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Abstract—We generalize the Zhang, Zhang, and Wang (ZZW) construc-
tion to produce larger code families for steganography from existing codes,
which can cover the range of relative payloads more densely. We also prove
that the expanded code family keeps the similar asymptotic property as the
code family produced by the ZZW construction, that is, the codes follow the
theoretic upper bound on embedding efficiency as relative payload tends to
zero.

Index Terms—Embedding efficiency, matrix coding, steganography, wet
paper codes (WPCs), Zhang, Zhang, and Wang (ZZW) construction.

I. INTRODUCTION

Steganography aims to embed secret messages into innocuous cover
objects, such as digital images, for covert communication. In the em-
bedding, only slight modifications on pixels are allowed to resist detec-
tion. For example, least significant bit (LSB) steganography, the most
popular steganopgraphic technique, uses only the least significant bits
of pixel values as carriers, in which the maximum amplitude of em-
bedding changes on one pixel is one. In this case, the average number
of bits carried by each pixel is called relative payload, and the average
number of bits embedded per change is called embedding efficiency,
which are used to measure the performance of an embedding scheme.

Given a relative payload, steganography desires to make the embed-
ding efficiency as high as possible, which can be formulated as a coding
problem [1], [2]. Many methods on binary embedding coding have
been constructed using structured covering codes [2]–[5] or random
codes [6], [7].

Recently, Zhang et al. [8] proposed a method to produce new fam-
ilies of codes with high embedding efficiency from existing codes,
which was referred to as the Zhang, Zhang, and Wang (ZZW) con-
struction by Fridrich [9]. In [9], Fridrich proves that the embedding ef-
ficiency of codes produced by the ZZW construction follows the upper
bound on embedding efficiency as relative payload decreases to zero.

The drawback of the ZZW construction is that the generated codes
can only provide sparse values of relative payloads, as shown in Fig. 1.
However, for steganographic applications, we usually need codes for
various payloads. In this paper, we generalize the ZZW construction
to produce larger code families from existing codes, which can cover
the range of relative payloads more densely. We also prove that the
new construction has the same property as the ZZW construction as
proved in [9], that is, the codes in a code family keep a steady distance
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Fig. 1. Performance of code families generated from code (���� �� �) by the
ZZW construction and by the GZZW construction, which are compared with
Hamming codes.

to the upper bound on embedding efficiency when the relative payload
decreases.

In the rest of this paper, we introduce some notations and the ZZW
construction in Section II. In Section III, we describe the generalized
ZZW (GZZW) construction and its performance. The asymptotic be-
havior of the proposed method is analyzed in Section IV. The paper is
concluded in Section V.

II. ZZW CONSTRUCTION

The ZZW construction is based on matrix coding [3] and wet paper
codes (WPCs) [10], [11]. Therefore, we first briefly introduce matrix
coding and WPCs.

A. Matrix Coding

We will use calligraphic font for codes, and boldface font for ma-
trices and vectors, and take images as covers to describe the proposed
method. To embed data, the cover image is divided into disjoint seg-
ments of � pixels. Let � � ���� � � � � ��� be the LSBs of pixels which
are used as carriers for binary embedding. Because the embedded mes-
sage is usually encrypted first, it can be considered as a binary random
sequence. The message block is denoted by� � ���� � � � ����. If a
code � of length � can embed � bits of messages into � pixels using
on average �� changes, we say that � is ���� ����.

The data embedding method derived from a linear code is called
matrix coding [1], [3]. Let � be a binary ��� ���� linear code having
the covering radius � and a parity check matrix �. With �, � bits
of messages� � �

�

� can be embedded into � bits of cover symbols
� � �

�

� by at most � changes. In fact, the key idea of matrix coding
is to represent the message � with syndrome ��� . If ��� � �

� ,
� is embedded into � without any change; otherwise we only need
modify at most � bits of � to make ��� � �

� hold, because the
covering radius of code � is �. For perfect codes such as Hamming
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and Golay codes, the average number of changes can be calculated by
�� � ������ �

���
���� �.

For example, the covering radius of ��� � �� �� � �� �� Hamming
code is one for any positive integer �. Therefore, by the parity check
matrix of the Hamming code, we can embed any � bits into ���� bits
with at most one change. The average number of changes is ���������

for Hamming codes, so we obtain a family of codes ��������������
�� ��, � � �.

In general, for a code ���� ����, we define the relative payload as
� � ���, the change rate as 	 � ����, and the embedding effi-
ciency as 
 � ���� � ��	. The largest relative payload that can be
embedded by using the change rate 	 is ���	� [1], so the embedding
efficiency is bounded from above by


�	� �
���	�

	
� � � 	 �

�

�
� (1)

When taking embedding efficiency 
 as a function of relative payload
�, this bound is stated [6]


��� �
�

���� ���
� � � � � � (2)

where ���� � � 	
�� ����� 	
������ is the binary entropy
function, and ���� ��� is the inverse function of ����.

B. WPCs

By WPCs, the sender can embed messages into the cover
� � ��� � � � � �� by an arbitrarily selected channel with � changeable
bits � , � � � � ��� �� � � � � ��, �� � � �, which is not shared with the
recipient. The secret message� � ���� � � � ���� can be embedded
into � by only modifying some bits in the selection channel � . In the
terms of WPCs, we say the bits in the selection channel are dry and
other bits are wet.

WPCs can be implemented by matrix coding based on random linear
codes [10], in which, to embed� into �, the sender changes some bits
in the selection channel and modifies the cover-object � to satisfy

��
� ��� (3)

where� is an�	� binary pseudorandom matrix shared by the sender
and the recipient. Therefore, the recipient can extract� from the mod-
ified � by only calculating��� without any knowledge about the se-
lection channel � .

It is pointed out [10] that we can communicate about � bits of mes-
sages by the above manner when the number of the changeable bits
� �� � �� is large enough. The encoding procedure can be executed
by Gaussian elimination [10]. However, due to the high computational
complexity of Gaussian elimination, the message has to be divided into
small segments and then be embedded into disjoint blocks of the cover.
By imposing the column weights of� to follow the distribution as in
Luby transform (LT) codes, Fridrich et al. [11] also proposed an effi-
cient method with low complexity. Therefore, by LT process, we can
communicate a long message by one time, which can greatly simplify
the implementation.

C. ZZW Construction

From any code ���� ���� (not necessarily linear), the following
ZZW construction generates a family of codes that are ���� ��

���
����, where � is an integer, � � �.

To apply the ZZW construction, we should divide the cover image
into disjoint blocks of ��� pixels. Without loss of generality, assume

the cover image consists of � such blocks. Write the LSBs of each
block as a matrix as

�	�� � � � � �	�
�	�� � � � � �	�

 
 


� 	�� � � � � � 	�


(4)

The block (4) is decomposed into two embedding channels in following
manner.

First, compress each column into one bit with exclusive-or operation

�� �
�

�
���

�	� � � �� �� � � � � �� (5)

Take ���� � � � � ��� as the first embedding channel, and apply a
���� ���� code to it. Thus we can embed � bits of messages with
�� changes on average.

Second, take the first ��� � elements from every column, and write

�� � ��	�� � � � � � ��	��� � � � ��� � ��	�� � � � � � ��	���

(6)

In the embedding process of the first channel, if some �� needs to
be modified, we can flip any one of the �� bits in the �th column
to change ��, and therefore, we can map the �th column into any �
bits of syndrome by ���� , where � is the parity check matrix of the
��� � �� �� � � � �� Hamming code. In fact, if���� is just the � bits
we need, we flip the ��th bit � 	�; otherwise we can freely change
��

�
� to one of other �� � � syndromes by changing one of the first

�� � � bits in this column. With this in mind, we construct the second
embedding channel as follows:

��
�
� ���

�
� � � � � ���

�
� � (7)

The channel (7) consists of �� bits. Because in the embedding of
the first step there are on average �� of ��’s to be changed, with these
changes, the corresponding ��� bits in the second embedding channel
(7) can be modified freely as the above analysis. Forbidding any change
to the rest of the ������� bits, we construct a typical wet paper cover
with ��� dry positions and ������� wet positions [10]. There are �
blocks in total, each of which can introduce such a wet paper cover. We
can cascade them to employ wet paper coding [10], [11], and embed
additional ��� bits on average in every block without extra changes.
The recipient can extract these embedded bits without any knowledge
about the dry positions.

Combining the above two steps, we embed on average���� bits
of messages into every length-��� block with �� changes. Thus, we
have a family of codes ���� ��

�� �����,� � �, which have relative
payload ����, change rate 	���, and embedding efficiency 
��� such
that

���� �
����

���
� 	��� �

��

���


��� �
����

��

� 
���  �� � � �� (8)

For instance, the simplest code is (������ �), which embeds one se-
cret bit into each pixel with on average ��� changes. With this trivial
code, ZZW construction generates a family of codes �������� �����
with relative payload ��  ������� and embedding efficiency �  �,
as shown in Fig. 1. This family outperforms almost all codes derived
from structured covering codes [2]–[5]. The families generated from
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low-density generator matrices (LDGM) codes [7] follow the bound
even closer.

On the other hand, Fig. 1 also shows that the code family produced
from code ����� �� �� by ZZW construction has only sparse values of
relative payloads. In Section III, we will generalize the ZZW construc-
tion to get a larger families of codes, which can cover the range of
relative payloads densely and keep high embedding efficiency.

III. GZZW CONSTRUCTION

A. GZZW Construction for Binary Embedding

To use Hamming matrix coding, the ZZW construction has to di-
vide the cover into blocks with �� rows. That is why relative payloads
yielded by the ZZW construction are sparse. Now we propose an im-
proved construction by allowing � rows in every block, where � is an
arbitrary positive integer.

Assume �� � � � ���� and write � � �� � �, where � � � and
� � � � �� . When � � �� , i.e., � � �, we use the ZZW construction.
For � � �, each cover block has the following form:

����� � � � � ����
� � �

�� ��� � � � � �� ��

�� ����� � � � � �� ����

� � �

�� ����� � � � � �� ����	

(9)

We will decompose the cover into three embedding channels, the first
two of which are from the ZZW construction.

First, adjust (9) to the block condition of ZZW construction. Let


��� � ���� � �� ����� � � �� �� � � � � �� � � �� �� � � � � 	

(10)

In the �th column of (9), clip the last � bits and replace ���� by 
���,
where � � � �  and � � � � �. Thus the block (9) is adjusted to


���� � � � � 
���
� � �


���� � � � � 
���
������� � � � � ������
� � �

�� ��� � � � � �� ��	

(11)

Based on a code ���� ���, ZZW construction can embed �����
bits of messages into (11) with on average �� changes. In the embed-
ding process, if some 
��� � ������� ���� need to be changed, we can
flip ���� or �� ����. Therefore, we have a change-free (dry) bit ����, that
is, if ���� equals the needed bit, �� ���� will be flipped; otherwise, ����
will be flipped. Now we can construct the third embedding channel by
taking first � bits from every column

����� � � � ����� � � � � ����� � � � � ����	 (12)

Note that, by the ZZW construction, on average�� columns in block
(11) are modified. In each of such columns, only one bit should be
changed, and the changed position in a column is uniformly distributed,
because the embedded messages are random. Therefore, the probability
is ���� for the case of the changed bit belonging to the first � bits
of the column, which implies that there are �����

� dry positions on
average in the third embedding channel (12). We can cascade the third
embedding channels constructed from every block and use WPCs to
embed on average �����

� bits more in every block. Thus we obtain a

family of codes ���� ��
������������������, � � �, � � � �

�� . Because � � �� � �, we can also write the family as

��� ������ �	
�� ���
�

����� ��
� � � � � �

(13)

which have relative payload ����, change rate ����, and embedding
efficiency ���� such that

���� �
���� �	
�� �� �

�

�
� �

�

���� �
��

�

���� �
�

��

� �	
�� �� �
�

����� ��
� �� � � �	 (14)

We call this method GZZW construction. When taking � � �� in the
GZZW construction, we just derive the ZZW construction. As shown
in Fig. 1, the GZZW family from code (������ �) expands the ZZW
family from the same code extensively, and the embedding efficiency
of the new codes are also close to the bound.

B. Practical Implementation Issues

The above GZZW construction decomposes the original cover into
three embedding channels. In the first one, we embed messages with a
code ���� ���. For the other two channels, we use wet paper coding,
which needs two pseudorandom matrices�� and��. The random ma-
trices can be generated with a stego-key shared by the sender and the
recipient. The width of the matrix equals the length of the embedding
channel, and the height of the matrix equals the length of the message
embedded in each channel. Therefore, the sender should also commu-
nicate the lengths of the messages embedded in the second and the third
steps. In addition, if we use the LT process for the wet paper coding,
the distribution of the column weights also depends on the length of
the embedded message. Fridrich et al. [11] proposed to communicate
the message lengths as follows. Assume the message lengths can be
encoded with � bits. The sender divides the cover � into two pseudo-
random disjoint subsets, such that �	 for the � bits and � � �	 for
the main message. In practice, taking 40 pixels for �	 is sufficient, be-
cause we can embed 40 bits into the LSBs of these pixels with code
������� ��.

When analyzing the embedding efficiency and relative payload for
the GZZW construction in Section III-A, we assume the wet paper
coding can always embed maximum message length, that is, the mes-
sage length � equals the number of the changeable bits �. However,
wet paper coding based on the LT process requires that � � �, which
means there is a capacity loss in the LT process [11]. This capacity
loss decreases as � increases. For example, the loss is about 10% for
� � ���� and about 5% for � � �����. Therefore, when the em-
bedded message (or the cover) is short, we cannot approach the optimal
performance as derived in Section III-A by using the LT process.

The alternate method for wet paper coding is Gaussian elimination
which has a negligible capacity loss for each embedding process [10].
However, because of the high computational complexity of Gaussian
elimination, we have to divide the cover and the message into small
blocks, for example, embedding less than 1000 bits into each block.
Therefore, we need to communicate the length of the message for every
block, which will also induce capacity loss and make the implementa-
tion complex.

We use the following embedding manner for wet paper coding in the
GZZW construction. When the number of changeable bits � � ����,
we use LT process; and when � � ����, we use the fast Gaussian
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Fig. 2. Experimental results on the GZZW construction (the parameter � �
��� ��� � � � � ��) for a short cover, which is compared with the combinations of
the ZZW construction.

elimination proposed in [10]. To show how the performance drops for
the case of short messages (or short covers), we embed messages into
a small image with only ��� pixels by the GZZW construction with the
parameter � � ��� ��� � � � � ��. In these cases, the number of change-
able bits in the second channel is lager than 1000 and small than 10 000,
and in the third channel we have only less than 1000 changeable bits.
Therefore, we use the LT process in the second step and Gaussian elim-
ination in the third step. The experimental results drawn in Fig. 2 show
that the embedding efficiency drops about 0.4 from the values derived
in Section III-A.

As mentioned in Section III-A, the GZZW construction generates
more codes with dense relative payload than the ZZW construction
does. Another solution to achieve arbitrary relative payload between
two existing codes is linear combination. For example, assume there
are two codes, �� and ��, with relative payload 0.8 and 0.4, respec-
tively, but we need relative payload 0.5. By using �� for 1/4 of the
cover and �� for the remaining 3/4 of the cover, relative payload 0.5
can be attained. To compare the GZZW construction and the combina-
tion of ZZW construction, we also embedded messages into the image
consisting of ��� pixels by the combination of two code in the ZZW
family, i.e., the codes with parameter � � �� and � � ��. As shown
in Fig. 2, the combination of ZZW construction yields a convex profile
of performance.

C. GZZW Construction for �� Embedding

In�� embedding, the allowable modification on a pixel value is ��
or ��. Therefore each pixel can carry 	
�� � bits of information by
choosing ��, �� or no change, that is, a ternary digit, with the pixel
value modulo 3, so�� embedding essentially involves a ternary coding
problem. If a �� embedding scheme has relative payload �, change
rate �, and embedding efficiency � � ���, then � has the upper bound
[12] such that

��� �
����

�
�

���� � �

�
�

����

�
� ��� � �

�

�
	 (15)

As a function of relative payload �, the embedding efficiency � is
bounded from above by

��� �
�

���
� ��

� � � � � 	
�� � (16)

Fig. 3. Performance of code families generated from code ������� �	 by ��
ZZW construction and by �� GZZW construction, which are compared with
ternary Hamming codes and the methods in [15] and [16].

where���
 is the ternary entropy function, and���
� �� is the inverse

function of ���
.
A �� embedding method based on binary codes was proposed in

[13] and [14], which embeds messages in the LSB layer and the second
LSB layer of pixels by using binary codes and WPCs, respectively. In
fact, if the LSB of a pixel value � needs to be changed, its LSB can be
flipped with ��� or ���. By the choice of��, we can control the value
of the second LSB of �, i.e., ����� �
� �. Therefore, if� bits should
be changed in the LSB embedding, we will have � change-free bits
in the second LSB layer by the choice of ��.1 With WPCs, additional
� bits can be embedded in the second LSB layer without introducing
new changes. That means that, applying the GZZW construction to the
double layered embedding, we can obtain �� embedding codes with
relative payload����� and embedding efficiency����� as follows:

����� �
��� �	
�� ���

�

�

��

����� �
�

�

� �	
�� �� �
�

����� ��
� ��� � �	 (17)

Using the same method as �� ZZW construction [8], the embed-
ding channel in the second LSB layer can be combined with the third
embedding channel of GZZW construction, which will simplify the im-
plementation. We refer above GZZW construction for �� embedding
as to “�� GZZW.”

In Fig. 3, we compare the performance of the code family con-
structed from code ������� � by �� GZZW construction and by
�� ZZW construction, and some previous methods in [12], [15], and
[16]. The exploring modification direction (EMD) method [15] or grid
coloring method [16] generates the same family of codes, embedding
	
������� bits into � pixels with �������� changes on average,
� � �, which includes the ternary Hamming codes [12]. The�� ZZW
family from code ������� � outperforms the methods in [15] and
[16], but provides fewer allowable values of relative payloads. By the
generalized construction, i.e., �� GZZW, the code family is expanded
at various relative payloads and keeps following the upper bound.

1Note that change in only one direction is allowed when the pixel value is
saturated, such as 0 or 255 for the 8-bit gray-scale images. In these cases, the
second LSB will always be labelled wet, which will decrease the payload. Nev-
ertheless, if these situations rarely occur, the effect on the overall performance
can be negligible.
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IV. ASYMPTOTIC PROPERTY OF THE GZZW CONSTRUCTION

The performance of the steganographic scheme in zero-payload limit
is important for analyzing the security of batch steganography [17].
Fridrich [9] proves that the difference between the embedding effi-
ciency of ZZW construction (8) and the upper bound (2) approaches
a finite limit as � � �.

Theorem 1 [9]: Under the notation established in Section II

���
���

����

���
� ������

� ����

�
�

�� 	
�

�

��


 ����
�

��

�
� ����	 �	��
 (18)

The code family obtained by the ZZW construction is a subset of
the code family by the GZZW construction. An important and inter-
esting question is whether the expanded code family keeps the same
asymptotic property. To make the asymptotic analysis simple, we use
the upper bound on embedding efficiency at corresponding change rate
(1), and derive the following result.

Theorem 2: Under the notation established in Sections II and III

��� ��
����

��������

����
����

� ����	 �	�� (19)

��� ���
����

��������

����
� ���

� ����	 �	�� 

�� 	� �� �� 	� �

�� 	
� ����	 �	�� 
 �
���
 (20)

In particular, the case of � � 	� , � � �, corresponds to the ZZW code
family, for which ���� � ����, ��� � ����, and we have

���
���

��������

����
� ���� � ����	 �	��
 (21)

Theorem 2 implies that the distance between the embedding effi-
ciency of a GZZW code family and the upper bound fluctuates with
slight amplitude within 0.086 as � tends to infinity.

Based on the property on ZZW construction in Theorem 1, Fridrich
[9] proposed to use the value ����	 �	�� � ���� for comparing
codes in the zero-payload limit. Define �� � �� if and only if ����� �
�����. In the expanded code family generated by the GZWW construc-
tion, the inferior limit of the distance to the bound is also ����	 �	��,
and the superior limit is larger only by a small constant. Thus, it is still
reasonable to order codes for their asymptotic performance by using
����	 �	��.

Note that, for	� GZZW construction in Section III-C, we can prove
the same asymptotic result as Theorem 2, because the embedding effi-
ciency����� in (17) increased by 1 compared with ��� in (14), and
the ternary bound (15) is also larger by 1 than the binary bound (1).

V. CONCLUSION

A constructing method is proposed to produce new codes from old
codes for steganography, which includes the ZZW construction [8] as a
special case and therefore yields larger code families. The embedding

efficiency of codes from the new construction also follows the upper
bound on embedding efficiency as codes from the ZZW construction.
We derive the superior limit and inferior limit of the distance to the
bound on embedding efficiency as a function of change rate. Note that,
when change rate tends to zero, relative payload also decreases to zero.
Therefore, the results in Theorem 2 can be used to analyze the asymp-
totic property of codes in zero-payload limit. In fact, for ZZW construc-
tion �� � 	��, we derive the same limit when taking the bound as a
function of relative payload and a function of change rate, respectively,
as shown in Theorems 1 and 2.

APPENDIX

Proof of Theorem 2: First, we calculate that

��������

����
���� � ���� 
 ���� 
 ����

�

��

�
�

��

(22)

where

���� � ���� � � 
���� �� 

�

	���� ��
� � (23)

���� � �
�

����
� � ������� �����
 (24)

Note that ���� tends to zero as � � �; hence, by L’Hôpital’s rule,
we have

���
����

���� �
�

�� 	

 (25)

So we only need to prove

��� ��
����

���� � � (26)

��� ���
����

���� �
�� 	� �� �� 	� �

�� 	

 (27)

Define function

���� � ���� �� 
���� �� �
�

	���� ��

 � (28)

where � � � is a real number. Let � � �	�	 	��� � ��, where � is a
positive integer. Then

���� � ���� �� � �
�

	�

 �
 (29)

The derivation

�
���� �

�

� �� 	
�

�

	�

 (30)

It is easy to see

�
���� � � when � � 	�	

	�

�� 	
and

�
���� � � when � �

	�

�� 	
	 	��� � � (31)
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so ���� is increased when � � ���� ������ ��� and decreased when
� � ������� ��� ���� � ��. Therefore, ���� has the maximum at � 	
������ �� and we obtain


��������� ������ � ��� � ���� � �
��

�� �
� (32)

For any � � �, let � 	 ���� ��, and obviously � � ���� ���� � ��;
thus,


����� ������ � ��� � ���� � �
��

�� �
� (33)

Since � 	 ���� �� � �� as � � ��, then we obtain

��
 ���
����

���� � 
����� ��
 ���
����

������� � ���� 	 �

(34)

��
 ���
����

���� � �
��

�� �
	 � ��� �� ��

�

�� �
� ��

(35)

Choose a subsequence 	� 	 ��
� � ��. It is easy to see

��

����

����� 	 � (36)

so

��
 ���
����

���� 	 �� (37)

On the other hand, choose a subsequence � 	 ������� ���� � � �.
According to the basic inequality � � � � ��� � �, we have

���
�

�� �
�

�

��
�

�

�� �
� �

� �
��

�� �

� � ��� �� ��
�

�� �
� �� (38)

Therefore,

��

����

�
��

�� �
	 � ��� �� ��

�

�� �
� �� (39)

Then we achieve

��
 ���
����

���� 	 � ��� �� ��
�

�� �
� �

	
�� �� �� �� �� �

�� �
� (40)

In particular, combing (22), (25), and (36), we have

��

���

	��
�����


����
� �����

	 ��

���

	�������

����
� ���

	
�

�� �
�

�

��

� ���
�

��

� (41)
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