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Fast Matrix Embedding by Matrix Extending

Chao Wang, Weiming Zhang, Jiufen Liu, and Nenghai Yu

Abstract—When designing steganographic schemes, matrix embedding
is an efficient method for increasing the embedding efficiency that is de-
fined as an average number of bits embedded via per change on the cover.
Random linear code-based matrix embedding can achieve high embedding
efficiency but cost much in computation. In this paper, we propose a method
to increase the embedding speed of matrix embedding by extending the ma-
trix via some referential columns. Compared with the original matrix em-
bedding, the proposed method can exponentially reduce the computational
complexity for equal increment of embedding efficiency. Experimental re-
sults also show that this novel method achieves higher embedding efficiency
and faster embedding speed than previous fast matrix embedding methods,
and thus is more suitable for real-time steganogaphic systems.

Index Terms—Embedding efficiency, embedding rate, embedding speed,
matrix embedding, steganography.

[. INTRODUCTION

The purpose of steganography is to send secret messages after em-
bedding them into public digital multimedia. It is desired to embed as
many messages as possible per change of the cover-object. In general,
for given messages and covers, the steganography that introduces fewer
embedding changes will be less detectable, i.e., more secure. Matrix
embedding, that is based on the parity check matrix of linear codes, is
the most popular coding method to reduce the embedding changes.

The data embedding codes usually are measured by embedding ef-
ficiency versus embedding rate. Embedding rate is defined as the av-
erage number of bits embedded into each pixel, and embedding effi-
ciency is defined as the average number of bits embedded by per em-
bedding change. Although it is proven that random linear code-based
matrix embedding can approach the theoretical upper bound of em-
bedding efficiency, the encoder will suffer huge computational com-
plexity. To apply matrix embedding with feasible complexity, Fridrich
et al. [1] proposed random linear codes with small dimensions, which
can achieve high embedding efficiency for only large embedding rates.
However, codes for large embedding rates are important because the
ZZW construction [2], [3] implies that small-embedding-rate codes can
be generated from large-embedding-rate codes. What is more, the large
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payload matrix embedding in [1] can also be used to design =1 or 2
embedding schemes [4].

However, the computational complexity of the method in [1] is still
high, and cannot reach real-time embedding speed that is needed in
some stegnographic applications, e.g., embedding data into audio or
video streams of instant communication systems [5]. Therefore, how
to reduce the computational complexity of matrix embedding while
keeping high embedding efficiency is a critical problem. Recent liter-
ature [6]-[8] proposes some fast matrix embedding algorithms. In [6],
by employing a specific matrix, a secret message can be embedded with
linear complexity. Li ef al. [7] proposed a scheme to reduce embedding
changes via a tree structure of the cover. The method in [7] can be for-
mulated as another specific matrix embedding, which is improved by
Hou et al. [8] with Majority-vote Parity Check (MPC). Compared with
the original matrix embedding [1], these embedding methods [6]-[8]
achieve fast embedding speed but at the cost of a sharp fall of embed-
ding efficiency.

In the present paper, we propose a novel method to reduce the com-
putational complexity of random linear code-based matrix embedding
[1]. We refer to this new method as matrix extending because we de-
sign the fast algorithm by appending some referential columns to the
parity check matrix. Analysis and experimental results show that the
proposed method can flexibly trade embedding efficiency for embed-
ding speed, or vice versa. Compared with the original matrix embed-
ding [1], the proposed method can exponentially decrease computa-
tional complexity by increasing the number of the referential columns
while achieving an equal increment of embedding efficiency. Com-
pared with the fast matrix embedding methods in [6] and [8], the novel
method can reach higher embedding efficiency with faster embedding
speed.

The rest of this paper is organized as follows. Section II briefly
introduces matrix embedding. The matrix extending method is de-
scribed in Section III. Experimental results and analysis are presented
in Section IV. The paper is concluded with a discussion in Section V.

II. MATRIX EMBEDDING

We will use boldface font for matrices and vectors, and denote the
Hamming weight of vector a by w/(a) and the Hamming distance be-
tween two vectors a and b by d(a, b). The complement of one bit a
denoted by @ means flipping @ from 0 to 1 or 1 to 0, and the comple-
ment of a vector a denoted by a means flipping all elements of a. We

denote the all-zero vector having dimension n by 0l =(0.0,...,0),
and the all-one vector by 17 =(1.1,...,1), where “T"” means trans-
pose.

In this paper, we directly assume the cover is a binary sequence,
e.g., the least significant bits (LSBs) of gray values of pixels or the
LSBs of quantized DCT coefficients. Denote the r.-length cover block
by al = (a1,09....,a,) € GF"(2). Because the message is usu-
ally encrypted before being embedded, it can be considered as a bi-
nary random sequence. Denote the m-length message block by m” =
(mi,ma,....,my) € GF™(2), which is independent of the cover.

If we can embed m bits of message m into n bits of cover a by
using R, changes on average, we define embedding rate o« = m/n ,
and embedding efficiency ¢ = m /R, . In [1], it is proven that, for the
given embedding rate, the embedding efficiency is upper bounded by

elw) < , 0<a<]. )
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Herein, H2(x) = —z logy, 2 —(1—2) log, (1 — ) is the binary entropy
function.

The most popular data embedding code is called matrix embedding
which is based on linear codes. Assume . x n matrix H is the parity
check matrix of [n,n — m] linear code, with which we can embed
m bits of messages m” = (m(,ma.....m,) into n bits of cover
a’ = (ai.az,....an) by the following manner. First, calculate the
difference between Ha and m with exclusive-or operation, i.e., Ha &
m. Second, solve the system of linear equations

Hx=Ha4%m 2)
to find a solution vector X,,;, such that

Xmin =

w(x). 3)

arg min
x€GF™(2) Hx=Hacdm

Finally, the stego-object b is obtained by
b=a P Xuwin- (4)

The recipient can extract m by computing

Hb=H(a D xmin)=Ha @ Hxmin=Ha 0 Ha m=m. (5)

To reduce the number of changes, the key problem is to search for a
solution with minimum Hamming weight for the system of (2), which,
however, is a computationally hard problem when H is a random ma-
trix.

To solve (2) with feasible computational complexity, Fridrich et al.
[1] proposed to only use random linear codes [7, k] with small dimen-
sion k. The parity check matrix used in [1] has the following form:

H= [In—ka] (6)

where I, _j isan (n — k) X {n — k) unit matrix, and D is (n — k) x k
random matrix. When using (6) as the coefficient matrix of the system
of (2), the solution space consists of 2% vectors, which can be looked
through via all linear combinations of the % random columns of D.
The computational complexity for finding the solution with minimum
Hamming weight is (»2"). We call this method the original matrix
embedding.

III. MATRIX EMBEDDING BY MATRIX EXTENDING

In the original matrix embedding, when the number of random
columns % increases, the solution space of (2) is exponentially
expanded, and thus we have more chances to find a solution with
smaller Hamming weight. That is why the embedding efficiency can
be improved when £ increases, but the computational complexity of
searching for this solution exponentially grows. In this section, we
propose a novel method, by which we can also exponentially expand
the solution space, but only cost linearly increasing time to search
the solution space. The key idea of the proposed method is to append
some referential columns to the matrix (6).

The referential column is defined as a parity-check column of some
columns of the unit matrix I,,_j, and the referential column is equal
to the exclusive-or of the corresponding columns. For the case of ap-
pending one referential column, the referential column is obtained by
exclusive-or operation of all columns of the unit matrix I,,_4, and,
therefore, is just an all-one column.

A. Appending One Column

When appending only one referential column to the matrix H in (6),
we use the all-one column 17_, = (1,...,1), and get a new parity
check matrix as follows:

El = [H- 177,7k} = [Infk; Da ]-nfk]- (7)

Now we analyze the relation between the solution spaces of the fol-
lowing two system of equations:

Hx =s ®)
Ey =s. )

We divide one solution of (8), x, into two parts such that

x! = (e.d) (10)
where e is the first . — % bits of x, and d is the last & bits of x. Thus
we can construct two solutions of (9) from x as follows:
yi =(e.d,0), y3 = (&.d.1). (11)
For y1, one referential bit “0)” is appended, which means that the
referential column 1Z_, of E; will not be added when computing (9),
and thus (9) will hold if x is the solution of (8). When taking y. into
(9), the referential column will be added, but that can be canceled by
taking the complement of e, because the referential column is the parity
check of'the first 2 — & columns of the matrix H. The canceling process
is shown as

E1y2 = (In—/u D7 1n—k) . (é7 d-, l)T

=L_&" ¢Dd" 1,41

:In—keT ¢ In—kln—k = DdT ¢ ]-n—k

=1, e 7Dd"

=(I.-1,D)(e,d)’ =Hx =35, (12)

On one hand, the solution space of (9) is twice as large as that of

(8). On the other hand, from each solution of (8), we can construct
two corresponding solutions of (9) by appending a “0” or appending
a “1” and flipping the first n — k bits as shown in (11). Thus we can
find the minimal-weight solution of (9) by only exhausting the solution
space of (8) in the following manner. For each solution x of (8), denote
its weight by w(x) = w(e) + w(d). With (11), the weights of two
corresponding solutions of (9) are equal to w(e) 4+ w(d) andn — k —
w(e) + w(d) + 1, respectively. We only need to record the minimal
weight and construct the corresponding solution by (11).

B. Appending h Columns

For the case of appending % referential columns, we divide the
columns of L, _;. into % disjoint groups, and the ¢th referential column
is equal to the exclusive-or of the 7th column group. Therefore, the ith
referential column has all-one at the ith segment and all-zero at other
segments, which is used as the parity-check of the ¢th column group.
Denote the size of the ith segment by , that satisfies S| ¢; = n— k.
We hope each segment has equal size because the effect of the referen-
tial column is independent with its positions. In practice, We usually
take #; as

—k
n/l J,

t; = { (n— k) — (h — (13)

D]
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The ith referential columns r; are constructed with the following form:

r) = (0.0, . 1;,.00 . ....0,), 1< i< B (14)

i—1°

i+12 "
By appending these referential columns, we get the extending matrix

E;L =H || ry || e || r, = [In—k--, D./ Ti,..., I‘/,]. (15)
On the other hand, we also need to divide the subvector e of the solution
x = (e,d) of (8) into i segments, that is

x = (e,e2,...,ex,d) (16)
where the dimension of e; is equal to ¢;.

When embedding »: — & bits of messages m into » 4 /& bits of cover
a with E,, we should search the solution space of following system of
equations:

E,y = E,aSm. 17)
To do that, we only need to search the solution space of
Hx = E,a ] m. (18)

In fact, for any solutionx” = (e, es....,ex,d) of (18), there are 2"
corresponding solutions of (17), having the form

yT = (fl‘,fQ‘,“"fh',d‘,rlﬂ,r'zw"

19)

- 17'17,)

where f; = e; ifr;, = 0,and f; = &, if r; = 1. With the similar
process as (12), we can verify the 2" vectors constructed by (19) are
solutions of (17).

In fact, setting the ¢th referential bit »;, = 1 means adding the ith
referential columns, which is equivalent to adding the columns in the
ith groups of I, _j.. Therefore, (17) will hold when we set »; = 1 and
flip the bits in the 7th segment of the solution of (18) simultaneously.
In other words, when constructing solutions of (17) from one solution
x of (18), for each segment e; of x, there are two cases according to
r; = 0 or 1, and we select the case with small Hamming weight.

In summary, the minimal Hamming weight of these 2" solutions of
(17) can be calculated by adding w(d) to

h

Z min(w(e;), t; — wle;) + 1).

=1

20)

Based on the above method, the embedding and extraction processes
are elaborated in Algorithm 1.

Algorithm 1 Matrix Embedding by Matrix Extending (ME&ME
Algorithm)

Embedding Process

a) Generate ann x (n — k) parity check matrix H having
the form (6), and extend it to a matrix E, by appending
h columns with (15).

b) Take an (1 + &)-length cover block a, and an (n — k)-length
message block m.

¢) Search for all 2% solutions of Hx = Exa & m, and write
each solution with the form x = (e, es,..., ey, d),
from which calculate a weight with (20). Thus we calculate
2% weights in total, but only need to save the minimal
weight and one corresponding solution denoted by
x = (ef.eh,....el.d).

d) Forl < i < h,ifw(e]) < ¢ —wlel)+1,let
f* = e andr; = 0; otherwise, letf” = &€ andr; = 1.

Construct the minimal-weight solution y* of (17) such that
v =, Ao, ).
e) Modify the cover block a to generate the stego block b
such thatb = a ¢ y™~.
Extraction Process
Extract the message block m by calculating m = E;b.

Now we use a simple example with » = 2 to show the process of
Algorithm 1.

Example 1: Taken = 6,k = 2,t, = to = 2. Generate the original
parity check matrix as

2]

oo o
oo = O
o= o O
= o o <
o= OO
S = = O

After appending two columns, the matrix H is extended as follows:

10 00
01 0 0
0 0 1 0
00 01

) 01 0
) 1.1 0
1 01
) 0 0 1

(22)

= =

Suppose the cover block is a’” = (1.0,0,0,1.1,1,0), the message
block to be embedded is m* = (0,0,1,1). To solve
Eyx=E.,alm (23)
we first solve Hx = Esa & m, which has four solution vectors: x] =
(0,0,1,1,0,0), x5 = (0,0,0,1,1,0), x] =(0,1,0,1,0,1),x) =
(0,1,1,1,1,1). By (20), we obtain four weights {1, 2, 3, 4}, in which
the minimal weight 1 is calculated from x1, i.e., x* = x1. By using
the construction in Step d) of Algorithm 1, we get the minimal-weight
solution of (23) such that v*T =1(0.0,0,0,0.0,0,1). Thus, by only
one modification, we generate the stego block b” = (a & y*)” =
(1,0.0,0,1,1.1,1). It is easy to verify that m = E.b.

IV. EXPERIMENT RESULTS

A. Comparison With Original Matrix Embedding

In Algorithm 1, by appending % referential columns, the size of the
solution space is expanded from 2* to 247", therefore, the expecta-
tion of Hamming weight of the minimal-weight solution will decrease,
which will lead to increasing embedding efficiency. In the original ma-
trix embedding[1], by adding ~ random columns, i.e., let the code di-
mension k' = k + h, we can also get a solution space with the same
expanded size, and thus expect a similar increment of embedding effi-
ciency, which, however, will make the computational complexity ex-
ponentially increase from O(n2* ) to O(n?kﬂl). In Algorithm 1, to
find an optimal solution in the expanded solution space with a size of
2%+% we only need to search a small solution space with a size of 2%,
and do & comparisons and additions by (20) for each solution. There-
fore, the computational complexity is equal to O((n 4+ h)2*), which
linearly increases with %, and thus Algorithm 1 can achieve equal em-
bedding efficiency with faster embedding speed when compared with
the original matrix embedding[1].

To verify the conclusion above, we embed messages into a random
cover by using the original matrix embedding of [1] and Algorithm 1,
respectively. For the method in [1], we take & = 14 and vary the cover
block length » from 66 to 280 to get various embedding rates. For Al-
gorithm 1, we take & = 10, i = 4, and also vary » from 66 to 280. For
each embedding rate, we embed 1000 blocks of random messages, and
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Fig. 1. Comparison between proposed method and the original matrix embedding [1]. (a) Embedding efficiency versus embedding rate. (b) Embedding speed

versus embedding rate.
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Fig. 2. Comparison between proposed method, specific matrix method [6], and MPC method [8]. (a) Embedding efficiency versus embedding rate. (b) Embedding

speed versus embedding rate.

calculate embedding efficiency by the average number of changes. As
shown in Fig. 1, the two methods achieve equal embedding efficiency
[Fig. 1(a)], while the embedding speed of the proposed method sig-
nificantly outperforms the original matrix embedding [Fig. 1(b)]. The
embedding speed is measured by Kbits of covers per second for four
kinds of embedding rates. The test was performed on Intel Core 15 run-
ning at 2.67 GHz with 4-GB RAM. The algorithm was implemented in
C and compiled under Microsoft Visual Studio 2008.

B. Comparison With Fast Matrix Embeddings

We also compared Algorithm 1 with previous fast matrix embed-
ding in [6] and [8]. Gao [6] et al. proposed a specific parity check
matrix, which can embed messages with linear computational com-
plexity according to the length of the cover block. The Majority-vote
Parity Check (MPC) method [8] is an improving version of the Tree-
Based Parity Check (TBPC) method [7], which embeds messages with
linear computational complexity according to the length of the mes-
sage block. The embedding efficiency of both methods in [6] and [8]
is lower than the original matrix embedding with dimension % = 4. To
compare with methods in [6] and [8], we take ¥ = 2 and A = 2 in Al-
gorithm 1. As shown in Fig. 2, the proposed method can reach higher
embedding efficiency as well as faster embedding speed.

C. Discussion on Parameters

The most important parameter for Algorithm 1 is the number of ref-
erential columns /. Although embedding efficiency can be improved
by increasing f, the improvement will stop when /. is too large. Fig. 3
shows how embedding efficiency varies with .. when taking & = 4, 6,
and 8 at embedding rate o = 0.8. The peak of embedding efficiency

-
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The number of referential columns h

Fig. 3. Variation of embedding efficiency with increasing ~ for k = 4, 6, and
8 at embedding rate o = 0).8.

appears at h = 8 for & = 4, appears at h = 6 for k = 6, and appears
at h = 8 for & = &. Thus, we draw a conclusion that the maximum
available h for improving embedding efficiency is limited by k. How-
ever, how to derive the general relation between /& and £ is still an open
problem.

The segment size ¢; is the other important parameter used by Al-
gorithm 1, in which we try to set uniform size for every segment by
(13), because each referential column has equal effect that is indepen-
dent with its position. In fact, adding referential columns in a flexible



350 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 7, NO. 1, FEBRUARY 2012

w
n

T T T T
—©— Uniform segment sizes
—+&— Random segment sizes [

©
o
T

W
T

N
©

N
Y

Embedding efficiency e
N
[e0]

N
o
T

N
2]
T

0.7 0.75 0.8 0.85 0.9 0.95 1
Embedding rate o
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sizes.

manner will not improve the performance, which is illustrated by the
following experiments. We take & = 10, ~ = 4, and embed mes-
sages with various embedding rates in two manners by setting uniform
segment sizes with (13) and random segment sizes, respectively. As
shown in Fig. 4, random segment sizes will decrease the embedding
efficiency. On the other hand, from Algorithm 1, it is obvious that seg-
ment sizes have no effect on computational complexity.

V. CONCLUSION

In this paper, we proposed a fast matrix embedding method for data
hiding by appending referential columns to the parity check matrix. The

novel method can significantly reduce the computational complexity
of the original matrix embedding [1], and achieve higher embedding
efficiency and embedding speed than previous fast matrix embedding
methods [6], [8]. By adjusting the parameters % and /, the user can
flexibly make a trade-off between the embedding efficiency and em-
bedding speed. This method can be used to design real-time stegano-
graphic system.
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