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Near-Optimal Codes for Information Embedding in
Gray-Scale Signals

Weiming Zhang, Xinpeng Zhang, and Shuozhong Wang

Abstract—High-performance steganography requires large em-
bedding rate and small distortion, i.e., high embedding efficiency.
Steganographic codes (stego-codes) derived from covering codes
can improve embedding efficiency. In this paper, a new method is
proposed to construct binary stego-codes for LSB embedding in
gray-scale signals, which shows that not just one but a family of
stego-codes can be generated from a covering code by combining
Hamming codes and wet paper codes. This method can greatly ex-
pand the set of embedding schemes as applied to steganography.
Performances of stego-code families (SCF) of structured codes and
random codes are analyzed. SCFs of random codes can approach
the rate-distortion bound on LSB embedding for any chosen em-
bedding rate. Furthermore, SCFs are modified for applications in
�� embedding, and a treble layered embedding method for ��
embedding is obtained. By combining the modified SCFs and the
treble layered method, a near-optimal scheme for �� embedding
is presented.

Index Terms—Average distortion, covering codes, embedding ef-
ficiency, embedding rate, information embedding, LDGM codes,
steganography, wet paper codes.

I. INTRODUCTION

S TEGANOGRAPHY, the art of conveying information con-
fidentially, is realized by embedding information into in-

nocuous cover-objects such as digital image, audio and video.
The very existence of the communication itself is hidden since
the stego-object appears the same as the cover. However, as
the cover-object is inevitably changed, the covert communica-
tion can still be detected by some statistical means. To resist
the detection, the steganographer wants to minimize the im-
pact of data embedding (distortion) on the cover-object for a
given payload (embedding rate), which can be formulated as a
rate-distortion problem. The rate-distortion bounds on least sig-
nificant bit (LSB) embedding [1] and the general embedding
manner in gray-scale signals [2] have been obtained. We call
coding methods on this rate-distortion problem steganographic
codes (stego-codes) in this paper. It turns out that the stego-code
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could be defined by the covering code [1], [3], and many bi-
nary stego-codes have been constructed using structured codes
[3]–[7] or random codes [8], [9].

Binary stego-codes can be used for LSB embedding, in
which coding methods are used in the LSB plane of gray-scale
symbols, and messages are embedded with LSB flipping. In
LSB embedding, the maximum change of each gray-scale
symbol is one and each symbol can carry at most one bit of
information. In fact, by choosing adding or subtracting one
to/from the gray-scale value, each symbol can carry bits
of data, that is, a ternary digit, with the gray value modulo
3, called “ embedding.” The embedding essentially
involves a ternary coding problem that can be treated with
ternary covering codes. Willems et al. [2] proposed ternary
Hamming and Golay codes to improve the performance of
embedding. A more efficient method appeared independently
in [10] and [11], which introduces a family of stego-codes
including the ternary Hamming as a subset. Generally, we can
limit the maximum modification as , which is called “
embedding”. For example, in “ embedding,” the allowable
modifications include . Because stego-ob-
jects become detectable rather quickly with the increasing
maximum embedding-caused changes, must be small for
steganographic applications.

A main goal of stego-coding is to approach the rate-distor-
tion bounds [1], [2]. Binary stego-codes based on random linear
codes [8] and low-density generator matrix (LDGM) codes [9]
can approach the rate-distortion bound of LSB embedding for
large embedding rates. Practically, however, the steganographer
needs good codes at various embedding rates for different appli-
cations. For instance, Hamming stego-codes used in the F5 algo-
rithm [12] are the most popular stego-coding methods because
they are a family of variable-rate codes. Although the Golay
stego-code seems to have better performance than the Hamming
codes, it is only an isolated point providing a fixed embedding
rate, as shown in Fig. 2. An interesting question is whether we
can generate a family of stego-codes from the Golay code out-
performing the Hamming codes.

By exploiting wet paper codes [13], we in this paper pro-
pose a novel method to design stego-codes, which can generate
a family of variable-rate binary stego-codes from any given bi-
nary stego-code. We call it stego-code family associated with the
given stego-code. With the proposed method, we can construct
stego-codes approaching the rate-distortion bound on LSB em-
bedding, and embedding at various embedding rates.

The organization of this paper is as follows. Section II
introduces some notational conventions. Section III describes
the construction and performance of stego-code families. In
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Fig. 1. Illustration on the general framework of the proposed method, in which
� is the parity check matrix of the �� � �� � � � � �� Hamming code and
� � � � � � � � � , � � � � � .

Fig. 2. Performance of stego-code families. The abscissa represents ���where
� is embedding rate.

Section IV, the stego-code families are modified for applica-
tions in embedding. In Section V, a treble-layered scheme
for embedding is given. The paper is concluded following
a discussion in Section VI.

II. NOTATIONS

We assume that the cover-object is a sequence of gray-scale
signals , and ,

, where typically , or 16. For example,
for gray-scale images. Because the message is usually

encrypted before being embedded, it can be considered a bi-
nary random sequence. The message block is denoted by

, which is independent of the cover . After
embedding into , we get a stego-object ,
where , . We use squared-error distortion
as did in [2]: if a gray-scale symbol is changed into , the
resulting distortion is . If the max-
imum modification is , the set of allowable modifications is

. Assuming , , is
the probability distribution over , the average distortion is

(1)

Specifically, if , the average distortion equals to the
changing probability, i.e., the ratio between the average number
of changes and the length of the cover block.

The embedding rate is defined as , which is the
number of bits carried by each gray-scale signal. Rate-distortion
functions for were obtained in [2]

(2)

where is the entropy deter-
mined by the distribution . Equation (2) is a tight
upper bound on the embedding rate subject to the constraint
of average distortion for maximum allowable modification .

Embedding efficiency is defined as the ratio between em-
bedding rate and average distortion: . For applications
in steganography, embedding rate-embedding efficiency is gen-
erally used to evaluate performance, which is equivalent to the
rate-distortion measurement. The rate-distortion bound (2) can
be recognized in its equivalent form as an upper bound on em-
bedding efficiency with respect to a given embedding rate

(3)

where is inverse of the rate-distortion function .
For LSB embedding, the manner of modification is LSB flip-

ping, and the maximum amplitude of modification is one. Thus
the average distortion is determined by the average number of
changes. The efficiency of LSB embedding can be improved
with a binary stego-code, and equivalence between stego-codes
and covering codes have been shown in [1], [3], [6], and [8].
Let be an binary code with an covering radius

. We can use to embed bits of messages into the LSBs
of gray-scale symbols with at most changes by syndrome
coding [6], [8]. The average number of changes is equal
to the average distance to the code . For perfect codes such
as Hamming and Golay codes, . We de-
note such a stego-code as . Note that the notation

in this paper only denotes a binary stego-code.
An example of binary stego-codes based on binary Hamming
codes will be given in Section III-A.

For a stego-code , the embedding rate
, average distortion , and embedding efficiency

. The rate-distortion function for LSB embed-
ding is as follows [1]:

(4)

where is the bi-
nary entropy function. Similar to (3), (4) can be rewritten as the
upper bound of embedding efficiency with respect to a given
embedding rate [8]

(5)

where is inverse of .
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III. STEGO-CODE FAMILIES

A. Basic Hamming Wet Paper Channel

For a gray-scale signal , let be its
LSB, which is used as carriers of binary stego-coding. Now we
describe how to construct binary stego-codes with Hamming
codes. To use , , Hamming codes, first di-
vide the LSB into disjoint segments of bits.
The message is associated with the coset of the Hamming code.
There are cosets for Hamming code, which
can represent bits of messages, and the message is denoted as
the syndrome with respect to a fixed parity check matrix . For
instance, assume the first block of LSB is ,
and the corresponding message block is .
To embed into , compute syndrome . If ,

is embedded into without any change, otherwise we only
need to flip one , to make hold
because the covering radius of Hamming code is one. When em-
bedding , one change is needed with probability ,
therefore, the average number of changes .

Taking Hamming code as an example, we explain how
to embed and extract 3 bits of messages into 7 gray-scale sym-
bols. Let be the parity check matrix of the Hamming
code

(6)

Here we make the columns in an ascending order of binary num-
bers. Given a length-7 block of cover and a three bit message
block , for instance and ,
compute

(7)

Note that the obtained result is the binary representation
of 3, meaning the third column of . By changing the third bit
of to get , the embedding process is
completed. To extract the message, we only need to compute

(8)

In the above embedding process, no change is needed if
. This occurs with probability because

the message is a random sequence of encrypted text; oth-
erwise we make by changing only one bit
of with probability . Therefore, the average number
of changes is , indicating that we have constructed a
stego-code . In general, using the same method
we can get stego-code with

Hamming code for any integer .
When the Hamming stego-code is just the
simple LSB replacement which embeds one bit of message into
each gray-scale symbol and modifies its LSB with probability

.

We now improve the embedding efficiency of Hamming
stego-codes by splitting the LSB embedding channel into two
different channels. Without loss of generality, assume that the
length of cover is which can be divided into disjoint
blocks. The corresponding LSB blocks are denoted by

(9)

First, compress each block into one bit with an exclusive-or op-
eration:

(10)

We take as the first embedding channel, and
apply the simple LSB replacement, namely , to it.
Therefore, each can carry one bit of message and needs to be
changed with probability .

Second, take the first elements from every cover block,
and write

(11)

Let be the parity check matrix of the Ham-
ming code, having a form like (6). In the embedding process of
the first channel, if some needs to be modified, we can flip
any one of the bits in the block to change , and simul-
taneously map the block to any bits that we need.
In fact, if is the bits we want, we flip to change ,
otherwise we can make equal to any other vector of bits
by changing one of the first bits in this block. With this in
mind, we construct the second embedding channel as follows:

(12)

This channel contains bits. Because in the embedding
process of the first channel there are on average ’s to
be changed, with these changes the corresponding bits
in the second embedding channel (12) can be modified freely
as analyzed in the above. Forbidding any change to the rest

bits, we get a typical wet paper channel with dry
positions and wet positions [13]. With the binary wet
paper coding method as described in [13] we can embed about

bits of messages on average, and the receiver can extract
these messages without any knowledge about the dry positions.
For this reason, we call the second embedding channel as the
basic Hamming wet paper channel. A detailed method of binary
wet paper coding can be found in [13].

In fact, we embed messages using the above channels in two
steps. In the first step, we embed bits into the channel (10),
and label the indices of ’s which need to be changed, but no
change is actually made in this step. In the second step, construct
Hamming wet paper channel (12) and embed messages using
wet paper codes. In the process of wet paper coding, one bit
is flipped in every block with the labeled index ,

, which also completes the changes needed in the first step.
Combining the two steps, we embed bits of messages
on average into a length- block of covers by changes,
meaning that we obtain the stego-code .
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B. General Framework

To generalize the method described in Section III-A to any
stego-code , we divide the cover-object into dis-
joint blocks of symbols and, without loss of generality,
assume that the cover-object consists of symbols. Write
LSBs of each block as a matrix as follows:

(13)

From the cover block, two channels will be constructed as
shown in Fig. 1.

In the first step, compress each column of (13) into one bit as

(14)

Applying to , we can embed bits
of messages with changes on average.

In the second step, let

(15)

Construct a Hamming wet paper channel using the same method
as in Section III-A

(16)

The length of this embedding channel is , including dry
positions and wet positions on average. Because
there are blocks in total, each of which can introduce such a
Hamming wet paper channel. We can cascade them to employ
wet paper coding, and finally embed on average bits of
messages into every length- block with changes. Thus
we get a stego-code .

The above construction implies that, for any stego-
code , there are a family of stego-codes

, , associated with it. When
taking in this code family, we get itself.

Definition 1: Call , , the
stego-code family associated with .
Because stego-codes and covering codes are equivalent, we
also call , , as the of if

can be obtained from the covering code .

For a stego-code , its embedding rate
, embedding efficiency and av-

erage distortion . The SCF associated with it,
, , has an embedding rate ,

embedding efficiency and average distortion as
follows:

(17)

For example, the Golay code, whose covering radius is
3, has the average number of embedding changes

(18)

Golay code implies the stego-code , and there-
fore the stego-code family , .
As shown in Fig. 2, the SCF of binary Golay provides a family
of stego-coding schemes with embedding efficiency better than
the binary Hamming.

The stego-code family , , ob-
tained in Section III-A is the SCF of simple LSB replacement

. Furthermore, every stego-code in [3]–[7] leads
to a family of stego-codes which enormously enlarges the set of
coding methods for applications in steganography. Surprisingly,
we find that almost all stego-codes in [3]–[7] are below the em-
bedding efficiency curve of the SCF of , except for
a few with large embedding rate such as the nonprim-
itive BCH code proposed in [6]. Fig. 2 shows that we can get
points exceeding the curve of SCF of with SCF
of BCH code. Note that the codes used in [3]–[7] are
structured codes, and we can employ random codes to generate
stego-code families even closer to the upper bound on embed-
ding efficiency.

C. SCFs of Random Codes

It has been shown [1], [8] that binary random linear codes can
reach the upper bound of embedding efficiency (5) asymptoti-
cally with the code length . The drawback of random
codes is high computational complexity for encoding. However,
Fridrich et al. presented an embedding scheme with random
linear codes in [8]. They also proposed a more efficient method
using LDGM codes in [9], which can achieve embedding effi-
ciency very close to the bound (5) with reasonable complexity
when the embedding rate is relatively large.

For instance, by taking LDGM code with length ,
Fridrich et al. reported 4 stego-codes in [9] with embedding rate
and embedding efficiency as follows:

(19)

The 4 stego-codes are labeled as LDGM in Fig. 2, indicating that
when the embedding rate is greater than or equal to 0.5, embed-
ding efficiency of LDGM can almost reach the upper bound.
Therefore we use the first two codes in (19) to generate two
SCFs. Calculating average distortions by and applying
(17), we can obtain the following performance of the two SCFs:

(20)

(21)
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TABLE I
DISTANCE BETWEEN “SCF OF LDGM2” (21) AND THE UPPER BOUND (5)

These two SCFs are labeled “SCF of LDGM1” and “SCF of
LDGM2” in Fig. 2, respectively. It is observed that SCFs of
LDGM codes are closer to the upper bound than SCFs of struc-
tured codes.

We find that SCFs is still close to the upper bound (5) even
when the embedding rate drops, i.e., the value increases. As
an example, the distance between “SCF of LDGM2” (21), for

, and the upper bound (5) is listed in Table I. All new
generated codes, codes for , keep small distances
from the upper bound, that is, less than 0.25, only with a slight
fluctuation. This implies that SCF can provide embedding effi-
ciency close to the upper bound even for very small embedding
rate . One merit of random codes in [8] and [9] is that they
can provide a continuous family of stego-codes depending on
the embedding rate . Thus, if we generate stego-codes using
random codes for all large embedding rates, e.g., , and
collect all their SCFs, then we can get a family of near optimal
stego-codes for arbitrarily chosen embedding rates, be it large
or small.

D. Computational Complexity

The proposed method improves embedding efficiency by
combining previous stego-codes with wet paper codes, which
has higher computational complexity. The additional com-
plexity comes from the wet paper coding.

For the SCF of , computational complexity is
determined by the complexity of implementing
and coding on the Hamming wet paper channel. Usually imple-
mentation of stego-codes based on constructed covering codes
is very simple. For random codes, fast algorithms were proposed
in [8] and [9]. To construct a Hamming wet paper channel, we
only need to perform XOR of some binary vectors of length
to get the changing positions, as shown in the example on
Hamming code in Section III-A, which has negligible com-
plexity.

A fast algorithm for binary wet paper coding has been
presented in [13]. For a length- wet paper channel with
dry positions, we can embed messages with an embedding rate

and computational complexity where
is a constant [13]. For embedding messages in a Hamming wet
paper channel, computational complexity is mainly determined
by length of the channel. As shown in Section III-B, if the cover
image consists of symbols, we can get a Hamming wet
paper channel of length . When using wet paper codes, we
can divide this channel into disjoint segments with appropriate
length such as .

IV. MODIFIED SCFS FOR EMBEDDING

The rate-distortion function (2) for embedding, i.e.,
, has the following equivalent form [2]:

.
(22)

The corresponding upper bound on embedding efficiency de-
pending on a given embedding rate is

(23)

To approach the bound (23) by using SCFs of binary codes,
we only need to slightly modify the construction of Ham-
ming wet paper channel in Section III-B. To use a stego-code

, we also assume that the cover consists of
disjoint blocks of length . Each block is arranged as a
matrix with a form of (13). For simplicity, we only use the first
column to explain the modification made to the Hamming wet
paper channel.

The first column of LSBs in (13) is and the
corresponding column of gray value is .

is the first bit of the first embedding channel,
and this column is mapped into bits by

(24)

Let

(25)

If needs to be flipped, we can change any one component in
. Which one should be changed is determined

by the bits that we want. For example, suppose that ,
, should be changed. This can be achieved by

or . The choice of adding or subtracting one can be used
to control the value of , and therefore control
the value of . This means that, when flipping , we get a
free bit , or a dry position in terms of wet paper codes, by the
same change. In other words, when changing , we can map

to any bits by one change.
Doing this to every column of (13), the Hamming wet paper
channel (16) can be modified as

(26)

This is an embedding channel of length with
dry positions. Therefore we get stego-codes embedding

bits of messages into cover symbols with
changes on average, , which we call the modified SCF of

.
Note that the above embedding process may fail when a gray

value is saturated, i.e., or . In this case, change
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in only one direction is allowed. When but is
required, we use instead. Similarly, if but

is required, we use instead. This of course will
introduce larger distortion. However, if the probability of gray
value saturation is small, the effect on the overall performance
is negligible.

For a stego-code with embedding rate
, embedding efficiency and average distortion

, the modified SCF has the following performance:

(27)

Comparing (27) and (17), we conclud that both the embedding
rate and embedding efficiency of SCF are improved by the mod-
ified SCF with keeping the same average distortion.

The stego-code can reach the rate-distortion
bound of LSB embedding at the maximum embedding rate
1 for LSB embedding. The first code in the modified SCF of

achieves the rate-distortion bound of embed-
ding at embedding rate 1.5. Note that the maximum embedding
rate achieved by modified SCFs is just 1.5 which is smaller
than the maximum embedding rate, , of the
embedding.

Performance comparisons have been made between the mod-
ified SCFs and the previous methods in terms of the metric em-
bedding rate-embedding efficiency. The EMD method in [10]
and Grid Coloring method in [11] can provide the same family
of schemes, embedding bits into host sym-
bols with changes on average, which includes the
ternary Hamming stego-codes. The method in [14] applied bi-
nary covering codes to embedding by extending the length
of codes. The “binary Hamming ” scheme in [14] can embed

bits into host symbols with changes
on average, which includes the LSB Matching Revisited method
[15] as a special case. Fig. 3 shows that the modified SCF of

significantly exceeds the methods in [2], [10],
[11], [14], and [15]. Moreover, performance of the modified
SCFs of LDGM codes are very close to the upper bound (23).
In other words, they provide near-optimal codes for embed-
ding.

V. TREBLE-LAYERED SCHEME FOR EMBEDDING

In Section IV, additional messages are embedded into
, which is the second LSB of gray-scale symbol

. Therefore messages are carried by LSB plane and the second
LSB plane in the embedding. In this section, we propose a
treble-layered scheme for embedding by exploiting the first
three LSB planes of gray-scale symbols.

Because we have obtained binary stego-codes approaching
rate-distortion bound for various embedding rates in Section III,
for simplicity in the discussion, we assume the binary stego-
codes used in this section are optimal, i.e., for average distortion

, we can achieve an embedding rate .
For embedding, the set of possible modifications

. Assume the probability distribution over

Fig. 3. Performance comparisons among the modified SCFs and the methods
described in [2], [10], [11], [14], and [15].

is , . Let be the probability of
changes with an amplitude one, and be the
probability of changing two. Thus . Assume
the cover-object consists of gray-scale symbols .
The embedding process includes the following three steps.

First, we use binary stego-codes to embed messages in the
LSB plane by . The changing probability is , which is also
the average distortion of the LSB embedding, so we can almost
reach the embedding rate .

Next, we embed messages in the second LSB layer with bi-
nary stego-codes. All the second LSBs are allowed to be mod-
ified in the following manner: fraction of them can be mod-
ified by introduced in the first step, and the rest can be
modified by . The change rate of the second LSB layer is

because we need to have changes with am-
plitude two when constrained to fraction of the cover.
Thus, the embedding rate is .

Finally, we embed messages in the third LSB plane with wet
paper codes. Because bits in the second LSB plane need
to be changed using , by choosing or , we can freely
control the third LSBs of the corresponding gray-scale symbols.
Label these positions in the third LSB plane as dry posi-
tions and the other positions as wet positions. By
wet paper coding, we can embed information with an embed-
ding rate .

Similar to the embedding, some cover symbols may cause
problems in the above scheme. If a gray value while
is required according to the rules in the first and second steps,
we should use instead; If while is needed,
we use instead. If , or , only one
modification direction in is permitted in the second step,
for which the third LSB of will always be labeled as a wet
position. These cases will introduce extra distortion, or decrease
the embedding rate. Nevertheless, if they rarely occur, the effect
on the overall performance can be neglected.

Combining the above three embedding steps, we get an em-
bedding rate with average
distortion . If constrain the
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average distortion to no more than , the treble-layered scheme
can achieve an embedding rate

(28)

Let us find the distance between (28) and the rate-distortion
bound (2). When , (2) is equivalent to

(29)
where .

To obtain an optimal solution of (29), consider for some
the distribution

(30)

having variance , where
. For any distribution

with variance , we have

(31)

Note that the relative entropy is nonnega-
tive, therefore, and the entropy

(32)
The equality holds only when equal to

, so is an optimal distribution for
(29).

Let

(33)

From (30), it is obvious that and ; there-
fore, and . Thus the
rate-distortion bound (29) can be rewritten as shown in (34) at
the bottom of the page.

Taking , , and in the treble-layered
scheme, we can achieve an embedding rate

(35)

with the same average distortion . Therefore
when using distribution , the distance between the
treble-layered scheme and the rate-distortion bound (34) is

(36)

When , (36) becomes zero, i.e., the treble-lay-
ered scheme reaches the upper bound. From (30) we can obtain
distribution satisfying , and calculate the corre-
sponding embedding rate from (35). That implies
that the treble-layered scheme is available for embedding rate

, which can not reach the maximum embedding
rate, , of the embedding.

Note that is not the optimal distribution for the treble-
layered scheme. We have obtained a numerical solution of (28),
with which the treble-layered scheme can perform somewhat
better than with distribution (see Fig. 4).

The performance comparison is also done by using embed-
ding rate-embedding efficiency. Fig. 4 shows that, for small em-
bedding rates, distance between the upper bound of and
embedding is very small, but distance between the treble-lay-
ered scheme and the upper bound is large. Because embed-
ding includes embedding and the upper bound of embed-
ding can be approached by the modified SCFs for embedding
rate , we propose the following combining scheme for

embedding. For an embedding rate , we only do
changes by using the modified SCFs; for ,

we use the treble-layered scheme. This way, we can realize
near-optimal embedding in most cases. Since the treble-layered
schemes using distribution and the optimal distri-
bution have close performance for , we can use
distribution directly in the combining scheme.

VI. CONCLUSION

Information embedding methods have an increasingly wide
range of applications, such as steganography, digital water-
marking, and backward compatible communication systems.
In this paper, we propose a new method for embedding data in

(34)
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Fig. 4. Performance of the treble-layered scheme and the combining scheme.

gray-scale signals, which can generate a family of embedding
codes from one covering code. By combining this method with
random codes such as LDGM codes, we get a family of binary
codes approaching the upper bound on embedding efficiency
of LSB embedding at various embedding rates. Base on the
binary codes, near-optimal schemes for and embedding
are also proposed.

In steganographic applications, the message sender can al-
ways reduce changes to the cover signal by embedding fewer
data, i.e., use low embedding rate to combat detection. How-
ever, advances in steganalysis have already made detecting LSB
steganography of low embedding rates possible. For example,
the method introduced in [16] can detect simple LSB replace-
ment with an embedding rate as low as 2%. Since the embedding
efficiency of simple LSB replacement is 2, detecting 2% embed-
ding rate means detecting 1% of changes in the cover. The SCF
of simple LSB replacement proposed in Section III-A can reach
embedding efficiency 10 for the embedding rate of 2%, that is,
the amount of changes is reduced to 0.2%. That is why SCFs can
be used to resist steganalysis. Furthermore, it has been proved
that embedding is more secure than LSB replacement be-
cause embedding can avoid the statistical imbalance caused
by LSB replacement. As shown in Section IV, higher embed-
ding efficiency for embedding can be obtained by using
modified SCFs, which therefore will provide even better secu-
rity.

On the other hand, the relations between the stego-codes and
covering codes have been established in [1] and [3], and rela-
tions between stego-codes and error-correcting codes have been
studied in [7] and [17]. Duality between data embedding and
source coding is shown in [9] and [18]. For example, LDGM
codes can be very close to the Shannon’s limit, which is the
very reason that schemes based on LDGM codes in [9] can al-
most achieve the bound on embedding efficiency. All these re-
sults imply that the method proposed in this paper is potentially
applicable to other coding problems.
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