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Abstract. For good security and large payload in steganography, it is
desired to embed as many messages as possible per change of the cover-
object, i.e., to have high embedding efficiency. Steganographic codes
derived from covering codes can improve embedding efficiency. In this
paper, we propose a new method to construct stego-codes, showing that
not just one but a family of stego-codes can be generated from one cov-
ering code by combining Hamming codes and wet paper codes. This
method can enormously expand the set of embedding schemes as ap-
plied in steganography. Performances of stego-code families of structured
codes and random codes are analyzed. By using the stego-code families
of LDGM codes, we obtain a family of near optimal embedding schemes
for binary steganography and ±1 steganography, respectively, which can
approach the upper bound of embedding efficiency for various chosen
embedding rate.

Keywords: steganography, stego-codes, covering codes, wet paper codes,
Hamming codes, embedding efficiency, embedding rate.

1 Introduction

Steganography, the art of conveying information confidentially, is realized by
embedding secret messages into innocuous cover-objects such as digital images,
audios and videos. The very existence of the communication itself is hidden
since the stego-object appears the same as the cover. However, as the cover-
object is inevitably changed, the covert communication can still be detected
by some statistical means. Given a payload, the steganographer should em-
bed as many messages as possible per change of the cover-object, in other
words, seek high embedding efficiency so that possibility of being detected is
reduced. Crandall first pointed out that embedding efficiency could be improved
by coding methods, and proposed the matrix coding [1]. The relation between
steganographic codes (stego-codes for short) and covering codes was studied
in [2,3]. It turned out that the stego-code could be defined by the covering
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code [3]. For instance, using an [N , N − n] code with the covering radius
R, one gets an (R, N , n) stego-code which can embed n bits of messages
into a length-N binary cover block by changing at most R bits. Many bi-
nary stego-codes have been constructed using structured codes [3,4,5,6] or
random codes [7,8].

Binary stego-codes can be used in binary steganography such as binary value
image steganography and least significant bit (LSB) steganography. In LSB em-
bedding, the stego-coding methods may be used in the LSB plane of an image,
and adding 1 to a pixel is equivalent to subtracting 1 from the pixel for carrying
one secret bit. In fact, the choice of addition or subtraction can also be used to
carry information. Therefore each pixel can carry log2 3 bits of data, that is, a
ternary digit, with the pixel gray value modulo 3, which is called “±1 steganog-
raphy” and provides higher embedding efficiency than binary steganography.
The ±1 steganography essentially involves a ternary coding problem which can
be treated by ternary covering codes. Willems et al. [9] proposed ternary Ham-
ming and Golay codes to improve embedding efficiency of ±1 steganography. A
more efficient method appeared independently in [10] and [11], which introduce
a family of stego-codes including the ternary Hamming as a subset. In a re-
visit of the LSB matching method, Mielikainen [12] proposed to choose addition
and subtraction depending both on the original gray values and on a pair of
consecutive secret bits. Generalization of the revisited LSB matching method is
reported in [13].

The upper bounds of the embedding efficiency, with respect to the embed-
ding rate, for binary and ±1 steganography have been obtained in [7] and [9],
respectively. A main purpose of stego-coding is to design stego-codes in order
to approach these upper bounds. Zhang et al. [14] recently presented a dou-
ble layered embedding method which can employ any binary stego-codes to ±1
steganography to embed one more bit per change. Moreover it has been shown
that, if a binary stego-code can reach the upper bound of embedding efficiency
for binary steganography, the corresponding double layered embedding based
on this binary stego-code can reach the upper bound of ±1 steganography [14].
Therefore, constructing good binary stego-codes can solve the problems for both
binary steganography and ±1 steganography.

In this paper we propose a novel method to design stego-codes by exploiting
Hamming codes and wet paper codes [15], which can introduce a family of stego-
codes from any given binary stego-code. We call it a stego-code (SC) family of
the given stego-code. With the proposed method, we can construct stego-codes
approaching the upper bound of embedding efficiency for binary steganography
and ±1 steganography at various embedding rates.

The organization of the paper is as follows. Section 2 introduces some no-
tational conventions. Section 3 describes the construction and performance of
stego-code families. In Section 4, the stego-code families are modified for appli-
cations in ±1 steganography. The paper is concluded following a discussion in
Section 5.
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2 Notation

We take images as covers to describe the proposed method. To embed data,
the cover image is divided into disjoint segments of N pixels, denoted by g =
(g1, . . . , gN), and let x = (x1, . . . , xN ) be their LSBs which is used as carriers.
Because the message is usually encrypted before embedding, it can be consid-
ered a binary random sequence, and the message block m = (m1, . . . , mn) ∈ F

n
2 .

A stego-code SC(R, N, n) can embed n bits of messages into N pixels with at
most R modifications. The equivalence between stego-codes and covering codes
is shown in [3]. Let C be an [N, N − n] binary code with a covering radius R,
then we can construct a stego-code SC(R, N, n) by syndrome coding of C [5,7].
An example of stego-code based on the Hamming codes will be given in Subsec-
tion 3.1.

Note that the covering radius R is the largest number of possible changes while
the purpose of stego-coding is to minimize the average number of embedding
changes Ra [5,7]. Therefore in the following we will replace R with Ra to denote
the stego-code, i.e., when we use the notation SC(Ra, N, n), the first parameter
means the average number of changes which is equal to the average distance to
the code C [7]. For perfect codes such as Hamming and Golay codes, the average
number of changes can be calculated by Ra = 1

2n

∑R
i=0 i

(
N
i

)
.

For a stego-code SC(Ra, N, n), we define the embedding rate α = n/N ,
which is the number of bits carried by each pixel; define the average distor-
tion D = Ra/N , which is the average changing rate of the cover image; and
define the embedding efficiency e = n/Ra = α/D, which is the average number
of embedded bits per change. We use embedding rate α and embedding efficiency
e to evaluate the performance of stego-codes.

3 Stego-Code Families

3.1 Basic Hamming Wet Paper Channel

The covering radius of [2k − 1, 2k − k − 1] Hamming codes is one for all integers
k ≥ 1, which can be used to construct a stego-code and embed k bits of messages
into 2k − 1 pixels by changing at most one of them. Taking [7, 4] Hamming code
as an example, we explain how to embed and extract 3 bits of messages into 7
pixels. Let H be the parity check matrix of the [7, 4] Hamming code

H =

⎛

⎝
0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

⎞

⎠ . (1)

Here we make the columns in the natural order of increasing binary numbers.
Given a length-7 block of cover x and a 3 bits message block m, for instance
x = (1 0 0 1 0 0 0) and m = (1 1 0), compute

H · xT =

⎛

⎝
1
0
1

⎞

⎠ ,

⎛

⎝
1
0
1

⎞

⎠ ⊕

⎛

⎝
1
1
0

⎞

⎠ =

⎛

⎝
0
1
1

⎞

⎠ . (2)
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Note that the obtained result (0 1 1) is the binary representation of three, that
is, the third column of H. By changing the third bit of x and to get x′ =
(1 0 1 1 0 0 0), the embedding process is completed. To extract the messages, we
only need to compute

H · x′T =

⎛

⎝
1
1
0

⎞

⎠ = mT . (3)

In the above embedding process, no change is needed if H · xT = mT . This
occurs with probability 1/23 because the message is a random sequence of cipher
text; otherwise we make H · xT = mT by changing only one bit of x, with
probability 7/23. Therefore the average number of changes made is 7/23, meaning
that we have constructed a stego-code SC(7/23, 7, 3). In general, with the same
method we can get stego-code SC

(
(2k − 1)/2k, 2k − 1, k

)
using [2k−1, 2k−k−1]

Hamming code for any integer k ≥ 1. When k = 1 the Hamming stego-code
SC(1/2, 1, 1) is just the simple LSB steganography which can embed one bit of
message into each pixel and modifies its LSB with probability 1/2.

We now improve the embedding efficiency of Hamming stego-codes by split-
ting the LSB embedding channel into two different channels. Without loss of
generality, assume that the length of the cover is L2k, and divide it into L
disjoint blocks. The corresponding LSB blocks are denoted by

(x1, · · · , x2k) , . . . ,
(
x(L−1)2k+1, · · · , xL2k

)
. (4)

First, compress each block into one bit with an exclusive-or operation:

yi =
2k

⊕
j=1

xi2k+j , i = 0, 1, · · · , L − 1 . (5)

We take (y0, · · · , yL−1) as the first embedding channel, and apply the simple
LSB steganography, i.e., SC(1/2, 1, 1), to it. Therefore each yi can carry one bit
of message and needs to be changed with probability 1/2.

Second, take the first 2k − 1 elements from every cover block, and write

x1 = (x1, · · · , x2k−1) , . . . , xL =
(
x(L−1)2k+1, · · · , xL2k−1

)
. (6)

Let H be the parity check matrix of the [2k − 1, 2k − k − 1] Hamming code
having a form like (1). In the embedding process of the first channel, if some
yi, for example y1, needs to be modified, we can flip any one of the 2k bits in
the first block to change y1, and therefore we can map the first block into any
k bits that we need by HxT

1 . In fact, if HxT
1 is just the k bits we want, we can

flip x2k to change y1, otherwise we make HxT
1 equal to any other vector of k

bits by changing one of the first 2k − 1 bits in this block. With this in mind, we
construct the second embedding channel as follows:

HxT
1 , HxT

2 , · · · , HxT
L . (7)

This channel consists of Lk bits. Because in the embedding process of the first
channel there are on average L/2 yi’s to be changed, with these changes the
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corresponding Lk/2 bits in the second embedding channel (7) can be modified
freely as analyzed in the above. Forbidding any change to the rest Lk/2 bits, we
get a typical wet paper channel with Lk/2 dry positions and Lk/2 wet positions
[15]. With the binary wet paper coding method in [15] we can embed about
Lk/2 bits of messages on average, and the receiver can extract these messages
without any knowledge about the dry positions. For this reason, we call the
second embedding channel as the basic Hamming wet paper channel. A detailed
method of binary wet paper coding can be found in [15].

In fact, we embed messages using the above channels in two steps. In the first
step, we embed L bits into the channel (5), and label the indices of yi’s which
need to be changed, but no change is actually made in this step. In the second
step, construct Hamming wet paper channel (7) and embed messages with an
embedding rate 1/2 using wet paper coding. In the process of wet paper coding,
one bit is flipped in every block with the labelled index i, 1 ≤ i ≤ L, which also
completes the changes needed by the first step. Combining the two steps, we on
average embed 1 + k/2 bits of messages into a length-2k block of covers by 1/2
changes, meaning that we obtain the stego-code SC(1/2, 2k, 1 + k/2), k ≥ 1.

3.2 General Framework

To generalize the method described in Subsection 3.1 to any stego-code SC
(Ra, N, n), we divide the cover image into disjoint blocks of N2k pixels and,
without loss of generality, assume the cover image consists of LN2k pixels. Write
the LSBs of each block as a matrix as follows:

x1,1, · · · , x1,N

x2,1, · · · , x2,N

· · ·
x2k,1, · · · , x2k,N

. (8)

In the first step, compress each column into one bit as

yi =
2k

⊕
j=1

xj,i i = 1, 2, · · · , N . (9)

Applying SC(Ra, N, n) to (y1, · · · , yN ), we can embed n bits of messages with
Ra changes on average. In the second step, let

x1 =
(
x1,1, · · · , x2k−1,1

)
, · · · , xN =

(
x1,N , · · · , x2k−1,N

)
. (10)

Construct a Hamming wet paper channel using the same method as in Subsection
3.1

HxT
1 , HxT

2 , · · · , HxT
N . (11)

The length of this embedding channel is Nk, including Rak dry positions and
(N − Ra)k wet positions on average. Because there are L blocks in total, each
of which can introduce such a Hamming wet paper channel. We can cascade
them to employ wet paper coding, and finally embed on average n+ Rak bits of
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messages into every length-N2k block with Ra changes. Thus we get a stego-code
SC(Ra, N2k, n + Rak), k ≥ 0. In the second step we use only the Ra columns
corresponding to the modified positions in the first step to carry extra messages
with no additional modification. If any other column is also used to carry k bits
of messages, two additional changes are needed with probability (2k − 1)/2k,
which will lead to low embedding efficiency.

The above construction implies that, for any stego-code SC(Ra, N, n), there
are a family of stego-codes SC(Ra, N2k, n + Rak), k ≥ 0, associated with it. We
denote SC(Ra, N2k, n + Rak) with S(k), k ≥ 0, and S(0) is just SC(Ra, N, n).

Definition 1. Call S(k), k ≥ 0, the stego-code family (SCF) associated with SC
(Ra, N, n). Because stego-codes and covering codes are equivalent, if SC(Ra, N,
n) can be obtained from the covering code C, we also call S(k), k ≥ 0, as the
SCF of C.

For a stego-code SC(Ra, N, n), its embedding rate α = n/N , embedding ef-
ficiency e = n/Ra and average distortion D = Ra/N . Then the SCF of SC
(Ra, N, n), S(k), k ≥ 0, has embedding rate α(k), embedding efficiency e(k) and
average distortion D(k) as follows:

α(k) =
n + Rak

N2k
=

α + Dk

2k
, e(k) =

n + Rak

Ra
= e + k, D(k) =

Ra

N2k
=

D

2k
(12)

For example, the [23, 12] Golay code, whose covering radius is 3, has the average
number of embedding changes

Ra =

(23
1

)

211 +

(23
2

)

211 × 2 +

(23
3

)

211 × 3 = 2.853 (13)

Golay code implies the stego-code SC(2.853, 23, 11), and therefore the stego-code
family SC(2.853, 23×2k, 11+2.85k), k ≥ 0. As shown in Fig.1, the SCF of binary
Golay provides a family of stego-coding schemes with embedding efficiency better
than the binary Hamming.

The stego-code family SC(1/2, 2k, 1 + k/2), k ≥ 0, obtained in Subsection 3.1
is the SCF of SC(1/2, 1, 1), i.e., Hamming code with k = 1. Furthermore, every
stego-code in [3-6] leads to a family of stego-codes which enormously enlarges
the set of coding methods for applications in steganography. However, we found
that almost all stego-codes in [3,4,5,6] are below the embedding efficiency curve
of SCF of binary Hamming (k = 1), except for a few with large embedding rate
such as the [35, 11] non-primitive BCH code proposed in the literature [5]. In
Fig.1, it is shown that we can get points exceeding the curve of SCF of binary
Hamming (k = 1) with the SCF of [35, 11] BCH code. Note that the codes used
in [3,4,5,6] are structured codes, and we can employ random codes to construct
stego-code families even closer to the upper bound of embedding efficiency.
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Fig. 1. Performance of stego-code families. The abscissa represents 1/α where α is
embedding rate.

3.3 SCFs of Random Codes

Binary steganography has the following upper bound [7] of embedding efficiency
e with respect to a given embedding rate α.

e(α) ≤ α

H−1(α)
, 0 ≤ α ≤ 1 , (14)

where H(y) = −y log2 y − (1− y) log2(1 − y) is the binary-entropy function, and
H−1 is the inverse function of H .

It has been shown [2,7] that binary random linear codes can achieve the
bound (14) asymptotically with the code length N → ∞. The drawback of
random codes is high computational complexity for encoding. However, Fridrich
et al. presented an embedding scheme with random linear codes in [7] and they
also proposed a more efficient method using LDGM codes in [8] recently, which
can achieve embedding efficiency very close to the bound (14) with reasonable
complexity when the embedding rate α is relatively large.

For instance, by taking LDGM code with length N = 10000, Fridrich et al.
reported four stego-codes in [8] with embedding rate and embedding efficiency
(α, e) as follows:

(0.63, 3.808), (0.50, 4.360), (0.35, 5.010), (0.25, 5.495) . (15)

The four stego-codes are labelled as LDGM in Fig.1, indicating that when the
embedding rate is larger than or equal to 0.5, embedding efficiency of LDGM
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can almost achieve the upper bound. Therefore we use the first two codes in (15)
to generate two SCFs. Calculating average distortions by D = α/e and applying
(12), we can obtain the following performance of the two SCFs:

α1(k) =
0.63 + 0.165k

2k
, e1(k) = 3.808 + k, k ≥ 0 ; (16)

α2(k) =
0.50 + 0.115k

2k
, e2(k) = 4.360 + k, k ≥ 0 . (17)

These two SCFs are labelled “SCF of LDGM1” and “SCF of LDGM2” in Fig.1,
respectively. It is observed that the SCFs of LDGM codes are closer to the upper
bound than SCFs of structured codes.

We find that SCFs is still close to the upper bound (14) even when the embed-
ding rate drops, i.e., the k value increases. As an example, the distance between
“SCF of LDGM2” (17), for 0 ≤ k ≤ 10, and the upper bound (14) is listed in
Table 1. All new generated codes, i.e., codes for 1 ≤ k ≤ 10, keep small distances
from the upper bound, i.e., less than 0.25, only with slight fluctuation. This im-
plies that SCF can provide embedding efficiency close to the upper bound for
even very small embedding rate α. One merit of random codes in [7,8] is that
they can provide a continuous family of stego-codes dependent on the embed-
ding rate α. Thus, if we generate stego-codes using random codes for all large
embedding rates, e.g., α ≥ 0.5, and collect all their SCFs, then we can get a
family of near optimal stego-codes for arbitrarily chosen embedding rates, be it
large or small.

Table 1. Distance between “SCF of LDGM2” (17) and the upper bound (14)

k 0 1 2 3 4 5 6 7 8 9 10
α2(k)% 50.00 30.75 18.25 10.56 6.00 3.36 1.86 1.02 0.55 0.33 0.16
Distance 0.184 0.226 0.240 0.244 0.243 0.241 0.239 0.236 0.234 0.231 0.230

3.4 Computational Complexity

The proposed method increases embedding efficiency by combining previous
stego-codes with wet paper codes, which costs more computational complexity,
and the additional computational complexity comes from the wet paper coding.

For the SCF of SC(Ra, N, n), computational complexity is determined by the
complexity of implementing SC(Ra, N, n) and coding on the Hamming wet paper
channel. Usually implementation of stego-codes based on constructed covering
codes is very simple. For random codes, a fast algorithm is proposed in [8]. To
construct the Hamming wet paper channel, we only need an XOR of some binary
vectors of length k to get the changing position, as shown in the example on [7, 4]
Hamming code in Subsection 3.1, which has negligible complexity.

A fast algorithm on binary wet paper coding has been presented in [15]. For
length-M wet paper channel with m dry positions, we can embed messages with
embedding rate m/M and computational complexity O(M ln(m/δ)) where δ is
a constant [15]. For Hamming wet paper channel, computational complexity is
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mainly influenced by the length of the channel. As shown in Subsection 3.2, if the
cover image consists of LN2k pixels, we can get a Hamming wet paper channel
of length LNk. When using wet paper codes, we can divide this channel into
disjoint segments with appropriate length M such as M = 105.

4 Modified SCFs for ±1 Steganography

Coding for ±1 steganography can be viewed as a problem of ternary codes.
Ternary Hamming and Golay codes were proposed by Willems, who also obtained
the upper bound at the embedding rate α of ±1 steganography subject to the
constraint of an average distortion D [9]:

C(D) =

{
G(D) D ≤ 2

3

log2 3 D > 2
3

, (18)

where G(D) = H(D)+D. To evaluate embedding efficiency, we rewrite Equation
(18) as an upper bound of the embedding efficiency e depending on a given
embedding rate α:

e(α) ≤ α

G−1(α)
, 0 ≤ α ≤ log2 3 , (19)

where G−1 is the inverse function of G.
To employing SCFs of binary codes to approach the bound (19), we only need

to slightly modify the construction of Hamming wet paper channel in Subsection
3.2. Assume that the cover is a gray scale image. Denote the gray value of a
pixel by gi, 0 ≤ gi ≤ 255, whose LSB is represented with xi. For a stego-
code SC(Ra, N, n), we still suppose that the image consists of L disjoint pixel
blocks of length N2k. Each block is arranged as a matrix with the form like (8).
For simplicity, we only use the first column to explain the modification to the
Hamming wet paper channel.

The first column of LSBs in (8) is (x1,1, · · · , x2k,1) and the corresponding
column of gray value is (g1,1, · · · , g2k,1). y1 = x1,1 ⊕ · · · ⊕ x2k,1 is the first bit of
the first embedding channel, and this column is mapped into k bits by

HxT
1 = H(x1,1, · · · , x2k−1,1)

T . (20)

Let
z1 =

(⌊g11

2

⌋
+ · · · +

⌊g2k,1

2

⌋)
mod 2 . (21)

If y1 needs to be flipped, we can change any one component in (x1,1, · · · , x2k,1).
Which one should be changed is determined by the k bits HxT

1 that we want.
For example, suppose that xi,1, 1 ≤ i ≤ 2k, should be changed. This can be
achieved by gi,1 + 1 or gi,1 − 1. The choice of adding or subtracting one can
be used to control the value of �gi,1/2	 mod 2, therefore control the value of z1.
This means that, when flipping y1, we get a free bit z1, or a dry position in terms
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Fig. 2. Performance comparisons among modified SCFs and methods in [9,10,11,12,13]

of wet paper codes, by the same change. In other words, when changing y1, we
can map (g1,1, · · · , g2k,1) to any k + 1 bits (HxT

1 , z1) by one change. Doing this
to every column of (8), the Hamming wet paper channel (11) can be modified
as follows:

HxT
1 , z1,HxT

2 , z2, . . . ,HxT
N , zN . (22)

This is an embedding channel of length N(k + 1) with Ra(k + 1) dry positions.
Therefore we can get stego-codes SC(Ra, N2k, n + Ra(k + 1)), k ≥ 0. We call
them the modified SCF of SC(Ra, N, n).

Note that the above embedding process may fail when the pixel value gi,1
is saturated, i.e., gi,1 = 0 or 255. In this case, change in only one direction is
allowed. When gi,1 = 0, gi,1 − 1 is not allowed. We can use gi,1 + 3 instead to
satisfy z1. Similarly, when gi,1 = 255 while gi,1 + 1 is required to satisfy z1, we
use gi,1 − 3 instead. This of course will introduce larger distortion. But if the
probability of gray value saturation is not too large, the effect on the overall
performance is negligible.

For a stego-code SC(Ra, N, n) with embedding rate α = n/N , embedding
efficiency e = n/Ra and average distortion D = Ra/N , the modified SCF has
the following performance:

α(k) =
α + D(k + 1)

2k
, e(k) = e + k + 1, D(k) =

D

2k
, k ≥ 0 . (23)
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Comparing (23) and (12), it can be concluded that both embedding rate and
embedding efficiency are improved with the modified SCF at the same average
distortion.

Performance comparisons have been made between the modified SCFs and the
previous methods. The EMD method in [10] and grid coloring method in [11] can
provide the same family of schemes, embedding log2(2d + 1) bits into d pixels
with 2d/(2d+1) changes on average, which includes the ternary Hamming stego-
codes. The method in [13] applied binary covering codes to ±1 steganography by
extending the length of codes and the method in [12] is a special case of the “bi-
nary Hamming +1” scheme in [13]. Fig.2 shows that the modified SCF of binary
Hamming (k = 1) significantly exceeds the methods in [9,10,11,12,13]. Moreover,
the modified SCFs of LDGM codes are very close to the upper bound (19). In other
words, they provide near optimal embedding schemes for ±1 steganography.

5 Conclusions

In this paper, we have proposed a new method to construct embedding schemes
for applications in steganography, which can generate a family of stego-codes
from one covering code. By combining this method with random codes such as
LDGM codes, we can get a family of near optimal stego-codes for arbitrarily
chosen embedding rates.

To resist detection, the sender can always reduce changes to the cover by em-
bedding fewer messages into an image, i.e., use low embedding rate. However,
recent advances in steganalysis have made LSB steganography with small em-
bedding rates detectable. For example, the method in [16] can detect simple LSB
steganography with embedding rate as low as 2%. Since embedding efficiency of
simple LSB steganography is 2, detecting 2% embedding rate means detecting
1% changes. SCF of LDGM codes can provide embedding efficiency better than
10 for the embedding rate of 2%, that is, changes are reduced to 0.2%. That is
why SCFs are used to resist steganalysis. Furthermore, it has been shown that ±1
steganography is more secure than LSB steganography because ±1 embedding
can avoid the statistical imbalance introduced by LSB replacement. As shown in
Section 4, larger embedding efficiency can be obtained with the modified SCFs,
so ±1 steganography plus the modified SCFs will provide even better security.

On the other hand, relations between stego-coding and error-correcting codes
have been studied in [6,17]. The duality between data embedding and source
coding is shown in [8,18]. For example, LDGM codes can be very close to the rate-
distortion bound of the source codes, which is just the reason that schemes based
on LDGM codes in [8] can almost achieve the bound of embedding efficiency. All
these results imply that the SCF is potentially applicable to both source coding
and channel coding. Our further study will include applications of SCFs to other
fields.
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