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a b s t r a c t

With the wide application of JPEG images, JPEG steganography attracts more and more

researchers, and accordingly, the detection of JPEG steganography becomes also

important. There exist some blind JPEG steganalysis methods, while most of them are

either unreliable or time-consuming. This paper presents a reliable and efficient

steganalysis scheme to detect the popular JPEG steganography algorithms. First, a novel

kind of transition probability matrix is constructed to describe correlations of the

quantized DCT coefficients in multi-directions. Then, by merging two different

calibrations, a 96-dimensional feature vector is extracted. Additionally, the SVM

(Support Vector Machine) is trained to build the steganalyzer. Finally, the proposed

feature is evaluated, and a series of experiments are performed on 4 kinds of typical

steganography in different embedding ratios, showing that for these steganography

algorithms, the new method is more reliable than the best effective blind detection

methods existed.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

With the rapid development of network technology,
the Internet has been widely used for information
exchange. During the information exchange, security is
an important issue [1–3]. To solve the problem, two kinds
of techniques are often used, i.e., cryptography and
steganography. In the former, the sender encrypts the
secret information into an unintelligible form with a
cipher, and the receiver could decrypt the information to
get the original one. The meaningless encrypted informa-
tion would raise the concerns of code breakers who could
intercept the suspicious data. Differently, in the latter, i.e.,
steganography, the sender embeds messages in the
innocuous-looking cover media, such as e-mails [4],
videos [5] or digital images [6]. Then, the modified cover
object, which is called the stego object, is sent to the
ll rights reserved.
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receiver over the Internet. The receiver could attain the
secret messages from the stego objects. The impercept-
ibility of the stego objects would cheat the visual observer
to ensure the information transmission security.

The main requirement of steganography is the statis-
tical undetectability, which means that the attacker could
not judge whether an object is the stego or cover based on
the statistics of the object. To accomplish it, many
steganographic techniques for images have been devel-
oped. They could be classified into two classes, i.e., spatial
domain techniques like Least Significant Bit (LSB) [7] and
LSB Matching [8], and transform domain techniques like
F5 [9], OutGuess [10], JpHide [11], StegHide [12] and YASS
[13]. During embedding, all the steganographic methods
would bring distortions to the cover image inevitably. To
reduce the distortions, a general technique called stega-
nographic codes is usually used [14–17]. In other words,
steganographic codes would improve the embedding
efficiency. Additionally, steganographic codes are
independent of the cover object’s types, which make it
utilized in either spatial domain or transform domain
steganographic techniques.
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The counterpart of steganography is steganalysis,
which aims to detect the presence of secret messages
and even to extract them. Generally, the steganography is
regarded as being broken when the secret messages are
discovered [18]. There are two kinds of steganalytic
methods, i.e., the targeted steganalysis and the blind
steganalysis. The former could reveal the secret messages
or even estimate the embedding ratio with the knowledge
of the specific steganographic algorithm. For example, RS
[19], WAM [20] and its improved version [21] can detect
the spatial steganography reliably, and Li et al. [22] and
Zhang and Zhang [23] could discover YASS and LSB
matching steganography. While the latter, blind stegana-
lysis, aims at discovering the presence of the hidden
messages from unknown steganographic programs. Gen-
erally, blind steganalysis extracts sensitive features at
first, such as the Markov transition probability matrix
[24], statistical moments of characteristic function of
subband histograms [25], and the merging feature set
[26]. And then, a classifier such as SVM (Support Vector
Machine) [27] or artificial neural network [28], is trained
to distinguish the stego image from the cover. Because of
the universality and flexibility, blind steganalysis is more
attractive in many practical applications.

Due to the popularity of JPEG image on the Internet, we
constrain our discussion to the JPEG format in this paper.
During the past decade, many JPEG steganographic algo-
rithms [9–13] have been reported, and some works have
been carried out on blind JPEG steganalysis. Fridrich [29]
first investigated a blind steganalyzer targeted on JPEG
steganography, where a set of distinguishable features are
extracted from the DCT (Discrete Cosine Transform) domain
and the cropped calibration is proposed to estimate the
statistics of the original image. The scheme could success-
fully break four kinds of JPEG steganography to some
extent, but it is not satisfactory because the rather limited
number of features could not fully exhibit the image’s
characteristics. Shi et al. [24] regarded the Markov transi-
tion probability matrix as the raw representation of the
statistical characteristics of the image, based on which a
324-dimensional feature vector is obtained along four
directions, i.e., horizontal, vertical, diagonal, and minor
diagonal. By exploring the correlations of coefficients in
different directions, the scheme achieves superior perfor-
mance than the method in [29]. But the extracted features
could not exhibit the coefficient correlations on inter-block.
Fu et al. [30] proposed a Markov-based scheme to break the
JPEG steganographic algorithm. Different from Shi’s
scheme, Fu et al. focused on capturing correlations on both
intra-block and inter-block of the quantized DCT coeffi-
cients. This scheme’s detection results are more convincing
than the ones of [24], but it is still not satisfactory especially
when detecting stego images with low embedding ratio.
Pevny and Fridrich [26] merged the existing DCT feature set
and the Markov-based feature set to improve the perfor-
mance of steganalysis markedly. The steganalyzer could
detect six kinds of JPEG steganography reliably, outper-
forming all the previous schemes [24,29,30] mentioned
above, which is regarded as the best effective steganalyzer
having been presented, but it costs much time to extract
those complicated features.
Since the Markov transition probability matrix can
capture the second order characteristics, it has been used
in blind JPEG steganalysis widely and effectively [24,30].
However, the Markov approach [24] considers the
coefficient correlation in only one direction at each time,
so it cannot exhibit the correlations of the neighboring
DCT coefficients completely. Thus, the multi-directional
based feature should be considered. Motivated by this
idea, we construct a new transition probability matrix in
this paper to describe the multi-directional correlations of
the quantized DCT coefficients. Through theoretical
analysis, we show that the new transition probability
matrix would collect more information of the correlations
than the Markov transition probability matrix. Based on
the proposed matrix, we extract features from both intra-
blocks and inter-blocks., whose sensitivity will be eval-
uated and compared with the Markov features. Moreover,
two kinds of calibrations are combined to minimize the
impact of the cover image’s energy. And finally, a blind
classifier is set up to distinguish the stego images from the
covers. A set of experiments are performed on 4 popular
JPEG steganographic algorithms: F5, OutGuess, JpHide and
StegHide, to evaluate the performance of the proposed
blind steganalysis method. In experiments, we will
compare the proposed method with the state of the art
blind JPEG steganalysis methods, especially the best
effective JPEG steganalyzer in [26].

The remainder of this paper is organized as follows. In
Section 2, we briefly introduce the most related algo-
rithms. The proposed blind JPEG steganalysis method,
including the feature extraction and SVM-based classifier,
is presented in detail in Section 3. In Section 4, we evaluate
the proposed features, and compare the proposed classifier
with existing ones by detecting various steganographic
schemes in different embedding ratios. Finally, in Section
5, the paper is concluded and future work is given.

2. Related work

This section gives a review of the steganalysis schemes
based on Markov approach, followed by an introduction of
two existing calibrations techniques which are most
related to our proposed scheme.

2.1. JPEG steganalysis based on Markov approach

There exists some JPEG steganalysis [24,30] based on
Markov approach. Markov transition probability matrix
(MTPM) describes the correlation of two elements whose
distance is r at the angle y, as shown in Fig. 1. For a given
matrix I whose elements vary in [1, n], the n�n MTPM is
defined as

pr,yðx,yÞ ¼ pðFði1,j1Þ ¼ x9Fði2,j2Þ ¼ yÞ, ð1Þ

where i2 ¼ i1þr cosy, j2 ¼ j1þr siny and F(i, j) the value of
matrix element at location (i, j). When r=n, it is called n-
step MTPM, which refers to the transition probabilities
separated by n�1 elements.

According to the correlation of the neighboring
coefficients, the image would be considered as the Markov
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process. Based on this view, Shi et al. [24] characterized
the different JPEG coefficient matrix by using MTPM. To
enlarge the disorder caused by message embedding,
different DCT coefficients are calculated along four
directions: horizontal, vertical, diagonal and minor diag-
onal, which would be denoted as follows:

Fhðu,vÞ ¼ Fðu,vÞ�Fðuþ1,vÞ ð2Þ

Fvðu,vÞ ¼ Fðu,vÞ�Fðu,vþ1Þ ð3Þ

Fdðu,vÞ ¼ Fðu,vÞ�Fðuþ1,vþ1Þ ð4Þ

Fmðu,vÞ ¼ Fðuþ1,vÞ�Fðu,vþ1Þ ð5Þ

Shi et al. [24] used one-step Markov transition
probability matrix to extract features from different DCT
coefficients, which could be denoted by

Mhði,jÞ ¼

PSu�2
u ¼ 1

PSv

v ¼ 1 dðFhðu,vÞ ¼ i,Fhðuþ1,vÞ ¼ jÞPSu�1
u ¼ 1

PSv

v ¼ 1 dðFhðu,vÞ ¼ iÞ
ð6Þ

Mvði,jÞ ¼

PSu

u ¼ 1

PSv�2
v ¼ 1 dðFvðu,vÞ ¼ i,Fvðu,vþ1Þ ¼ jÞPSu

u ¼ 1

PSv�1
v ¼ 1 dðFvðu,vÞ ¼ iÞ

ð7Þ

Mdði,jÞ ¼

PSu�2
u ¼ 1

PSv�2
v ¼ 1 dðFdðu,vÞ ¼ i,Fdðuþ1,vÞ ¼ jÞPSu�1
u ¼ 1

PSv�1
v ¼ 1 dðFdðu,vÞ ¼ iÞ

ð8Þ

Mmði,jÞ ¼

PSu�2
u ¼ 1

PSv�2
v ¼ 1 dðFmðu,vÞ ¼ i,Fmðuþ1,vÞ ¼ jÞPSu�1
u ¼ 1

PSv�1
v ¼ 1 dðFmðu,vÞ ¼ iÞ

ð9Þ

where Su and Sv represent the width and height of the
image, respectively, and

dðm,nÞ ¼
1 if m¼ n

0 if man

(
ð10Þ

According to the experimental results in [24], most of
the DCT difference coefficients fall into the range [�4, 4].
To reduce the computational complexity, the element
whose absolute value is larger than 4 is reassigned a new
absolute value 4 without changing the sign. That is,
9�9=81 dimensional features are extracted for each
MTPM, and totally 4�9�9=324 dimensional features are
constructed for future steganalysis.
�
r

r.cos(�)

r .sin(�)

x

y

Fig. 1. The formation of the Markov transition probability matrix.

Fig. 2. Image cropped
2.2. Calibrations

The concept of calibration is first introduced in [31] to
attack F5 [9], and further used in [29] to improve the
detection accuracy of the feature-based blind JPEG
steganalysis. The technique used in [29], named as image

cropped calibration in this study, could recover the
statistics of the cover and remove the image-to-image
variations. That reduces the effect of the diversity of
images and makes the extracted features more sensitive.
(1)
calib
Image cropped calibration: As Fig. 2 shows, decompress
the test image I to spatial domain, then crop it by first
4 rows and 4 columns, finally recompress the cropped
image using the same quantization table as the cover
image to get the calibrated image Ic.
Then the calibrated feature would be caculated as
follows:

f1 ¼ f ðIÞ�f ðIcÞ ð11Þ

where f(I) represents the extracted feature of the
image I.
Huang and Huang [32] generalized the concept of the
calibration as macroscopic and microscopic situation.
The image cropped calibration, which could estimate
the global histogram of the cover image, is regarded as
macroscopic calibration. Huang and Huang perform
mean filtering on spatial domain of the JPEG image for
the purpose of getting the same gross representation
of the cover and stego image. That would be
considered as a kind of microscopic calibration,
which would be merged with the macroscopic one
to improve the performance of steganalysis. In this
study, we replace the mean filtering as prediction
error, which is expected to be more effective.
The prediction error [33] is another technique used in
steganalysis, which would find a raw representation
of images and make it easier to explore the minor
change between cover and stego images. The
technique, which we call prediction error calibration
in this study, would be used to reduce the effect of the
carrier huge energy. It is expected that the prediction
error calibration could erase image content and
enhance the distortion caused by embedding.
ration [29].

x a

b c

Fig. 3. The neighboring pixels.
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(2)
 Prediction error calibration: Let x be a pixel of the test
image I, the neighboring pixels are a, b and c, as
Fig. 3 shows
The predicted value of x could be expressed as

x̂¼

maxða,bÞ if crminða,bÞ

minða,bÞ if cZmaxða,bÞ

aþb�c otherwise

8><
>: ð12Þ

Then the calibrated feature would be calculated by

f2 ¼ f ðI�IpÞ ð13Þ

where Ip represents the corresponding predicted image of
the image I.

3. The proposed steganalysis method

In this section, we describe the architecture of the
proposed method, the feature extraction method based on
a new multi-directional transition probability matrix and
calibrations, and the summarized steps of the proposed
detection method.
Trained JP
Image Se

Test JPEG Images 

2
o

Macroscopic Calibrated 
Images

24-D Features 
on Intra-block 

24-D Features 
on Inter-block

96-D
Proposed Fea

Trained SV
Classifie

Detection Re
96-D

Proposed Features 

Cover Images Cover Images 

Phase 1

Phase 2

Phase 4

Phase 3

Fig. 4. Architecture of the propo
3.1. Architecture of the proposed steganalysis method

As Fig. 4 shows, the proposed method is composed of
four main phases:
(1)
EG 
ts 

4-D
n In

ture

M 
r

sults

sed
Trained sets construction: Collect various kinds of
images, embed secret messages into them with
different JPEG steganography, such as F5, OutGuess,
etc., and then merge the covers and stegos to
construct the training sets.
(2)
 Calibrations: Perform two kinds of calibrations to get
the macroscopic calibrated images and microscopic
calibrated images, respectively.
(3)
 Feature extraction: Utilize the proposed multi-direc-
tional probability transition matrix to extract the 96-
dimensional features from the calibrated images’
intra-blocks and inter-blocks.
(4)
 Detection: Train the classifier and obtain some
optimal parameters, which would be used in the
following detection. Calculate the features of the test
images as described in Phases 2 and 3, and then send
them to the classifier to determine whether they are
cover or stego images.
Microscopic Calibrated 
Images

 Features 
tra-block

24-D Features 
on Inter-block 

s 

 

 

Stego Images 

steganalysis method.
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In these phases, the key point is the feature extraction.
In the following content, we will focus on the proposed

feature extraction method.
3.2. Feature extraction

3.2.1. Transition probability matrix based on correlations in

multi-directions

Suppose the matrix M has the dimension h�w, where
its element Mði,jÞ is integer belonging to [1, N]. If Mði,jÞ is
not on the boundary, it would have 8 neighboring
elements, which are denoted as

Mðiþr,jþsÞ, 9r9r1, 9s9r1, r2þs2a0: ð14Þ

For the neighboring region,

l¼
X

9r9r1,9s9r1,r2þ s2a0

dð9Mði,jÞ�Mðiþr,jþsÞ9,kÞ ð15Þ

In Eq. (15), l represents how many times
9Mði,jÞ�Mðiþr,jþsÞ9 equals k for 0rkrN�1. If l=0, it
means that the probability of 9Mði,jÞ�Mðiþr,jþsÞ9¼ k is 0.
In other words, the absolute value of difference would not
equal k in the neighboring region. This case is not under
our consideration, so l belongs to [1,8].

Scan all the elements within the matrix boundaries,
the probability of that k appears l times in the matrix
could be calculated as follows:

pðk, lÞ ¼

P
i,jdð
P

r,sdð9Mði,jÞ�Mðiþr,jþsÞ9,kÞ,lÞP8
l ¼ 1

PN�1
k ¼ 0

P
i,jdð
P

r,sdð9Mði,jÞ�Mðiþr,jþsÞ9,kÞ,lÞ

ð16Þ

where 1r irw, 1r jrh, 9r9r1, 9s9r1, r2þs2a0,
0rkrN�1 and 1r lr8.

Regarding p(k, l) as an element of the new transition
probability matrix in the position (k, l), an N�8 matrix
could be attained to capture the multi-directional correla-
tions of the neighboring elements. For convenience, we
define f ðMÞ as the multi-directional transition probability
matrix of the matrix M

f ðMÞ ¼

pð0,1Þ, pð0,2Þ, � � � , pð0,8Þ

pð1,1Þ, pð1,2Þ, � � � , pð 1, 8Þ

^ ^ & ^

pðN�1,1Þ, pðN�1,2Þ, � � � , pðN�1,8Þ

0
BBBB@

1
CCCCA ð17Þ

As a simple example, a 3�3 matrix whose elements
vary in [1,4] has only one 8-neighboring region with a
central element 2 as follows:

M¼

2 1 2

3 2 4

3 2 1

0
B@

1
CA ð18Þ

Then, the proposed transition probability matrix of M is

1 2 3 4 5 6 7 8

f ðMÞ ¼

0

1

2

3

0 0 1=3 0

0 0 0 1=3

1=3 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

2
6664

3
7775 ð19Þ
where the row indexes in {0, 1, 2, 3} represent the absolute
values of the difference, and the column indexes in {1, 2,
y, 8} represent the frequency of their appearance.

Define m, nA[1, N], and it could be observed that when
r=0, s=1, k=9m�n9, and l=1, the numerator of Eq. (16)
would be rewritten as

pð9Mði,jÞ�Mði,jþ1Þ9¼ 9m�n9Þ

¼
Xw

i ¼ 1

Xh

j ¼ 1

dð9Mði,jÞ�Mði,jþ1Þ9,9m�n9Þ ð20Þ

Eq. (20) is very similar to one-step MTPM in the
horizontal direction which is expressed as

pðMði,jþ1Þ ¼ n9Mði,jÞ ¼mÞ

¼

Pw
i ¼ 1

Ph
j ¼ 1 dðMði,jÞ ¼m,Mði,jþ1Þ ¼ nÞPw
i ¼ 1

Ph
j ¼ 1 dðMði,jÞ ¼mÞ

ð21Þ

It is observed that the situation described by Eq. (21) is
included in Eq. (16). Therefore the proposed transition
probability would be considered as a kind of joint
probability with partial probability being the Markov
transition probability.

In fact, in order to cover all the information of the
neighboring region, we should build an 8-dimensional
matrix whose each dimension equals N. However, this
will bring enormous computational complexity, so some
information is sacrificed in the proposed matrix. Even so
this novel transition probability matrix contains more
information than the Markov approach. It is also expected
that the feature would be more sensitive and effective.

3.2.2. Feature construction based on the proposed matrix

In the following content, the JPEG feature on intra-
block and inter-block will be extracted based on the
proposed matrix.

JPEG feature extraction from intra-blocks: Consider the
matrix consisting of all the JPEG quantized DCT coeffi-
cients. All 8�8 blocks of the matrix are denoted by Mt ,
where t¼ 1,2,. . .,K , and K is the total number of blocks. In
each 8�8 block, most of the energy is concentrated in the
low frequency coefficients, and the DC (direct current)
coefficients are not touched by modern JPEG steganogra-
phy. Therefore, we only focus on the 10 low frequency AC
coefficients above the minor diagonal, which all have 4
neighbors. Because Fu et al. [30] pointed out 96.59% of the
AC coefficients fall into [�7, 7], the coefficients in this
range will be utilized to reduce the size of proposed
transition probability matrix. If the coefficient is either
larger than 7 or smaller than �7, it will be set to 7 or �7.
Then, the proposed transition probability matrix for Mt

will be calculated by f ðMtÞ, and the intra-block average
transition probability matrix will be computed by
Hintra ¼ 1=Kð

PK
r ¼ 1 f ðMtÞÞ, where Hintra is a 15�8 matrix.

JPEG feature extraction from inter-blocks: Scan all of the
8�8 blocks by rows and columns to arrange inter-block
matrix in each of the pre-mentioned 27 AC coefficients’
positions. Then we will get 27 new rearranged inter-block
matrices Mðw,hÞ,woh, w2þh2a0, w,h¼ 0,1,. . .,7. The
inter-block matrix in position (0, 1) is shown in Fig. 5.
Similarly, the proposed transition probability matrix
f ðMðw,hÞÞ could be calculated, and the inter-block average
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Fig. 5. JPEG DCT coefficient matrix and new rearranged inter-block

matrix in (0, 1).
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transition probability matrix could be computed by
Hinter ¼ ð1=27Þ

P
f ðMðw,hÞÞ, where Hinter is a 15�8 matrix.

In order to observe the change of the proposed feature
before and after embedding, we embed 4000 bits of
messages into 1000 JPEG images, which are converted
from TIFF images in the NRCS Photo Gallery [34]. Then, we
calculate the inter-block matrix of each image to get
Hj

inter ,j¼ 1,2,. . .1000, and the average value of the pro-
posed features in the first line of the inter-block matrix
would be denoted as fi ¼ 1=1000

P1000
j ¼ 1 Hj

interð1,iÞ. The
mean values of features are shown in Fig. 6 which is
indexed from 1 to 8. It is observed that f1 and f2 increase
after embedding, but the values from f4 to f7 decrease
individually. It is because that the embedding weakens
the correlation of the AC coefficients and neighboring
coefficients on inter-blocks. The probability of the
absolute different value appearing frequently would
decrease, and the probability of the absolute different
value appearing rarely would decrease. In other words,
the probability of the proposed matrix on inter-block will
transfer from the back to the front after embedding using
F5. Extensive experiments convince us that the same
conclusions does exist for other steganographic
algorithms and intra-blocks. The obvious change of the
proposed features illuminates that they are suitable to be
used for classifying the stego image from cover image.

It seems that f8 is almost the same before and after
embedding. In fact, f8 represents that the absolute
difference value 0 appears 8 times, that is, the central
coefficient equals each of the neighboring 8 coefficients.
This situation rarely occurs relative to the high appearing
times such as f1 and f2. On the other hand, f8 is
very sensitive to the embedding. As long as one of
the 8 neighboring coefficients changes, the value of f8

would decrease immediately. As Fig. 7 shows, points
representing the cover image feature Hinter(0,8) scatter at
the higher part, but they decrease nearly to zero after
embedding which is denoted by the squares. In addition,
it is also observed that part of the points overlap with the
squares, which will make trouble for future classifications.
In the next subsection, the feature calibration would be
used to solve the problem.
3.2.3. Feature calibration

To improve the performance of the proposed features,
we fused the image cropped calibration and prediction
error calibration as macroscopic and microscopic calibra-
tions. All features in the proposed method were obtained
from the quantized DCT coefficients of the test image and
its corresponding macroscopic calibrated image, or from
the test image and its microscopic calibrated image,
respectively. Next we show how to calibrate the extracted
features.

Let J denote the quantized DCT coefficient matrix of the
test image I and Jc denote the cropped version of J.
Calculate the proposed intra-block feature Hintra(J),
Hintra(Jc) and inter-block feature Hinter(J), Hinter(Jc), respec-
tively. Let

Hc ¼ ð9HintraðJÞ�HintraðJcÞ9, 9HinterðJÞ�HinterðJcÞ9Þ ð22Þ
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Additionally, we also extract the elements in the first 3
rows of Hc to form the image cropped calibration feature Hc.

In Fig. 8, we show an example of how the proposed
feature Hc(0,8) changes for the cover and stego images.
Note that it is different from Fig. 7 such that the squares,
which represent stego feature, occupy the higher part, and
the points are clustered on the lower part. The reason is
that image cropped calibration would recover the statistic
of the cover. When the test image is cover image, the
difference between Hinter(J) and Hinter(Jc) is minor; but
when the test image is stego image, the difference is large.
So absolute difference value between Hinter(J) and Hinter(Jc)
for stego image and calibrated version is larger than the
cover image and its calibrated version.

Similarly, we could use the prediction error technique
to calibrate features. After the predicted image Î is
attained followed by Eq. (12), recompress it with the
same quantization table as the test image. Let Ĵ denote the
predicted version of J, and we could gain the JPEG
prediction error coefficients Jpe ¼ J�Ĵ. Calculate the intra-
block feature Hintra(Jpe) and inter-block feature Hinter(Jpe)
by utilizing the proposed method, and combine them in
Hpe=(Hintra(Jpe), Hinter(Jpe)) which has the dimension
30�16. To decrease the computational complexity, only
the elements in the first 3 rows of Hpe will be extracted to
form a 48-dimensional feature vector Hpe.

In contrast to Fig. 7., the borderline between the cover
and stego feature is more distinguishable in Fig. 9 And the
points representing cover images are more clustered at
the higher part. It is because that the prediction error
calibration extends the statistical difference between the
cover and stego, which also implies its effective
performance for future classification.

Thus, we can extract the features according to the
following steps:
(1)
F
e
a
tu

re

Fig
Calibrate image I by two different calibration meth-
ods, respectively, and then get the JPEG coefficient
matrices Ĵ and Jc.
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. 8. Scatter plots of the Hc(0,8) for the cover and F5 stego images.
(2)
 Let Jpe ¼ J�Ĵ, and calculate the proposed matrices of
J, Jc and Jpe on the intra-blocks and inter-blocks,
respectively, which are denoted by

HintraðJÞ, HintraðJcÞ, HintraðJpeÞ ð23Þ

and

HinterðJÞ, HinterðJcÞ, HinterðJpeÞ ð24Þ

Merge the features to form
(3)
Hpe ¼ ðHintraðJpeÞ,HinterðJpeÞÞ ð25Þ

and

Hc ¼ ðHintraðJÞ�HintraðJcÞ, HinterðJÞ�HinterðJcÞÞ, ð26Þ

and extract the elements in the first 3 rows of the
matrix to compose the 96 dimensional features.
3.3. The detection steps

After the features are computed, whether a test image
is cover or stego becomes a two-classification problem. In
this section, the SVM [27] will be trained to classify the
cover from stego image. The detection method consists of
five steps:
(1)
 Collect cover images and the corresponding stego
images of certain steganography algorithm to build
the training image set.
(2)
 Calculate the proposed features of the training set and
scale them linearly to the interval [�1, 1]. Assume
max(fi) and min(fi) as the maximal and minimal values
of the ith feature, respectively. Denote x and x0 as the
ith feature before and after scaling, respectively.
Scaling to [�1, 1] means

xu¼
2ðx�minðfiÞÞ

maxðfiÞ�minðfiÞ
�1: ð27Þ

Search the training optimal parameters on a multi-
(3)

plicative grid with the cross-validation.
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(4)
 Map the prepared features into a higher (maybe
infinite) dimensional space, then use SVM to find a
linear separating hyperplane with the optimal para-
meters, which would classify the cover features from
the stego with the maximal margin in the higher
dimensional space.
(5)
 Calculate the test image’s features, and send them to
the classifier for determining whether it is the cover
or the stego.
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Fig. 10. The comparion of F-scores for the proposed features and Markov

features of the same embedding capacity.
4. Performance evaluation

In this section, the proposed features and detection are
evaluated, respectively. Firstly, the feature extraction
methods are compared with the Markov approach.
Furthermore, a series of two-class steganalyzers are built
to identify the stego from cover images. We compare the
proposed approach with other three blind JPEG stegana-
lysis schemes, that is, Shi’s [24], Fu’s [30] and Fridrich’s
[26] schemes, in which Fridrich’s scheme is regarded as
the best effective blind JPEG steganalysis.

4.1. Feature evaluation

The main aim of this study is to develop a classifier for
cover images and stego images, which owe to the feature
extraction mostly. A good feature for steganalysis should
detect the presence of secret messages accurately, and is
effective to a large set of steganography methods and
various images. In order to measure up to the above
capability of features we resort to analysis of variance
(ANOVA) [35], which mainly investigates the contribution
of different factor variance for final variance.

Suppose the sample space is A¼ fA1,A2,. . .,Akg, and
feature of Ai is Fi ¼ ffi,1,fi,2,fi,3. . .,fi,ni

g, where ni is the
number of the Ai. Let

Sinter ¼
Xk

i ¼ 1

niðfi�f Þ2

k�1
Sintra ¼

Xk

i ¼ 1

Xni

m ¼ 1

ðfi,m�fi Þ
2

N�k
ð28Þ

where

fi ¼
1

ni

Xni

m ¼ 1

fi,m, f ¼
1

N

Xk

i ¼ 1

Xni

m ¼ 1

fim and N¼
Xk

i ¼ 1

ni

It is observed that Sin ter is the square sum of the factors
representing the variation of the feature on inter-team
and Sintra is the square sum of the error representing the
variation of the feature on intra-team.

Then, the F-scores could be given by

F ¼ Sinter=Sintra ð29Þ

which describes the degree of the feature spreading on
inter-team and converging on intra-team. The larger F-
scores is, the better the feature could distinguish
A1,A2,. . .,Ak.

In our case, A1,A2,. . .,Ak represent k different kinds of
image set, consisting of cover image set and stego image
sets from k�1 kinds of steganalytic methods. Sinter

describes the feature variation between the k image sets,
and corresponding Sintra represents the feature variation
in a certain image set. The F-scores would be regarded as
the capability index of the feature classifying the k image
sets.

Figs. 10 and 11 show the performances of the proposed
features and Markov features tested on five image sets,
which are the cover image set and stego image sets from
F5, OutGuess, JpHide and StegHide. It is observed that the
F-scores of the proposed features are larger than the
Markov features in either of the figures. In other words,
the proposed features perform better than the Markov
features for classifying the five image sets, which are
consistent with our theoretical analysis in Section 3.2.1.

Moreover, we also construct 8 feature sets to evaluate
their capability for classifying the cover and the stego:

#S1 Shi’s 81-D feature set without calibrations.
(Average Shi’s 324-D feature set to 81 features.)
#S2 Shi’s 81-D feature set with predicted error
calibration.
#S3 Shi’s 81-D feature set with image cropped
calibration.
#S4 Shi’s 162-D feature set with predicted error
calibration and image cropped calibration.
#P1 proposed 48-D feature set without calibrations.
#P2 proposed 48-D feature set with predicted error
calibration.
#P3 proposed 48-D feature set with image cropped
calibration and
#P4 proposed 96-D feature set with predicted error
calibration and image cropped calibration.

The image base contains 1000 TIFF images from the
NRCS [34]. Images are cropped into the size of 768�512
or 512�768 from the center and converted into grays-
cales images. After they have been compressed with the
JPEG quality factor 75, random bit-streams of different
relative lengths were embedded into the images by using
JpHide(ver. 0.5). The lengths of the embedded messages
were 10%, 25%, 50%, 75% and 100% of the maximal image
embedding capacity, respectively. It should be pointed out
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that, as JpHide(ver. 0.5) [11] compresses the message
before embedding, we just take the image size as the
maximal JpHide embedding capacity. In our experiments,
an SVM with the radial basis function kernel is chosen to
build the two-class steganalyzer, and the optimal para-
meters are achieved with the tool of LibSVM [27]. The
training sets consist of 500 cover images and 500 stego
images for each feature set and each embedding ratio. The
rest stego images are used for testing different feature
sets.

Table 1 shows the detection accuracy represented by
the probability such that the steganalyzers distinguish the
stego images from cover images successfully. From
Table 1, we would see that feature set #P1 (the
proposed features without calibrations) performs better
than Shi’s averaged feature set #S1. Moreover, either of
the two calibrations (image cropped calibration and
prediction error calibration) does improve the
performance of the detector. Especially, the image
cropped calibration acts more effectively than the
prediction error calibration. It should also be noticed
that the combination of the two calibrations performs
best when detecting JpHide(ver. 0.5).
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Fig. 11. The comparion of F-scores for the proposed features and Markov

features of different embedding capacity.

Table 1
Comparisons of detection accuracy of eight different feature sets against JpHid

Feature set The detection accuracy against JpHide steganograph

10% 25% 5

#S1 (%) 82.3 84 8

#P1 (%) 85.3 89.6 9

#S2 (%) 90.6 91.1 9

#P2 (%) 88.2 93.6 9

#S3 (%) 93.1 94.8 9

#P3 (%) 91.6 94.7 9

#S4 (%) 94.4 96.3 9

#P4 (%) 95.8 96.8 9
4.2. Classifier evaluation

The same cover set is set up as Section 4.1, and secret
messages are embedded by using the following four JPEG
steganographic algorithms: F5 [9], OutGuess(ver. 0.2) [10],
JpHide(ver. 0.5) [11] and StegHide [12]. It should be
noticed that F5 and OutGuess would decompress the JPEG
cover into the spatial domain and recompress it before
embedding. That means that the corresponding stego
image endures double-compress [36], which would make
a major impact on the future classification. For simplicity,
we adopt F5 and OutGuess to output the stego with the
quality factor 75, which ensure that the stego images are
single-compressed. The lengths of the embedded messages
are 10%, 25%, 50%, 75% and 100% of the maximal image
embedding capacity. The training set consists of 500 cover
images and 500 stego images for each algorithm and each
embedding ratio. Therefore, 4�5=20 classifiers (there
were 5 message lengths for 4 algorithms) should be trained
in our experiments. The total number of images for training
is 20�1000=20,000. The rest of the images are used to test
the proposed method on a computer equipped with Inter
Pentium Dual core 2.5 GHz/2 G. Figs. 12–15 show the
detection accuracy of the 20 classifiers.

As shown in Figs. 12–15, the proposed scheme
performs best on OutGuess(ver. 0.2). That is because
OutGuess(ver. 0.2) only keeps the global histogram of the
DCT coefficients while the proposed features describe
correlations on intra-block and inter-block. However, as
JpHide(ver. 0.5) compresses the message before embed-
ding, the proposed scheme performs commonly on
JpHide(ver.0.5). In the meanwhile, the new method
significantly outperforms Shi’s and Fu’s schemes when
detecting F5, JpHide and OutGuess. As well as, it outper-
forms Fridrich’s scheme in detecting JpHide, but performs
similarly in detecting F5, OutGuess and StegHide. Never-
theless, the proposed scheme could classify 60 images per
minute, which are about 2.6 times as many as Fridrich’s.

Moreover, a multi-class steganalyzer is also set up to
recognize the steganographic algorithms.

Totally 2000 images (500 images for each algorithm)
were chosen as training set, the rest were chosen as the
testing set, and then the classifier was trained to build
multi-class steganalyzer. The probability of successful
identification targeting on steganographic algorithms is
obtained through a series of experiments.
e.

y in different embedding ratio

0% 75% 100%

3.5 85.1 89.6

1.2 94.6 96.1

2.8 93.3 94.0

5.6 95.4 96.8

4.2 94.8 95.5

5.3 97.5 98

7 96.2 97.5

7.8 98.4 99
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Fig. 12. Comparison of detection accuracy of four different detection
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Fig. 13. Comparison of detection accuracy of four different detection

schemes against OutGuess.
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Fig. 14. Comparison of detection accuracy of four different detection

schemes against JpHide.
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Fig. 15. Comparison of detection accuracy of four different detection

schemes against StegHide.

Table 2
Identification of four steganography schemes.

Steganograpy schemes Embedding ratio

10% 25% 50% 75% 100%

Y. Wang et al. / Signal Processing: Image Communication 25 (2010) 577–587586
As Table 2 shows, the proposed scheme performs well
on F5, JpHide and StegHide, but could not identify
OutGuess from others in respect that the OutGuess
stego images were often classified as F5.
F5 (%) 79.8 91 94.4 94.6 92.6

OutGuess (%) 59.6 77.8 85 86.4 91.8

JpHide (%) 87.8 93.6 95.6 96.4 93.8

StegHide (%) 69.6 92.6 96.6 98.2 100

5. Conclusions

In this paper, a new multi-directional transition prob-
ability matrix is constructed inspired by the Markov
approach. Through theoretically analysis, we demonstrate
that the Markov transition probability would be considered
as a kind of partial probability of the proposed transition
probability. The experiments of ANOVA also show the
superiority of the proposed feature over the Markov feature.
By merging the microscopic and macroscopic calibrations,
96-dimensional features were extracted. Based on these
features, a two-class steganalyzer scheme is set up to reliably
detect the stego images embedded by four popular JPEG
steganographic algorithms, and a multi-class steganalyzer
scheme is also built to distinguish the four steganographic
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algorithms. Experimental results demonstrate that our
classifier is more reliable and efficient than the best effective
blind steganalyzer targeted on JPEG images. The benefits
depend on the following properties: (1) based on the multi-
directional correlations of the quantized DCT coefficients,
more efficient features could be extracted, (2) different kinds
of calibrations could be combined to improve the blind
steganalysis’s performances and (3) merging the intra-block
and inter-block correlations of the quantized DCT coefficients
is more effective. Although our approach is able to classify
the stego image from the cover image reliably, its perfor-
mance for identifying different kinds of steganography is not
satisfactory. To make our system more practical, some means
would be taken in future work: (1) combining different kinds
of sensitive feature set, such as DCT feature set [29], Wavelet
feature set [25], etc., and (2) improving the performance by
using appropriate supervised learning technique such as
feature selection or classifier fusion, etc.
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