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Improving Various Reversible Data Hiding Schemes
Via Optimal Codes for Binary Covers

Weiming Zhang, Biao Chen, and Nenghai Yu

Abstract—In reversible data hiding (RDH), the original cover
can be losslessly restored after the embedded information is ex-
tracted. Kalker and Willems established a rate—distortion model
for RDH, in which they proved out the rate—distortion bound and
proposed a recursive code construction. In our previous paper, we
improved the recursive construction to approach the rate—distor-
tion bound. In this paper, we generalize the method in our previous
paper using a decompression algorithm as the coding scheme for
embedding data and prove that the generalized codes can reach
the rate—distortion bound as long as the compression algorithm
reaches entropy. By the proposed binary codes, we improve three
RDH schemes that use binary feature sequence as covers, i.e., an
RS scheme for spatial images, one scheme for JPEG images, and a
pattern substitution scheme for binary images. The experimental
results show that the novel codes can significantly reduce the em-
bedding distortion. Furthermore, by modifying the histogram shift
(HS) manner, we also apply this coding method to one scheme that
uses HS, showing that the proposed codes can be also exploited to
improve integer-operation-based schemes.

Index Terms—Difference expansion (DE), histogram shift (HS),
recursive code construction, reversible data hiding (RDH), water-
marking.

I. INTRODUCTION

ATA HIDING is a technique for embedding information

into covers such as image, audio, and video files, which
can be used for media notation, copyright protection, integrity
authentication, covert communication, etc. Most data hiding
methods embed messages into the cover media to generate the
marked media by only modifying the least significant part of
the cover and, thus, ensure perceptual transparency. The em-
bedding process will usually introduce permanent distortion to
the cover, that is, the original cover can never be reconstructed
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from the marked cover. However, in some applications, such
as medical imagery, military imagery, and law forensics, no
degradation of the original cover is allowed. In these cases, we
need a special kind of data hiding method, which is referred
to as reversible data hiding (RDH) or lossless data hiding, by
which the original cover can be losslessly restored after the
embedded message is extracted.

Many RDH methods have been proposed since it was intro-
duced. Fridrich and Goljan [1] presented a universal framework
for RDH, in which the embedding process is divided into
three stages (See Fig. 1). The first stage losslessly extracts
compressible features (or portions) from the original cover.
The second stage compresses the features with a lossless
compression method and, thus, saves space for the payloads
(messages). The third stage embeds messages into the feature
sequence and generates the marked cover. One direct reversible
embedding method is to compress the feature sequence and
append messages after it to form a modified feature sequence,
by which replace the original features to generate the marked
cover. Therefore, after extracting the message, the receiver
can restore the original cover by decompressing the features.
Fridrich and Goljan [1] suggested features obtained by ex-
ploiting characteristics of certain image formats, e.g., texture
complexity for spatial images and middle-frequency discrete
cosine transform (DCT) coefficients for JPEG images. Celik
et al. [2] extended Fridrich and Goljan’s scheme by predicting
multiple least significant bit (LSB) planes. The same idea
proposed in [1] can be also used for reversible data embedding
into binary images [3], [4] or videos [5], [6].

Larger embedding capacity can be achieved by constructing
a longer feature sequence that can be perfectly compressed. One
of such constructions is difference expansion (DE), which was
first proposed by Tian [7], in which the features are the differ-
ences between two neighboring pixels. The features are com-
pressed by expansion, i.e., the differences are multiplied by 2,
and thus, the LSBs of the differences can be used for embed-
ding messages. Alattar [8] generalized Tian’s method by ap-
plying DE to a vector of pixels. Kim ef al. [9] improved the DE
method by reducing the size of the location map used to com-
municate position information of expandable difference values.
The methods proposed in [10] and [11] can achieve better per-
formance by applying DE to the prediction errors.

Another well-known strategy for RDH is histogram shift
(HS), in which the histogram of the image is used as the com-
pressible features because the distribution of the pixel values
of an image is usually uneven. To compress the histogram,
Ni et al. [12] proposed to select a peak bin and a zero bin
and shift the bins between them toward the zero bin by one
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Fig. 1. Diagram for the framework of RDH at the sender side.
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Fig. 2. Side information used at the receiver side in three frameworks.

step. Therefore, the peak bin’s neighboring bin, which is now
emptied out, and the peak bin can be used to represent “1”
and “0,” respectively. It is easy to see that a steeper histogram
implies larger capacity, and, usually, the histogram of residuals
is quite steep. Thus, most state-of-the-art methods apply HS to
residuals of the image [13], [14].

Both DE- and HS-based schemes use integer features and
special methods to compress the features. As for DE, the fea-
tures (differences) are compressed by expansion operation, and
as for HS, the features (histogram) are compressed by shifting
operation. There is a common character in both these schemes,
that is, the distortion to the original cover is mainly introduced
by the special compressing manners. By contrast, Fridrich
and Goljan’s schemes [1] use a binary feature sequence and
a generic compression algorithm, e.g., the arithmetic coder,
and no distortion must be introduced by the compression.
According to such differences, we divide RDH into two types
as follows.

* Type I. The features can be formulated as a binary se-
quence and can be compressed by using a generic com-
pression algorithm. The methods in [1]-[6] belong to Type
L.

* Type II. The features are nonbinary and compressed
in some specific manners. Both DE-based [7]-[11] and
HS-based methods [12]-[14] belong to Type II.

For Type-I RDH, the problem is formulated as how to re-
versibly embed data into a compressible binary sequence with
good performance. The performance is measured by embedding
rate versus distortion, which is a special rate—distortion coding
problem. A formal model for this problem has been established
by Kalker and Willems [15]. In [15], the authors obtained the
rate—distortion function, i.e., the upper bound of the embed-
ding rate under a given distortion constraint, and, by dividing
the cover into disjoint blocks, they proposed a recursive code
construction, which consists of a nonreversible data embedding
code and a conditional compression code. In fact, Kalker and
Willems noted that the receiver can reconstruct the cover with
the help of the marked cover, and thus, the sender can compress
the cover under the condition of the marked cover. That is why
the recursive construction is efficient.

In our previous paper [17], we improved the recursive con-
struction by using not only conditional compression but also
conditional embedding, which enables us to design an efficient

embedding algorithm and a perfect compressing method to
approach the rate—distortion bound. In fact, we noted that the
receiver could extract messages from the marked cover with
the help of the reconstructed cover because of reversibility. In
Fig. 2, the side information exploited at the receiver side in
the proposed framework is compared with those used in two
previous frameworks.

However, there are still limitations in three aspects in [17].
First, we construct embedding codes by improving the decom-
pression algorithm of run-length coding, by which the recursive
code construction is close to but cannot reach the rate—distortion
bound. Second, the codes in [17] are restricted to some discrete
embedding rates and cannot approach the maximum embedding
rate at the least admissible distortion. Third, the codes are re-
stricted to improve Type-I RDH for spatial images, and how to
improve Type-II RDH by binary codes is still a problem.

In this paper, we generalize the code construction in [17] by
using a general decompression algorithm as the embedding code
and extend the applications to Type-II RDH. Compared with our
preliminary paper [17], the new contributions of this paper are
as follows.

* We prove that the recursive code construction can reach
the rate—distortion bound when the decompression/com-
pression algorithms used in the code are optimal, which
establishes equivalence between source coding and RDH
for binary covers.

* With the decompression of the adaptive arithmetic coder
(AAC) as the embedding code, the proposed codes realize
continuous embedding rates and reach the maximum em-
bedding rate at the least admissible distortion.

* A method is presented to improve integer-operation-based
RDH (Type II) by the proposed binary codes, which are
also applied to Type-I RDH for JPEG and binary images.

The rest of this paper is organized as follows. The coding
model, rate—distortion function, and recursive code construc-
tion are briefly introduced in Section II. The proposed codes
with proof of optimality are elaborated in Section III. Some im-
plementation issues and performance comparison are discussed
in Section IV. In Section V, we improve Type-I schemes,
including schemes for spatial, JPEG, and, binary images.
Section VI addresses how to improve Type-II schemes with
the proposed binary codes. This paper is concluded with a
discussion in Section VII.
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II. CODING MODEL AND RECURSIVE CONSTRUCTION

A. Coding Model

Throughout this paper, we denote matrices and vectors by
boldface fonts and use the same notation for the random variable
and its realization, for simplicity. We denote entropy by H (X)
and conditional entropy by H(X|Y). Particularly, the binary
entropy function is denoted by Hs(p) for 0 < p < 1, and
the ternary entropy function is denoted by Hs(p1, pe,p3) for
0 < prp2,ps <landpr +p2+ps =1

To do RDH, a compressible feature sequence should be first
extracted from the original cover. For Type-I schemes, the fea-
tures can be usually represented by a binary sequence. There-
fore, we directly take the binary feature sequence as the cover
to discuss the coding method and follow the notation established
in [15].

Assume that there is a memoryless source producing binary
compressible cover sequence X = (u1, %, ...,z ) such that
x; € {0,1} with the probability P(x; = 0) = py and P(z; =
1) = p1,1 € i < N. The assumption of x being compressible
implies that the ratios of “0’s” and “1’s” are biased. Without
loss of generality, we assume that pg > 1/2. We use Hamming
distance to measure the embedding distortion on the cover x.
Because the message m is usually compressed and encrypted
before being embedded, we assume that the message is a binary
random sequence. If we can reversibly embed an L-bit message
m = (my,ma,...,my) into x to get the marked cover y =
(y1, 92, - . -, yn ) with d modifications on average, we define the
embedding rate as p = L/N and the distortion as A = d/N.
For any given distortion constraint, we desire the embedding
rate as high as possible.

A direct construction for RDH was proposed by Fridrich and
Goljan [1] as follows. First, compress the cover x into a string
Comp(x) with a lossless compression algorithm Comp(-). The
length of Comp(x) is approximately equal to N Ho(pg ). There-
fore, we can averagely append N (1 — Ha(pg)) bits of message
m after Comp(x) to obtain y = Comp(x)||m. The recipient
can extract the message m from y and reconstruct x by de-
compressing Comp(x ). As the bits of Comp(x) are uncorrelated
with those of x, and the message m is random, the expectation
of distortion between x and y is 0.5. The embedding rate is equal
to (1 — Hs(po)), which, in fact, is the maximum achievable em-
bedding rate. If we only need to embed a shorter message with
length equal to aN (1 — Hz(py)) for some o < 1, we can exe-
cute the aforementioned method on a fraction « of the symbols
in x. In this case, the embedding rate p = (1 — Ha(pp)) and
the distortion A = /2. Therefore, for the distortion constraint
A, this simple method can achieve a rate—distortion curve, i.e.,

[)sml(pOA) =2A (1—H2(]70)) (1)

Virtually, the simple method above is not optimal.

The maximum achievable embedding rate within the dis-
tortion constraint A is called the capacity under the distortion
A. The following theorem proved by Kalker and Willems [15]
gives the expression of capacity.
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Theorem 1: The reversible embedding capacity pre, for a
memoryless binary source with pg > 1/2 s, for 0 < A < 1/2,
given by [15]

Prev(po, A) = Ho (max(po — A, 1/2)) — Ha(po).  (2)

Note that the above bound can be increased for nonmemory-
less sequences, but we assume the binary cover is memoryless
throughout this paper, and this assumption, in fact, is suitable
for most schemes.

B. Recursive Construction

To approach the rate—distortion curve, Kalker and Willems
[15] proposed a recursive embedding method, which consists of
a nonreversible embedding code and a conditional compression
algorithm. First, select a nonreversible embedding code £ with
distortion A and embedding rate p. Assume the binary cover
sequence X = (x1,%2,...,2y) is sufficiently long. The se-
quence is segmented into disjoint blocks of length K, such that
x = xq||x2|| . .. ||xn/ & - Without loss of generality, we assume
that N/K is a sufficiently large integer. With the embedding
code £, K p bits of message m; can be embedded into the first
host block x4, resulting in the first marked block y; . The recip-
ient can reconstruct x; under the condition of known-y; after
she receives y;. Therefore, the amount of information needed
to reconstruct x; is equal to H(x1]y1), which means we can
compress X3 into a sequence of length F7(x;|y;) on average.
This compressed sequence is embedded into the second block
X3, averagely leaving room for Kp — H(x1|y1) bits of auxil-
iary message. Similarly, the information for reconstructing x,
is embedded into x3. This process is recursively continued until
Xn/x 1. For the last block X/ i , the simple method described
in Section II-A is used to complete a full RDH method. When
N and N/K are large enough, the distortion of this method is
equal to the distortion of code £, and the embedding rate is equal
top— H(xi|y1)/K.

This recursive construction performs better than the simple
method because of two key points: 1) The data is embedded
by an efficient nonreversible embedding code, and 2) the cover
block is compressed under the condition of the marked block.
However, the above recursive construction cannot approach the
upper bound (2).

III. IMPROVED RECURSIVE CONSTRUCTION

A. Motivations and Overall Framework

In this section, we will improve the recursive construction
to approach the rate—distortion bound for any given distortion
constraint. To do that, we first observe the rate—distortion func-
tion (2), which shows that the maximum capacity is equal to
1 — H3(po), and it can be achieved when distortion A = py —
1/2. In Fig. 3, we draw the rate—distortion curves for pg = 0.7
and 0.9, which show that the capacity increases with distortion
A for0 < A < py — 1/2 but keeps equal to 1 — H(py) for
po—1/2 < A < 1/2. Therefore, we only need to consider how
to construct codes for 0 < A < pg — 1/2. On the other hand, in
[15, Corollary 1], Kalker and Willems proved that the optimal
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Fig. 3. Maximum capacity for py = 0.7 and 0.9.

embedding manner for 0 < A < pg — 1/2 is that only the most
probable symbol, i.e., “0,” is allowed to be modified.

Inspired by the above observation, we improve the recursive
construction as follows. We only embed messages into “0’s” of
the cover blockx; = (= IR 73 %) to obtain the marked block

for the ith block such that 1 < ¢ < N/K — 1. Therefore, for
the position j such that y; ; = 0, the corresponding x; ; must
be also equal to 0. This property can be used to compress x;
under the condition of known-y;. In fact, we can first delete the
symbol z; ; in x; at position j such that y; ; = 0 and obtain a
subsequence of x;, which is denoted by x}, and then compress
x; by a lossless compression algorithm Comp(-). This method
will greatly improve the compression rate because most sym-
bols in x; have been compressed by deletion. The compressed
x;, which is denoted by Comp(x}), cascaded with an auxiliary
message, is embedded into the next block x;41 to get the next
marked block y;+1. To extract the message and reconstruct the
cover, the extraction process must be performed in a backward
manner. To extract message from y;, we first extract message
from y; 1 and obtain x; by decompression. Combining x/; and
¥i, We can reconstruct x; and find the positions of “0°s” in x;.
According to the positions of “0’s” in x;, we can extract mes-
sage from y;.

The detailed process and an example for embedding and ex-
traction will be described in Section III-B.

B. Improved Recursive Construction

We first need an embedding algorithm for embedding data
only into zero symbols, which, in fact, is a special case of the
coding model in Section II with taking pg = 1. By (2), the
capacity for pg = 1 is equal to FI3(A), which implies that the
optimal method for embedding data into only “0’s” is equivalent
to decompression.

For example, assume C is a lossless compression algorithm
that has compression rate C'(A) for a memoryless binary source
with p; = A, and then, we can use the decompression algorithm
of C to embed data into zero symbols. In fact, into an n-bit zero
cover, we can embed nC(A) bits of random messages, on av-
erage, by decompressing the message into an n-bit sequence by
setting p1 = A as the parameter of decompression. To extract
the message, we only need to compress the n-bit sequence back
to the nC'(A) bits of messages. Obviously, the embedding rate
is equal to C'(A), and the distortion is equal to A because, on av-
erage, nA “0’s” are changed to “1’s” in the embedding process.
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Therefore, if the compression algorithm C' is optimal, i.e., the
compression rate C(A) = Hz(A), we just achieve the embed-
ding capacity.

To improve the recursive construction in [15] and [16], we
use the decompression algorithm of C as the embedding code
and design a corresponding conditional compression algorithm
for the cover based on C.

Assume that the binary cover sequence x = (1, %2.....Zx)
is generated from a memoryless source satisfying P(x; = 0) =
po and P(z; = 1) = p;. To embed messages into x reversibly
with distortion constraint A, we first divide x into N/K dis-
joint blocks of length K, such that x = x||x2]| ... ||xy/x. In
each block, we only embed messages into zero symbols via the
decompression algorithm of C'. Note that, when the distortion
on the sequence x is A, the distortion on zero symbols is A /pg
because only “0’s” will be modified. Therefore, we use A/pg
as the parameter of the decompression algorithm of C' and, on
average, decompress the first

KpoC (é>
Po

bits of messages into a K pp-bit sequence, which is denoted
by y}. The sequence y; will include KpoA/py = KA
“l’s,” on average. By replacing the Kpy “0’s” in x; =

)

(£11,...,21 k) with y7, we just obtain the first marked block
vi = (y11,--.,41,x), which introduces KA changes, on
average.

Therefore, at the position j, suchthat1 < j < K and y1 ; =
0, the corresponding z1 ; must be also equal to “0” because
no “1” in xy has been flipped to “0.” We use this property to
compress x; under the condition of known-y; by deleting all
symbols in x; at position j’s, such that y; ; = 0, resulting in
a subsequence of x;. Denote this subsequence by x], and thus,
xi) = {x1]1 € j € K,y1; = 1}. Note that the proportion
of “0’s” in y; is equal to the ratio of nonmodified “0’s” in x1,
that is, po(1 — A/pg), and thus, the ratio of “1°’s” in y; is equal
tol —po(l — A/po) = 1 — po + A. Therefore, the average
length of x| is equal to K (1 — pg + A). In other words, under
the condition of known-y, the block x; is compressed to x}
with compression rate 1 — pg + A, and we can reconstruct x;
by replacing “1°s” in y; by the symbols of x} .

Furthermore, we compress x; with the lossless compression
algorithm C. Denote the proportion of “0’s” and “1°s” in x}
by ¢o and g1, respectively, which can be easily computed as
follows:

A L —po

, 41 = — 4
1—po+A n 1—pg+ A @)

do =
Therefore, x} can be compressed with the rate C{gq). Denote
the compressed information by Comp(x} ). In summary, when
y1 is known, the amount of information needed to reconstruct
X1, i.€., the length of Comp(xY ), is, on average, equal to

= >.(5)

K(1=po+A)C(qo) = K(1—po+A)C | ————
(1-po+A)C(q) = K(1-po+A) <1—po+A

By using the decompression algorithm of C, we embed
Comp(x}) into the “0’s” of the next block x2, leaving room
for embedding K (poC{A/pg) — (1 — po + A)C{qon)) bits of
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Index 1 2 3 4 5 6 7 8 9 10 Second Block
message 0 1 1 1 1 0
y, ‘ 0 0 0 0 0 1 0 0 1 |
X, o o 1 0 0 0o 0o 0 o0 0 |
v o o 1 0 0o 0o 1 0o o 1 | comx).
' 1 0 0
Comp( x| ) Comp( Y )

Fig. 4. Example on the improved recursive construction.

auxiliary messages, on average, and resulting in the second
marked block y». The information for reconstructing x», which
is denoted by Comp(x} ), is embedded into the third block x3.
This process is recursively continued until the one but the last
block X /5. For the last block Xy, x, we directly compress
the block and make room for K (1 — C'(pg)) bits, on average,
into which we embed Comp(x/y, / 1) for reconstructing the
second last block X5 1. In addition, we also embed the
overhead information, such as parameters K, pg, and A, into
the last block.

To extract the message and reconstruct the cover, the extrac-
tion process must be performed in a backward manner. To ex-
tract messages from the ith block y;, for 1 < i < N/K — 1,
we must first extract messages from y; ;1 and obtain x;} by de-
compression. Combining x; and y;, we can reconstruct x; and
find the positions of “0’s” in x;, according to which we extract a
subsequence from y; and compress this subsequence by C' with
A/py as the parameter to obtain the message hidden in y;.

When N and N/K are large enough, the distortion of the
method above is just A, and by (3) and (5), the corresponding
embedding rate p(pg, A) can be calculated by

A
1—P0+A)' ©

Now, we use an example with only two blocks to illustrate
the embedding and extraction process of the method described
above.

Example 1: As shown in Fig. 4, the first cover block x; con-
sists of nine “0’s” and one “1,” and thus, pg = 0.9. Set the
distortion constraint A = 0.2, and therefore, the distortion on
zero symbols is equal to A/pg 2/9. With 2/9 as the pa-
rameter of the decompression algorithm, assume that the first 7
bits of the message are decompressed into a 9-bit sequence y7.
By replacing “0°s” in x; with y/, we generate the first marked
block y;. Denote the index set of “1’s” in y; by Ind;, and thus,
Ind; = {3,7,10}, according to which we extract bits from x
and getx) = (3, 27, 210) = (1,0,0). The sequence x} is com-
pressed to Comp(x} ) and then embedded into the second block.

p(po, A) = poC (é) —(I=po+A)C (

Po

To reconstruct the cover block and extract messages from the
marked block y1, we first count the number of “1°s” in y, that
is, equal to 3. Second, we extract messages from the second

marked block and decompress the extracted messages succes-
sively until we get a 3-bit decompressed sequence, which is just
x. Thus, we can reconstruct x; by replacing the “1’s” in y;
by x). After that, we find the index set of “0’s” in x4, such that
Indy = {1,2,4,5,6,7,8,9,10}, according to which we extract
bits from y; and get the sequence y;. Finally, we can extract
the seven message bits by compressing y7.

C. Optimality

The next theorem shows that the proposed code construction
is optimal as long as the compression algorithm C is optimal.

Theorem 2: The proposed codes reach the embedding ca-
pacity prev [see eq. (2)] when the compression rate of C' is equal
to entropy, i.e., C(p) = Ha(p) for0 < p < 1/2.

Proof: As mentioned in Section III-A, the maximum ca-
pacity pmax = 1 — H2(po) appears at A = py — 1/2, and thus,
we only need to consider the distortion range [0, pg—1/2]. When
0 < A < py—1/2,(2) can be rewritten as

Prev(po, A) = Ha(po — A) — Ha(po). (7

On the other hand, when the compression rate of C' is equal

to entropy, the embedding rate p [see eq. (6)] of the proposed
codes can be rewritten as

(®)

By the grouping property of entropy [18], on one hand, we
have

A

A
plpo, A) = poHo (Z)—O) —{1—py+A)H, <m

Hi(po— A1 —pg, A)

:Hz(PO—A)+(1—P0+A)H2< A

_ 9
1-— Po + A) ( )
and, on the other hand, we have
Hiy(po — A1 —po, A) = Hy(1 — po,po — A, A)
A
= Ha(1 — po) + poH> (—)
Po

A
= Ha(po) + poH> (—) . (10)
Po
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Subtracting (8) from (7), we have

Prev (pOa A) - p(po, A)
= [Ha(po — A) — Ha(po)]

e () - 02 (05

- [Hz(po ~A)+ (1 pot+ A)H, (wﬁ)]

_ [HQ(po) + poH> ({%ﬂ

- HS(PO - A? 1 — Do, A) - HS(pO - Av 1- Do, A)
=0 (11)
and thus, we obtain the theorem. Herein, the third equality fol-
lows from (9) and (10).

IV. IMPLEMENTATION ISSUES AND PERFORMANCE
COMPARISON

A. Overhead in the Last Block

In this paper, we propose the AAC [19] as the compression
algorithm and the decompression algorithm of AAC as the em-
bedding code, which can approximately reach the entropy.

In practice, we should set a proper length for the last block.
Denote the estimated length of the last block by Ki.st. After
compression, the left room in the last block is about K, (1 —
Hsy(pg)) bits, in which we will embed not only the informa-
tion for reconstructing the second last block but also some over-
head information. On one hand, to reconstruct the second last
block, we need, at most, K /2 bits because the number of “1°s”
in ¥ias¢—1 is not more than K /2. On the other hand, the over-
head consists of some parameters necessary to the recipient, the
length of which is denoted by Lve;:. Thus, the estimated length
of the last block K. is enough, if

K
Kla,st (1 - -HZ(p(])) Z 5 + Lovor (12)
which implies that the lower bound of the length of the last block
is

(13)

K/2+ Lover
Klast = ’7 / —‘

(1 - H2(P0))

Therefore, for a cover sequence of length N, the estimated
number of K -bit blocks, i.e., Num, is equal to

N — Klast J

= (14)

Num = L

Thus, we get the estimated length of the last block as follows:

K =N—-K-Num. (15)

Note that the estimated length K, may be not enough in
practice when the ratio of “0°s” in the last block is far from py,
that is, the overall ratio of “0’s.” Therefore, we should modify
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10 bits
of A

10 bits
of py

10 bits

Comp( Xy ) of Py

Comp(x,,,; )

Fig. 5. Structure of the last marked block.

the value of K. . First, take the last K. bits from the NV -bit
cover and calculate the ratio of “0’s” in these bits, which is de-
noted by pfj. Second, by using pj, we modify the lower bound
of the length of the last block as

K/Z + Lover —‘
7
A P e (16)
—et [(1 — H(pp)))
and modify the number of K -bit blocks as

N ’ N - Kllast 17
Thus, the length of the last block is given by

K[, ,=N-K:Num. (18)

To extract messages exactly, the recipient should know the
length K~ of previous blocks and the parameters pg, pj, and
A needed by the compression/decompression algorithm. Block
length K can be fixed in advance by the sender and the recip-
ient. Thus, the overhead consists of pg, pjj, and A. In practice,
it is enough to take three decimal for each parameter, and thus,
30 bits are enough for the overhead, i.e., Lover = 30. We embed
the overhead into the end of the last block. The structure of the
last block is shown in Fig. 5.

When extracting messages from the /V-bit marked sequence,
the recipient first reads the parameters py, pj), and A from the
last 30 bits of the sequence and then computes gg by (4). Further-
more, the recipient obtains K7, ., by (13) (14) (15) (16) (17) (18)
and determines the start point of the last block and then reads
bits successively and decompresses them with p;, as the param-
eter. When the length of the decompressed sequence is equal to
K., stop the process of decompression because the last cover
block x1.4¢ has been obtained. Continue reading bits from the
last marked block and decompress them with qq as the param-
eter until the length of the decompressed sequence is equal to
the number of “1°s” in the second last marked block yyast 1.
This decompressed sequence is just x|, , which will be used
to reconstruct the second last cover block Xj.. —1. Next, with
A/pg as the parameter, the extraction process, as described in
Section II1-B, will be continued until the first marked block.

B. Determining the Parameter A

In practice, when we need to embed an A -bit message into
an N -bit cover, we should determine the minimal distortion A
as the parameter for realizing the embedding rate p = M/N.
We first calculate the length of the last block K7, by (13)
(14) (15) (16) (17) (18) and get the modified embedding rate
p' = M/(N — Kj_,). Theorem 2 implies that the rate—distor-
tion bound (2) can be used to estimate the embedding rate of the
proposed codes when the last block is neglected. Therefore, we
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Fig. 6. Comparison of embedding rate versus distortion between the proposed codes and codes in [15]-[17]. (a) po = 0.7. (b) po = 0.9.

use the reverse function of (2) to estimate the needed parameter
A, that is

A= pin(po: ) (19)
which will be embedded into the tail of the cover, as shown in
Fig. 5. Note that the A obtained by (19) is not distortion on the
original V-bit cover but on its first ¥ — K] __, bits.

C. Performance Comparison

In this paper, we propose the decompression algorithm of the
AAC [19] as the embedding algorithm, whereas in our previous
paper [17], we used the improved reverse zero-run length (RZL)
coding [6] as the embedding algorithm. In fact, the improved
RZL can be viewed as a modified version of the decompression
algorithm of run-length coding. When we compare these two
methods, the AAC is used as the compression algorithm in both
cases.

We also compare these two methods with the codes proposed
in [15] and [16]. In the original recursive construction [15],
Kalker and Willems used Hamming matrix embedding [20]
as the nonreversible data embedding code, by which they can
embed £ bits of message into 2% _ 1 cover bits with, at most,
one modification. The Hamming codes modify “0°s” and “1°s”
with equal probability. Maas et al. [16] improved the original
recursive construction by adjusting Hamming code to change
more “0’s” than “1’s” for the case & = 2.

The simulation results of these coding methods are compared
for pg = 0.7 and 0.9. The simulation results are obtained by
embedding random messages into a 2'6-bit cover. In the ex-
periments, we set the length of cover blocks K = 200 for the
proposed method and the RZL-based method in [17]. As shown
in Fig. 6, the RZL-based method is only somewhat better than
the proposed method at small embedding rates for pg = 0.7,
but it generates codes with only sparse embedding rates and
cannot reach the maximum capacity for pg = 0.9. The proposed
method generates codes with continuous embedding rates and
reaches the maximum capacity at distortion py — 1/2. Although

the codes proposed in [16] are close to the maximum capacity
for py = 0.7, they need larger distortion than pg — 1/2.

V. APPLICATIONS IN TYPE-I SCHEMES

The coding method above can be directly applied to data
hiding schemes that belong to Type I, such as those in [1]-[6].
Next, we use the proposed codes to improve RDH schemes for
spatial, JPEG, and binary images, respectively.

A. Improving the RS Scheme for Spatial Images

The RS method [1] is proposed for spatial images by con-
structing compressible features based on texture complexity.
Assume the covers are 8-bit gray scale images. The image is first
divided into small groups, e.g., n pixels per group. A permuta-
tion F is used to flip the gray values, the amplitude of which is
controlled by a positive integer A. For instance, when A = 1,
the flipping function is as follows:

F:0-1,2<3 4<5,..., 254 « 255. (20)
Forapixel group G = (z1,. .., z, ), the permutation on G is de-
fined as F(G) = (F(x1),...,F(z,)). A distinguishing func-
tion f is used to detect the changing direction of the variation
of the group. Thus

n—1

J(G) = Z |1 — x4 21
i=1

By using the functions F" and f, the pixel group can be defined
as regular (R), singular (.S), or unusable (I/), such that

GeRef(FG) > f(G)
GeSef(F@)<fG)
S

Gel s f(FQ) =] 22)

For typical pictures, adding some noise will lead to an in-
crease in the variation; hence, we expect a bias between the
number of regular groups and the number of singular groups. By
assigning a “0” to a regular group and a “1” to a singular group,
we can generate a binary cover sequence satisfying pg > 1/2.
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Fig. 7. Test images sized 512 x 512. (a) Lenna.pgm. (b) Baboom.pgm. (c) Boat.pgm. (d) Barbara.pgm. (¢) Goldrill.pgm. (f) Peppers.pgm.

TABLE 1
PATTERNS EXTRACTED FROM TEST IMAGES
Images English text Pig Boy Butterfly
Patterns | (1010) (1110) | 0010) (@IT1) ] @©100 (110 ] (1000 (110
Numbers 1914 14 1381 23 1841 3 788 1
Flipping between “0” and “1” can be realized by applying F' to TABLE II

the corresponding pixel group.

Usually, larger amplitude A implies larger capacity, but it also
implies larger embedding distortion. In our experiments, we set
A from 1 to 4, and the group size n = 4. For each value of A,
we embed messages with the original RS method and the pro-
posed codes into six 8-bit gray scale images sized 512 x 512
[21] (see Fig. 7). We observe that the ratio of “0’s” pg in the RS
sequence varied from 0.54 to 0.87. In our coding method, we
embed messages with the maximum embedding rate, i.e., taking
A = py — 1/2 as the parameter. As shown in Fig. 8, the pro-
posed codes increase the peak signal-to-noise ratios (PSNRs)
for various kinds of test images. Herein, the embedding rate is
defined as bits carried by per pixel (bpp).

B. Improving the Scheme for JPEG Images

In this subsection, we apply the codes to the reversible em-
bedding scheme for JPEG images proposed by Firdrich and
Goljan [1]. In the method in [1], quantized DCT coefficients that
are equal to 0 and 1 at middle or high frequency are selected to
form a compressible binary sequence. In our experiments, the
test images are generated by compressing test images in Fig. 7
into a JPEG format with quality factor 80. We construct the bi-
nary cover by extract 0—1 coefficients from 11 positions, such
as (3,3),(2,4),(4,2),(1,5),(5,1),(3,4), 4 3),(2,5), (5, 2),
(1, 6), and (6, 1), from every 8 x 8 block of quantized DCT
coefficients. Random messages are embedded into the binary
cover by using Fridrich and Goljan’s method [1] and the pro-
posed codes with several kinds of embedding rates. As shown
in Fig. 9, the proposed codes can improve the method in [1] by
increasing PSNRs from 1 to 4 dB.

C. Improving PS Scheme for Binary Images

As another example of applications, we use the proposed
codes to improve the pattern substitution (PS) method for RDH
in binary images [4]. Denote an m X n binary image by I, such
that I(i, 5) € {0,1},1 < i <m,1 < j < n. When using I as
the cover image, the PS method first computes the image differ-
encing D by EXCLUSIVE-OR operation between neighbor pixels
of I, such that

(i, 4),
I(i,5) @ 1(i — 1,4),
I, j) © 1(i, 5 — 1),

ifi=1landyj=1
ifizlandy =1 (23)
otherwise.

D(i,j) =

NUMBER OF MODIFICATIONS FOR DIFFERENT LENGTHS OF MESSAGES
EMBEDDED BY THE PS METHOD AND THE IMPROVED PS METHOD

Test image English text

Message length(bits) 1567 1461 1249 720 386
PS method 1818 1734 1484 985 623
Improved PS 1324 1117 779 343 168
Test image Pig

Message length(bits) 1060 994 735 505 257
PS method — 1396 1108 891 653
Improved PS 1032 774 559 297 131
Test image Boy

Message length(bits) 1556 1453 1221 733 363
PS method 1626 1541 1305 806 411
Improved PS 1275 1059 766 394 161
Test image Butterfly

Message length(bits) 680 642 550 408 281
PS method 362 370 293 234 154
Improved PS 326 285 183 121 70

In the image differencing D, the symbol “1’s” indicate the
edges of the original image I, around which modifications are
usually insensible. Scan the image D from left to right and from
top to bottom, and divide it into disjoint blocks containing four
pixels. Search all these 4-bit patterns to find a pair of patterns,
such that there is a large gap between their occurrence frequen-
cies. Denote the pattern with large numbers by PM and the pat-
tern with small numbers by PF. By assigning “0” to PM and
“1” to PF, we just get a compressible binary cover. To keep vi-
sual quality, neither PM nor PF can be all-zero vectors, and the
number of modifications for PS should be as small as possible.
In the PS method, a location map is used to record the positions
of PFs, and then, the message bits combining with the location
map are embedded into the PM-PF (0-1) sequence. Modifica-
tions are realized by substitution between patterns PM and PF.
Denote the number of PFs by Npr, and the location map will
cost (m+n)Npp bits of capacity. Therefore, the number of PFs
must be very small.

We improve the PS method by applying the proposed codes
to embed messages into the PM—PF sequence with five kinds
of message lengths, which does not need a location map. Be-
cause the cover sequence is short, we take the length of the cover
blocks K = 100 in the experiments. For each 256 x 256 test
images in Fig. 10, the selected pattern pairs with frequencies are
listed in Table I. Note that, in one PS, we need to flip one pixel
in “Butterfly” and two pixels in other images according to the
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Fig. 8. Experimental results on improving the RS method. (a) Lenna. (b) Baboom. (c¢) Boat. (d) Barbara. () Goldrill. (f) Peppers.

selected patterns. Table II shows the proposed codes can signif-
icantly reduce the number of modifications for each test image
at various message lengths, where the symbol “—” means the
capacity that cannot be reached by the PS method.

VI. IMPROVING TYPE-II SCHEMES

The RS scheme for spatial images [1] discussed above
belongs to Type I, which can be only used for the cases of
small embedding rates. To increase embedding rates, almost
all state-of-the-art schemes for spatial images use mechanisms
belonging to Type II, which usually apply DE or HS to the

residuals of the image. We take Luo et al.’s scheme [14], which
is one of the leading schemes, as an example to show how the
Type-II schemes can be improved by the proposed codes. Luo
et al.’s method reversibly embeds data by shifting the histogram
of interpolation errors of the cover image. Note that DE can be
viewed as a special case of HS because DE, in fact, shifts the
histogram by varying step lengths. Therefore, the DE-based
scheme can be improved by a similar method as follows.

Now, we briefly introduce Luo et al.’s scheme. Assume the
original coverisa2M x 2N image L, such that I(i, j) € [0, 255].
First extract a low-resolution image I; by down sampling from
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Fig. 10. Test binary images sized 256 x 256. (a) English text. (b) Pig. (c) Boy.
(d) Butterfly.

(b) (d)

I, such that I;(4,5) = I(2i — 1,25 — 1). By interpolation in
I;, we can get an estimated version of I, which needs two steps.
First, the missing pixel I(24, 2j) is interpolated by using the four

pixels of I; surrounding it. Second, the missing pixels I(2i —
1,25) and I(2¢,2j — 1) can be interpolated with the help of the
already recovered pixels I(2¢, 25). For each pixel z, denote the
corresponding interpolation value by z’, and then, the interpo-
lation error is obtained via e = x — z’. Therefore, in the first
step, we get interpolation errors of a quarter of pixels in I; in the
second interpolation step, we get interpolation errors of other
half of pixels.

Messages are embedded into these interpolation error
sequences. After that, we can furthermore calculate the in-
terpolation errors of the rest quarter of pixels, i.e., all pixels
of the low-resolution image I;, in which the interpolations
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Fig. 11. Tllustration of HS. (a) Luo ef al.’s method. (b) The first proposed method. (¢) The second proposed method.

are estimated by some pixels that may have been modified.
In summary, to utilize all pixels, three interpolation error se-
quences are constructed for embedding messages, and message
extraction and cover reconstruction are executed in a reverse
order.

On each interpolation error sequence, some messages can be
embedded by HS. To do that, divide the histogram of interpo-
lation errors into two parts, i.e., the left part and the right part,
and search for the highest point in each part, denoted by LM
and I?M, respectively. For typical images, LM = —1 and
RM = 0. Furthermore, search for the zero point in each part,
denoted by LN and I’N. To embed messages into positions
with an interpolation error that is equal to RM , shift all error
values between [tM +1 and 12N — 1 with one step toward right,
and then, we can represent the bit “0” with [ZM and the bit “1”
with RM +1. A simple example is shown in Fig. 11(a), in which
RM = 0and RN = 6. By shifting bins between 1 and 5 toward
right, bin 1 is emptied. After embedding encrypted messages at
positions of “0’s,” on average, half of “0’s” are changed to “1’s.”
The HS is realized by adding 1 to all corresponding pixel values.
The embedding process in the left part is similar, except that the
shifting direction is left, and the shift is realized by subtracting
1 from the corresponding pixel values.

To improve Luo ef al.’s scheme by binary codes, we propose
two novel methods for HS and, also, use merely the right part
of the histogram as examples to describe these methods. Both
methods consist of two embedding steps. In the first method, we
first shift all bins between ZAM +2 and N — 1 toward right with
one step, and then, the bin M +2 is emptied. Therefore, we can
embed messages by assigning “0”to RM +1 and “1” to RM +2.
After that, about half of A/ 41 are changed to IZM +2. Second,
by assigning “0” to XM and “1” to M + 1, we get a binary
cover, into which more messages can be embedded using the
proposed codes.

As illustrated in the example [see Fig. 11(b)], first, bins from
2 to 5 are shifted toward right, and some message bits are em-
bedded into positions of “1’s.” After that, about half of “1’s”
are changed to “2’s.” Second, more message bits are embedded
into the binary sequence composed of “0’s” and “1°’s.” At the
receiver side, first, extract messages from the 0—1 sequence and
reconstruct the 0—1 sequence. Second, extract messages from
the sequence composed of “1°s” and “2’s,” and then, change all
“2’s” to “1’s.” Finally, subtract 1 from all error values equal to
3,4, 5, and 6 and obtain the original cover.

In the second method, we shift the histogram by step length
2. First, shift all bins between XM + 4 and RN — 1 toward
right with two steps, that is, the values 7, such that RM + 4 <
i < RN — 1, are modified to 7 + 2, and thus, the bins M + 4
and RM + 5 are emptied. Therefore, we can embed messages
by assigning “0” to RM + 2 and XM + 3 and assigning “1”
to RM + 4 and ?M + 5. The message bits are embedded in
the positions of XM + 2 and RM + 3. After that, about half
of (RM + 2)’s are changed to (RRM + 4)’s, and about half of
(RM + 3)’s are changed to (M + 3)’s. Second, by assigning
“0” to M and M + 1 and assigning “1” to M + 2 and
RM + 3, we get a binary cover, into which more messages are
embedded by using the proposed codes. When “0” needs to be
modified, we change M to M + 2 or change M + 1 to
IRRM + 3.

The example of the second method is shown in Fig. 11(c).
First, bins 4 and 5 are shifted toward right by two steps, and
then, messages are embedded into positions of 2 and 3, which
shifts about half of “2’s” to “4’s” and about half of “3’s” to
“5’s.” Second, embed messages into a binary sequence with the
proposed codes, where the binary sequence is constructed by
using the pair (0, 2) and the pair (1, 3).

In Luo et al.’s scheme, an overhead is also needed to com-
municate the message length and the parameters, such as LM,
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Fig. 12. Experimental results on improving Luo ef al.’s scheme. (a) Lenna. (b) Baboom. (c) Boat. (d) Barbara. (¢) Goldrill. (f) Peppers.

LN, RM, and RN, and to solve the problem of overflow (un-
derflow) caused by modifications. We refer readers for more de-
tails to the literature [14].

To get larger embedding rates, Luo et al. repeated their
scheme in an iterative manner, that is, first, embed some mes-
sages into the cover image to get a marked image, and then, the
marked image is used as a new cover to embed more messages.
Because the embedding process is reversible in every turn, the
original cover can be restored in a reverse order.

In our experiments, we expand embedding rates of Luo et
al.’s scheme in an iterative manner. For the proposed scheme,
the smallest embedding rate is obtained by the first HS method,

and other embedding rates are obtained by iteratively using the
second HS method, and, in both methods, the proposed codes
are executed by setting parameter A = pg — 1/2. The six test
images in Fig. 7 are used for comparisons. As shown in Fig. 12,
PSNRs are increased by the proposed scheme, and, in general,
the improvement is more significant for smooth images at larger
embedding rates.

VII. CONCLUSION

Most state-of-the-art RDH schemes use a strategy with sep-
arate processes of feature compression and message embed-
ding. Kalker and Willems [15] noted that a higher embedding
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rate under a given distortion constraint may be achieved by
using joint encoding of feature compression and message em-
bedding and, thus, proposed the recursive code construction. In
this paper, we improve the recursive construction by using not
only the joint encoding above but also a joint decoding of fea-
ture decompression and message extraction. The proposed code
construction significantly outperforms previous codes [15], [16]
and is proved to be optimal when the compression algorithm
reaches entropy.

The current codes are designed for binary covers and, thus,
can significantly improve Type-I schemes based on binary fea-
ture sequences. By slightly modifying the HS manner, we found
that the proposed binary codes can be also partly applied to
Type-II schemes and improve their performance, but the im-
provement is not so significant as that for Type-I schemes. Note
that we only use two simple methods to modify HS, and there-
fore, one interesting problem is whether there exists other more
effective modifying methods or not. Another problem is how to
design recursive codes for gray scale covers. We will pay our
attention to these problems in further works.
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