii (0 ≤ i ≤ qk − 1).

Proof Let ℘ = {x1, x2, . . . , xqn−k } be a t-error-correcting perfect code of length n con-
taining qn−k codewords. Then the minimum distance of ℘ must be larger than 2t and
qn−k

(
1 + (q − 1)

(n
1

) + · · · + (q − 1)t
(n

t

)) = qn . Therefore the number of vectors whose
weights are not larger than t satisfies

1 + (q − 1)

(
n

1

)
+ (q − 1)2

(
n

1

)
+ · · · + (q − 1)t

(
n

1

)
= qk . (8)

Write these vectors by y0, . . . , yqk−1 and assume that y0 is the zero vector. Denote the sphere
of radius t around xi by Ot (xi ), i.e. Ot (xi ) = {xi + y j , 0 ≤ j ≤ qk − 1} (1 ≤ i ≤ qn−k).
These qn−k spheres are disjoint because ℘ is a t-error-correcting code.

Now construct the stego-code S = {I0 ∪ I1 ∪ · · · ∪ IM−1} as follows.

Ii = { yi + x j , 1 ≤ j ≤ qn−k}, 0 ≤ i ≤ qk − 1. (9)

We claim that {I0 ∪ I1 ∪ · · · ∪ Iqk−1} is a partition of G Fn(q). In fact, any two of the qk

subsets are disjoint. Otherwise, if two subsets, e.g. I0 and I1, are intersectant, then there exist
i �= j such that y0 + xi = y1 + x j , which implies Ot (xi )∩ Ot (x j ) �= ∅, and a contradiction
to Ot (xi )’s being disjoint follows. Furthermore note that every Ii (0 ≤ i ≤ qk − 1) contains
qn−k vectors. Therefore G Fn(q) = I0 ∪ I1 ∪ · · · ∪ Iqk−1.

Now to prove {I0 ∪ I1 ∪ · · · ∪ Iqk−1} being a stego-code, the only thing we should ver-
ify is that for any z ∈ G Fn(q), the sphere of radius t around z, i.e. Ot (z) = {z j : z j =
z+ y j and 0 ≤ j ≤ qk −1}, intersects every Ii (0 ≤ i ≤ qk −1). Otherwise, there must exist
some subset, e.g. Ih , that shares at least two vectors with Ot (z) because Ot (z) includes only
qk vectors. For instance, if there are 0 ≤ i1 < i2 ≤ qk − 1 such that zi1 ∈ Ih and zi2 ∈ Ih ,
then there exist 0 ≤ j1 < j2 ≤ qn−k such that zi1 = yh + x j1 and zi2 = yh + x j2 . Therefore,
on one hand, Dist(zi1 , zi2) = Dist(z + yi1

, z + yi2
) = Dist( yi1

, yi2
) ≤ 2t , but on the other

hand, Dist(zi1 , zi2) = Dist( yh + x j1 , yh + x j2) = Dist(x j1 , x j2) > 2t . And a contradiction
follows. So we prove that {I0 ∪ I1 ∪ · · · ∪ Iqk−1} is an (n, qk, t) stego-code, and it is a MLE
code because (8) holds. Finally, (9) means I0 = ℘, because y0 is the zero vector. �	
Theorem 15 If S = {I0∪ I1∪· · ·∪ Iqk−1} is an (n, qk, t) MLE code over G F(q), then every

Ii (0 ≤ i ≤ qk − 1) is a t-error-correcting perfect code over G F(q) of length n containing
qn−k codewords.

Proof Let S = {I0 ∪ I1 ∪ · · · ∪ IM−1} be an (n, qk, t) MLE code over G F(q). The proof
of Lemma 13 implies that every Ii (0 ≤ i ≤ qk − 1) contains qn−k vectors. Now we prove
any Ii , e.g. I0, is a t-error-correcting code. In fact, for any two vectors x1, x2 ∈ I0, the
sphere of radius t around them, i.e. Ot (x1) and Ot (x2), are disjoint. Otherwise, if there
exists z ∈ Ot (x1) ∩ Ot (x2), then the sphere of radius t around z shares two vectors with
I0, which is contrary to Lemma 12. Therefore I0 is a t-error-correcting code of length n
containing qn−k codewords. Furthermore, because S = {I0 ∪ I1 ∪ · · · ∪ IM−1} is an MLE
code, qn−k

(
1 + (q − 1)

(n
1

) + · · · + (q − 1)t
(n

t

)) = qn−kqk = qn , which implies that I0 is
a perfect code. �	

Theorems 14 and 15 show that there is a corresponding relation between perfect codes and
MLE codes in equivalent sense. And in fact these two theorems imply that the classifications
of MLE codes can be determined by the classifications of perfect codes.
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There are three kinds of trivial perfect codes: a code containing just one codeword, or the
whole space, or a binary repetition code of odd length. We call the corresponding MLE codes
also trivial MLE codes, i.e. (n, qn, n) or (n, 1, 0) code over G F(q), or binary (2t + 1, 22t , t)
code, which can be constructed by Theorem 14.

The work of Tietäväine [8] shows that there are only three kinds of parameters n, M and
d for nontrivial perfect codes.

1. The binary (23, 212, 7) Golay code (linear three-error-correcting code) which is unique
in the sense of equivalence.

2. The ternary (11, 36, 5) Golay code (linear two-error-correcting code) which is unique
in the sense of equivalence.

3. The

(
qr −1
q−1 , q

qr −1
q−1 −r

, 3

)
code over G F(q) (single-error-correcting code). All linear per-

fect codes with these parameters are equivalent, i.e. the Hamming codes. And there exist
non-linear perfect codes with these parameters over G F(q) for all q .

Correspondingly, Theorems 14 and 15 imply that there are also only three kinds of possible
parameters n, M and t for MLE nontrivial codes.

Corollary 16 An MLE codes must belong to one of the following three types:

1. The binary linear (23, 211, 3) code. All MLE codes with these parameters are equivalent.
2. The ternary linear (11, 35, 2) code. All MLE codes with these parameters are equivalent.

3. The
(

qr −1
q−1 , qr , 1

)
code over G F(q). All linear MLE codes with these parameters are

equivalent. And there exist non-linear MLE codes with these parameters over G F(q)

for all q.

For the security of steganographic systems, we hope there are enough stego-codes, espe-
cially binary codes. And the following corollary shows that there are indeed so many binary
MLE codes. In fact, Krotov [9] ever proved that there are at least

22
n+1

2 −log2(n+1) · 32
n−3

4 · 22
n+5

4 −log2(n+1)

different perfect binary codes of length n (n = 2r − 1). Therefore, with Theorems 14 and
15 we can obtain the following lower bound for length n binary MLE codes.

Corollary 17 There are at least

22
n+1

2 −log2(n+1) · 32
n−3

4 · 22
n+5

4 −log2(n+1)

n + 1

different MLE binary codes of length n, where n = 2r − 1.

So far there have been many designs for different non-linear perfect binary codes with
which and Theorem 14 we can construct the corresponding MLE binary codes.

4 Hiding redundancy — the performance of stego-codes

Usually the performance of encoding method for steganography is valued by “ message rate”,
“change density” or “embedding efficiency”. For example, for the sequential LSB steganog-
raphy on images, we say that the message rate is 100% (the LSB of every pixel carries one
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bit message), the change density is 50% (on average 50% pixels need to be changed), and
so the embedding efficiency is 2 (on average embed 2 bits per change). However these three
measures can only reflect one aspect of this problem, respectively. In fact, the user hopes
to get the maximum message rate within a proper constraint of “change density”, which is
just the so called hiding capacity. Therefore the difference between the hiding capacity and
message rate, which we call as “hiding redundancy” in this paper, can reflects the capabil-
ity of a stego-code soundly. To introduce the concept of hiding redundancy, the following
preparations are needed.

We use the following notations. Random variables are denoted by capital letters (e.g. X ),
and their realizations by respective lower case letters (e.g. x). The domains over that random
variables are defined are denoted by script letters (e.g. X ). Sequences of N random vari-
ables are denoted with a superscript (e.g. X N = (X1, X2, . . . , X N ) which takes its values on
the product set X N ). And we denote entropy and conditional entropy with H(·) and H(·|·)
respectively.

Assume that the cover-objects X̃ N are independent and identically distributed (i.i.d) sam-
ples from P (̃x). Since the embedded message M usually is cipher text, we assume that it is
uniformly distributed, and independent of X̃ N . And M is hidden in X̃ N , in the control of a
secret stego-key K , producing the stego-object X N .

A formal definition of steganographic system (abbreviated stegosystem) is present in [10].
First of all, the embedding algorithm of a stegosystem should keep transparency that can be
guaranteed by some distortion constraint. A distortion function is a nonnegative function
d : X × X → R+ ∪ {0}, which can be extended to one on N -tuples by d(x N , yN ) =
1
N

∑N
i=1 d(xi , yi ). A length-N stegosystem1 subject to distortion D is a triple (M, fN , φN ),

where M is the message set, fN : X N ×M×K → X N is the embedding algorithm subject
to the distortion constraint D, and φN : X N × K → M is the extracting algorithm.

A cover channel is a conditional p.m. f. (probability mass function) q(x |̃x) : X → X . De-
note the set of cover channels subject to distortion D by Q. Furthermore, define the message
rate as Rm = H(M)

N and the probability of error as PeN = P(φN (X N , K ) �= M).
The hiding capacity is the supremum of all achievable message rates of stegosystems sub-

ject to distortion D under the condition of zero probability of error (i.e. Pe,N →0 as N →∞).
When disregarding the active attacker, the results of [10,11] imply that the expression of hid-
ing capacity for stegosystem can be given by

C(D) = max
q(x |x̃)∈Q

H(X |X̃). (10)

Since C(D) is the maximum of the conditional entropy through all cover channels subject to
D, C(D) just reflects the hiding ability of the cover-object within the distortion constraint.
So we refer to C(D) − Rm as the hiding redundancy of cover-objects, which can reflect
the hiding capability of a stegosystem. We have assumed that the embedded message is
uniformly distributed, and independent of X̃ N , which means that there are uniformly dis-
tributed values at the positions to be changed. Then an (n, k, t) stego-coding function and
a corresponding encoding algorithm can compose a stegosystem with message rate being
k
n . And when using Hamming distance as distortion function, the average distortion is just
the change density. However note that t

n is the maximum distortion. And the computation
of average distortion relies on the encoding algorithm. For the linear (n, k, t) steg-code over
G F(2) , as mentioned in Sect. 2, its encoding algorithm can be formulated as a table consist-
ing of 2kn-dimension vectors. Let ai , where 0 ≤ i ≤ t , be the number of vectors of weight

1 In [10] the terms of information hiding code is used here. To distinguish the problem of this paper and that
of [10], we replace it by stegosystem.
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Fig. 1 Comparison between the hiding redundancy of simple LSB steganography and F5

i in the table. Then the average distortion (change density) of this code is 1
2k

∑t
i=1 ai

i
n .

For instance, the average distortion of (2k − 1, k, 1) stego-code in F5 (Example 1) equals
1
2k

[
1 · 0

2k−1
+ (2k − 1) · 1

2k−1

]
= 1

2k .

It is hard to compute the hiding capacity for general cover-objects. Now consider
Bernoulli( 1

2 )-Hamming case: The set of symbols of cover-objects is X = {0, 1}, and the
sequence of cover-objects X̃ N satisfies distribution of Bernoulli( 1

2 ); The distortion function
is Hamming distance, i.e. d(x, y) = x ⊕ y. The hiding capacity for this case has been given
in [11].

Lemma 18 For Bernoulli( 1
2 )-Hamming case with distortion constraint D, the hiding capac-

ity is

C(D) =
{

H(D) if 0 ≤ D ≤ 1
2

1 if D > 1
2

,

where H(D) = −D log2 D − (1 − D) log2(1 − D).

LSBs of images satisfies distribution of Bernoulli( 1
2 ) approximatively. So we take LSB

steganography as a criterion, i.e. apply stego-codes to LSB steganography, to compare the
performance of different stego-codes.

Example 3 (Hiding Redundancy of Stego-codes) For the simple LSB steganography, the
message rate is 2D when distortion is D and 0 ≤ D ≤ 1

2 , therefore the hiding redundancy
is H(D) − 2D. On the other hand, for the (2k − 1, k, 1) stego-code in F5, the message rate
is k

2k−1
, distortion is 1

2k , and then the hiding redundancy is H( 1
2k ) − k

2k−1
. Fig. 1 shows that

F5 is better than simple LSB steganography, because the hiding redundancy of F5 is smaller.

Furthermore, by Lemma 18, we can get another bound on the length of binary stego-codes.

Theorem 19 The (n, k, t) steg-code over G F(2) such that t
n ≤ 1

2 must satisfy

k

n
≤ H

(
t

n

)
.
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Proof For any given (n, k, t) steg-code over G F(2), assume its average distortion (change
density) is D. By the definition of capacity, the message rate k

n is smaller than the hiding
capacity C(D). And when t

n ≤ 1
2 , we have H(D) ≤ H( t

n ) because D ≤ t
n (Note that t

n
is the maximum distortion). Apply this code to the cover-object satisfying distribution of
Bernoulli( 1

2 ) and Lemma 18 implies that k
n ≤ C(D) = H(D) ≤ H

( t
n

)
. �	

Specially for linear binary stego-codes, combining Theorems 5 and 19, we can get the
following interesting result directly.

Corollary 20 If the tth (1 ≤ t ≤ k) dimension of vector space G Fk(2) over G F(2) is n
and t

n ≤ 1
2 , then

k

n
≤ H

(
t

n

)
.

5 Conclusions

In this paper, we formally define the stego-code that is a new coding problem, and studied
the construction and properties of this kind of codes. However there are still many interesting
problems about this topic, such as the estimation of t th dimension and the construction of
minimum set of t th generators of G Fk(q), other bounds on the length of stego-codes, the
construction of fast encoding algorithms, the construction of codes that can approach the
hiding capacity, and the further relations between stego-codes and error-correcting codes.
Further researches also include the applications of stego-codes in other possible fields.
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