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Abstract 
 

A novel method of steganographic embedding is 
described based on vertex colorings in the grid graph, 
in which rainbow coloring is repeated in every block of 
cover signals to increase embedding efficiency. This is 
an improvement of the previous grid coloring method 
in steganography. It also outperforms LSB matching 
revisited method and direct sums of ternary Hamming 
codes. The proposed method can generate more 
embedding schemes which cover the range of change 
rates and information rates more densely. 
 
1. Introduction 
 

Steganography is a science of secret 
communication by data hiding. The message sender 
usually selects a digital multimedia file as a cover-
object, and embeds secret message in it. The 
embedding process is controlled by a key which is 
shared by the sender and the receiver who can retrieve 
the message. In data embedding, only slight distortion 
of the cover-object is allowed so that it is difficult for 
any third party to detect the existence of the hidden 
message. 

To resist detection, a steganographic scheme 
should seek high embedding efficiency. In other 
words, one needs to embed as many data as possible 
per change of the cover-object. It has been shown that 
embedding efficiency can be increased by covering 
codes with syndrome coding [1].  

We assume the cover-object is a sequence of 
grayscale signals x1, …, xN, and xi∈{0,1,2,…,2B–1}, 
where typically B = 8, 12, or 16. For example, B = 8 
for grayscale images. If information is only carried by 
the least significant bits (LSBs) of xi’s, one can use 
binary covering codes. If the largest magnitude of 
changes is limited to 1, by xi+c, c∈{0,1, –1}, xi mod 3 
can represent any ternary digit. In this case, one signal 

of the cover-object can carry log23 bits of information, 
which is called “±1 steganography”.  

It has been proven that the smallest embedding 
impact can be achieved by “±1 steganography” which 
essentially involves a ternary coding problem. Willems 
et al. [2] proposed ternary Hamming codes to increase 
embedding efficiency of ±1 steganography. A more 
efficient method appeared independently in [3] and [4], 
which can be viewed as an application of vertex 
colorings in the grid graph. 

In this paper, we propose a new method for “±1 
steganography” based on repeating rainbow colorings, 
which can generate more embedding schemes with 
better performance than previous methods. 
 
2. Embedding based on ternary Hamming 
codes 
 

We take 8 bits grayscale images as an example to 
describe the embedding methods. To use [(3r–1)/2, (3r–
1)/2 – r], r ≥ 1, ternary Hamming code, we first divide 
the cover-object x1, …, xN into disjoint segments of n 
pixels, where n=(3r–1)/2. By syndrome coding, the 
sender can communicate r ternary digits in n=(3r–1)/2 
pixels with Ra =(3r–1)/3r modifications on average [2]. 
We say that this embedding scheme has change rate 
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The pair (ρ, α) is called CI rate1 in [4]. Embedding 
efficiency is equal to α/ρ. The purpose of 
steganographer is to seek high information rate and 

                                                        
1 Here we define the change rate with average number of 
modifications, while it is defined by the largest number of 
possible modifications in [4]. 
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low change rate. Ternary Hamming codes can provide 
a family of embedding schemes with CI rates  

( ) 22 log 32( ), ( ) ,
3 3 1r r

r
r rρ α  =  − 

,    r ≥ 1.            (3) 

For steganographic applications, we need 
embedding methods with various kinds of CI rates, 
which can be obtained by direct sum of Hamming 
codes. For instance, from two Hamming codes with CI 
rates (ρ(r1), α(r1)) and (ρ(r2), α(r2)), we can get new 
embedding schemes with CI rates 

( ) ( )1 1 2 2( ), ( ) (1 ) ( ), ( )u r r u r rρ α ρ α+ − , 0≤u≤ 1.   (4) 
 

3. Grid coloring method 
 

Fridrich et al. proposed a more efficient method for 
±1 steganography based on rainbow colorings as 
follows [4]. Let Z and Zn denote integer and integer 

modulo n，respectively. Let d be a positive integer 
and (e1, …, ed) be the standard basis of Zd, that is, 

( )i je equals 1 if i = j, otherwise it is 0. The d-
dimensional grid graph Gd is defined by the vertex set 
V(Gd) = Zd and the edge set E(Gd) as follows. {u, 

v}∈E(Gd) if and only if u−v equals ei or −ei for some 
i∈{ 1, …, d }. 

Define coloring c of Gd by 
2 1: d

dc +→  

1 2
1

( , , , ) mod(2 1)
d

d i
i

c x x x ix d
=

≡ +∑                (5) 

Gd is 2d-regular and c is rainbow (2d+1)-coloring 
of Gd, which means every vertex v of Gd has 2d 
neighborhoods and all these 2d+1 vertexes can be 
assigned different colors by c. 

We can embed a (2d+1)-ary digit m into d pixels 
(x1, …, xd) by using coloring c(x1, …, xd) to represent 
message m. No modification is needed if m is equal to 
the color. When m≠c(x1, …, xd), calculate h≡m-c(x1, 
…, xd) mod (2d+1). If h is no more than d, increase the 
value of xh by one, otherwise, decrease the value of 
x2d+1-h by one. Therefore m is embedded into (x1, …, xd) 
by at most one change. The average number of changes 
Ra=2d/(2d+1) because m equals c(x1, …, xd) with 
probability 1/(2d+1). This embedding method has CI 
rates 

( ) 2log (2 1)2( ), ( ) ,
2 1

d
d d

d d
ρ α + =  + 

, d ≥ 1.           

(6) 
The above method is also reported in [3], while 

Fridrich et al. used Eq. (5) in a different way. They 

combined the rainbow coloring with q-ary Hamming 
codes in [4], which can embed rlog2q bits into 
(qr−1)d/(q−1) = (qr−1)/2 pixels by (qr−1)/qr changes on 
average, where q=2d+1 is a prime power, which leads 
to CI rates 

( ) 22 log2( ), ( ) ,
1r r

r q
r r

q q
ρ α  

=  − 
,  r ≥ 1.          (7) 

When q=3, Eq. (7) becomes the same as Eq. (3), 
therefore ternary Hamming embedding is a subset of 
the schemes in [4]. It is also proven that the 
information rate in (7) is greater than or equal to the 
information rate of the corresponding direct sum of 
ternary Hamming codes with the very same change 
rate. Note that, by letting d = (qr−1)/2 in Eq. (6) where 
q is a prime power, we get Eq. (7), meaning that the 
method in [4] can be obtained by directly applying 
rainbow colorings. 
 
4. Twice Grid colorings method 
 

In this section, we improve the grid coloring 
method by repeating rainbow colorings on a block of 
pixels. Divide the cover-object into disjoint segments 
of mn pixels, m ≥ 3, n ≥ 3, and arrange every segment 
as a matrix such as (xi,j), 1≤i≤m, 1≤j≤n. 

The embedding process consists of two steps. In 
the first step, apply rainbow coloring (5) to each row 
with d = n, 

,1 ,2 , ,
1

( , , , ) mod(2 1)
n

i i i n i j
j

c x x x jx n
=

≡ +∑ , 1 ≤ i ≤ m.  (8) 

Thus we embed log2(2n+1) bits of messages in every 
row by changing one pixel with probability 2n/(2n+1), 
therefore embeds a total of mlog2(2n+1) bits with 
2mn/(2n+1) modifications on average. After the first 
embedding step, we denote the modified cover-object 
as {yi,j}, 1≤i≤m, 1≤j≤n.          

In the second step, we embed log2(2m+1) bits into 
the first column (y1,1, …, ym,1) using rainbow coloring 

1,1 2,1 ,1 ,1
1

( , , , ) mod(2 1)
m

m i
i

c y y y ix m
=

≡ +∑ .       (9) 

In this embedding, at most one pixel in (y1,1, …, ym,1) 
needs to be modified with probability 2m/(2m+1), 
which will influence the result of row embeddings in 
the first step. Therefore we should adjust the values of 
pixels in the corresponding row. There are several 
possible cases as described in the following. 

We denote the final stego-object after two 
embedding steps by {zi,j}, 1≤i≤m, 1≤j≤n. Without loss 
of generality, assume that y1,1 should be changed in the 
second step. Because the possible cases are in pairs, we 
only describe one for each pair, and the other as 
indicated by the number in brackets can be solved 
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using a similar method with the same cost of 
modifications 

Case 1(2): When embedding messages in the first 
row, one pixel x1,k, 2<k≤n, is increased (decreased) by 
one, i.e. y1,k = x1,k+1, and in the second step, y1,1 should 
be increased (decreased) by one. Then let z1,1 = y1,1 +1 
= x1,1+1, z1,k = y1,k −1= x1,k and z1,k-1 = y1,k-1 +1= x1,k-1 +1. 
The final influence on the embedding result of the first 
row is 1−k+(k−1)=0. We introduce one change on x1,1 
and x1,k-1, respectively, but restore the change on x1,k. 
Therefore we can keep the result in the first row and 
satisfy the embedding in the second step with only one 
additional change. 

Case 3(4): One pixel x1,k, 2≤k<n, is increased 
(decreased) by one i.e. y1,k = x1,k+1, and y1,1 should be 
decreased (increased) by one. Let z1,1 = y1,1 −1 = 
x1,1−1, and let z1,k = y1,k −1= x1,k and z1,k+1 = y1,k+1 +1= 
x1,k+1 +1. One additional change is needed. 

Case 5(6): The pixel value x1,n, is increased 
(decreased) by one, i.e. y1,n = x1,n+1 and y1,1 should be 
decreased (increased) by one. Then let z1,1 = y1,1 −1 = 
x1,1−1, and z1,n = y1,n −2= x1,n−1. The final influence on 
the embedding in the first row is −1−2n≡ 0 mod 
(2n+1). The modification on x1,n is still one, therefore 
we only introduce one additional change to x1,1. 

Case 7(8): The pixel value x1,1 is increased 
(decreased) by one, i.e. y1,1 = x1,1+1 and y1,1 should be 
decreased (increased) by one. Let z1,1 = y1,1−1 = x1,1, 
z1,2 = y1,2 −1= x1,2−1, and z1,3 = y1,3 +1= x1,3+1. The final 
influence on the embedding in the first row is 
−1−2+3=0. We introduce one change to x1,1 and x1,3, 
respectively, but restore the change to x1,1, therefore 
the number of additional changes is one.  

Case 9(10): The pixel value x1,1 is increased 
(decreased) by one, i.e. y1,1 = x1,1+1 and y1,1 should be 
increased (decreased) by one. If only one additional 
modification is needed when making z2,1 = y2,1 +1 in 
the second row (similar to Case 1-8), we can let z1,1 = 
y1,1−1 = x1,1, z1,2 = y1,2 −1= x1,2−1, z1,3 = y1,3 +1= x1,3+1, 
and z2,1 = y2,1 +1. Thus the influence on the first row is 
−1−2+3=0, on the first column is −1+2=1, and two 
additional changes are introduced. Or if only one 
additional modification is needed when making z3,1 = 
y3,1 +1 in the third row, we let z1,1 = y1,1−2 = x1,1−1, z1,2 
= y1,2 +1= x1,2+1, and z3,1 = y3,1 +1, which also need two 
additional changes. If neither of the above two 
conditions is met, keep z1,1 = y1,1, and select k, 
2≤k≤m−1, such that when making zk,1 = yk,1 −1 and 
zk+1,1 = yk+1,1 +1, only one additional modification is 
needed in the kth row and (k+1)th row, respectively. 
Let zk,1 = yk,1 −1 and zk+1,1 = yk+1,1 +1, introducing two 

additional changes. Otherwise, let z1,1 = y1,1+1 = x1,1+2, 
z1,2 = y1,2 +1= x1,2+1, z1,3 = y1,3 −1= x1,3−1. 

Case 11(12): The pixel value x1,2 is increased 
(decreased) by one, i.e. y1,2 = x1,2+1, and y1,1 should be 
increased (decreased) by one. Let z1,1 = y1,1+1 = x1,1+1, 
z1,2 = y1,2 −2= x1,2−1, and z1,3 = y1,3 +1= x1,3+1. The final 
influence on the embedding in the first row is 
1−2×2+3=0. The modification on x1,2 is still one, and 
two additional changes are introduced. 

Case 13(14): No pixel is modified in the 
embedding of the first row, and y1,1 should be 
increased (decreased) by one. Keep z1,1 = y1,1, and 
select k, 2≤k≤m−1, such that only one additional 
modification is needed in the kth row and (k+1)th row, 
respectively when making zk,1 = yk,1 −1 and zk+1,1 = yk+1,1 

+1. Let zk,1 = yk,1 −1 and zk+1,1 = yk+1,1 +1, introducing 
two additional changes. If no such kind of k’s exists, 
let z1,1 = y1,1+1, z1,2 = y1,2 +1= x1,2+1, z1,3 = y1,3 −1= 
x1,3−1, introducing three changes. 

From the above analysis, it is obvious that at most 
one change is needed with probability (2n−2)/(2n+1) in 
step 2. Therefore in Case 9(10), probability of more 
than two modifications is less than 9/(2n+1)2. Note that 
Case 9 or 10 occurs with probability 1/(4n+2). 
Therefore the effect of a change of magnitude 2 in 
Case 9(10) can be neglected. In Case 13(14), the 
number of changes is less than 3 on average. For 
simplicity, we estimate the average number of changes 
in step 2 by 

2 4 4 4 2 2 3
2 1 2(2 1) 2(2 1) 2(2 1)

m n
m n n n

 − × ×+ + + + + + 
   

2 (2 5)
(2 1)(2 1)

m n
m n

+=
+ +

    .                                    (10) 

The average number of changes for the entire 
embedding process is 

2 2 (2 5)( , )
2 1 (2 1)(2 1)a

nm m nR m n
n m n

+= +
+ + +

 ,                (11) 

and the change rate 
( , ) 4 6 10( , )

(2 1)(2 1)
aR m n mn nm n
mn m n n

ρ + += =
+ +

  .        (12) 

The information rate 
2 2log (2 1) log (2 1)( , ) m n mm n

mn
α + + +=   .        (13) 

 
5. Performance comparisons 
 

For ±1 steganography, there is an upper bound on 
the information rate α subject to the constraint of an 
changing rate ρ such that α ≤ H(ρ) + ρ, 0 ≤ ρ ≤ 2/3 [2], 
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where H(ρ) = −ρlog2ρ−(1−ρ) log2 (1−ρ) is the binary-
entropy function. 

Performance comparisons have been made 
between direct sums of ternary Hamming codes, grid 
coloring method in [3, 4], LSB matching revisited 
method in [5], and the method proposed in this paper. 
LSB matching revisited [5] provides only one CI rate 
(0.375, 1). For small information rate, since ternary 
Hamming, grid coloring method and twice grid 
coloring method have equal performance, we only 
draw the cases of information rates larger than 0.5 in 
Fig.1. It is observed that the information rates of grid 
coloring schemes are never worse than that of direct 
sums of ternary Hamming codes. However grid 
coloring method generates only a few embedding 
schemes with large information rates. The proposed 
method outperforms grid coloring method and provides 
more selectable CI rates. 
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Fig.1 Performance comparison between the proposed method and previous approaches. 
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