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Abstract—Nowadays, more and more people outsource their
data to cloud servers for great flexibility and economic savings.
Due to considerations on security, private data is usually pro-
tected by encryption before sending to cloud. How to utilize data
efficiently while preserving user’s privacy is a new challenge.
In this paper, we focus on a efficient multi-keyword search
scheme meeting a strict privacy requirement. First, we make a
short review of two existing schemes supporting multi-keyword
search, the kNN-based MRSE scheme and scheme based on
bloom filter. Based on the kNN-based scheme, we propose an
improved scheme. Our scheme adopt a product of three sparse
matrix pairs instead of the original dense matrix pair to encrypt
index, and thus get a significant improvement in efficiency. Then,
we combine our improved scheme with bloom filter, and thus
gain the ability for index updating. Simulation Experiments show
proposed scheme indeed introduces low overhead on computation
and storage.

I. INTRODUCTION

Because of the rapid growth of data, personal hard drive and
company’s data center couldn’t satisfy people’s demands. At
this time, cloud storage appears. Cloud storage provides on-
demand, scalable and QoS guaranteed storage resource, and
users can operate their data anytime and anywhere.

Facing the powerful and appealing advantages of cloud
storage, however, a lot of people and companies are hesitant
to put their data in cloud. The main reason is that people and
companies are afraid of losing control on their data. Examples
like Salesforce.com falling for phishing attack [1] and Amazon
Cloud Services’ Interruption recently [2] verify people’s fears.
Besides external attacks and server failure, the cloud platform
itself is considered suspicious. As a fact, none of Amazon
EC2’s top-20 client’s main business is e-commerce. Therefore,
to be sustainable, indepth development, cloud storage must
address the privacy concern. In order to protect people’s
privacy, encryption is a commonly used method.

However, data encryption obsoletes the traditional data
utilization service, including the most widely-used keyword-
based information retrieval. Storing data into the cloud serves
no purpose, unless they can be easily searched and utilized.
Thus, to take advantage of the convenience brought by cloud
service, developing privacy-preserving and effective search
scheme over encrypted cloud data is a priority. As proved
in traditional information retrieval, to meet user’s demands,
and to improve the result accuracy, the retrieval system should
provide support to ranked search and multi-keyword search.
It is a challenging problem to meet the requirements of

performance, system usability, while keeping data and search
privacy.

To utilize data effectively, Song et al. [3] propose a solution
for searching with sequential scan. This scheme is provable
secrecy. Similar scheme is proposed as new cryptographic
primitive, such as searchable encryption [4]–[7], or more gen-
eral, functional encryption [8]–[10]. These schemes operate
directly on the ciphertext, and hence don’t need to build a
separate index. However, direct operation on ciphertext also
bring the problem of efficiency and security. The server needs
a sequential scan, and will even know the keyword’s location.
Homomorphic encryption [11] proposed recent years implies
the ability to support search on the ciphertext, but it is still
underdeveloped, and also suffers from efficiency problems.
To solve the efficiency problem, building an encrypted index
particularly for search are suggested. Bloom filter [12], [13] is
introduced as a secure index scheme supporting 𝑂(1) search
on each document. C. Wang et al. [14] propose an efficient
scheme, using the order preserving encryption [15] (OPE)
on the traditional inverted index to protect term frequency,
and traditional symmetric encryption on keywords to protect
keyword privacy. The two kinds of scheme work well in
the known ciphertext model, but are not secure under the
more strict known background model. Cao et al. propose a
kNN-based multi-keyword ranked search over encrypted cloud
data scheme (kNN-based MRSE) [16], which meets the strict
privacy requirement in most realistic situation. However, its
space and time cost have to be improved before put in practice.

In this paper, we make a short overview of two state-of-
the-art schemes supporting multi-keyword search, the kNN-
based MRSE scheme [16] and secure index based on bloom
filter [13]. We propose our solution, which is a novel scheme
that realizes efficient multi-keyword search supporting dynam-
ic updating, meeting strict privacy requirements. Based on the
kNN-based MRSE scheme, firstly we propose a improved
scheme, which significantly improves the time and space
efficiency. Then we combine bloom filter with it to support
dynamic update. Experiments on the real-world dataset show
that the proposed scheme is significantly better than the kNN-
based MRSE scheme.

The reminder of this paper is organized as follows. In Sec-
tion II, we declare the system model, privacy requirements, and
notations. Section III describes two scheme supporting multi-
keyword search and their drawbacks, followed by Section IV,
which describes our solution. Section V presents simulation
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results. We conclude the paper in Section VI.

II. PROBLEM FORMULATION

In this section, we describe the searching model and privacy
requirements, based on the analysis and definition in [16]. We
add the update module to meet our demands.

A. System Model

A cloud service can be described as three entities, the data
owner, the data user, and the cloud server. The data owner
has a collection of 𝑚 document 𝒟 = {𝐷1, 𝐷2, ⋅ ⋅ ⋅ , 𝐷𝑚},
that to be outsourced to the cloud server, usually in the
encrypted form ℰ = {𝐸1, 𝐸2, ⋅ ⋅ ⋅ , 𝐸𝑚}. To enable searching,
the data owner builds an index ℐ = {𝐼1, 𝐼2, ⋅ ⋅ ⋅ , 𝐼𝑚} from 𝒟,
where 𝐼𝑖 is built for 𝐷𝑖, and then outsources it. The terms,
or keywords, appeared in the document collections can be
denoted as dictionary 𝒲 = {𝑊1,𝑊2, ⋅ ⋅ ⋅ ,𝑊𝑛}.

To search over 𝒟, the data user sends a query 𝒬, which
consists of a subset of 𝒲 , to the data owner, and the data
owner generates a trapdoor 𝒯 from 𝒬. Receiving 𝒯 , the cloud
server searches ℐ and returns the top-𝑘 result ℛ to user.

To update the index, the data owner adds a new entry 𝐼𝑖 to
index for a new document 𝐷𝑖, and new terms 𝑊𝑗 to dictionary
for words not in the dictionary yet. In some cases, the existed
entry in the index 𝒟 may be modified, and even the secret key
𝐾 may need to regenerate

The whole system can be impled by five algorithms, as
below:

∙ KeyGen
The data owner uses a parameter 𝑠 to generate a key, 𝐾.

∙ BuildIndex
The data owner builds a privacy-preserving index ℐ from
a dataset 𝒟 based on 𝐾. After the index construction,
the document can be independently encrypted and out-
sourced.

∙ TrapGen
The data owner generates a trapdoor 𝒯 according to a
query 𝒬 including several interested terms.

∙ Query
The cloud server performs a ranked search using the
trapdoor 𝒯 on the index ℐ, then returns the result ℛ
to user.

∙ Update
The data owner regenerates key 𝑆, adds new entries to the
index and dictionary, and informs server the modification.

The system framework is shown in Fig. 1.

B. Privacy Requirements

The cloud server is considered as “honest-but-curious” in
our model. Specifically, the cloud server acts according to the
designated protocol correctly, and will not distort or counterfeit
user data or query results. However, the server may use all
information (including outsourced data, index, and trapdoor)
to analyze so as to learn additional information. We describe
the threat model and privacy requirement based on [16].

Fig. 1. System Framework

The threat model is considered as Known Background
Model. That is to say, the cloud server knows not only data
stored on it, ℰ and ℐ, but also some background knowledge,
such as statistical information of the dataset. In this model,
document/keyword frequency may be used by cloud server to
guess keyword [17].

In our scheme, data privacy can be protected by traditional
symmetric encryption, which can be considered secure. Then,
we hope the index and trapdoor should leak as less information
as possible. Index and search privacy can be described as
follow.

Keyword Privacy Trapdoor should not leak information
about keywords. Although trapdoor can be generated as en-
crypted, such as hash values or encrypted values, to protect
the query keywords, the cloud server could do some statistical
analysis over the search result to make an estimate. As a
kind of statistical information, document frequency (i.e., the
number of documents containing the keyword) is sufficient to
identify the keyword with high probability.

Trapdoor Unlinkability The same query should generate
different trapdoors when queried twice. The server should not
be able to deduce relationship between trapdoors. Otherwise,
the server can accumulate trapdoors to guess the query key-
words.

Access Pattern Access pattern is the rank order of the
results. As the computation is finished in the server, the
protection of access pattern usually resort to secure hardware.
Our schemes are not designed to protect it.

III. PREVIOUS WORK

To achieve effective retrieval, we mainly focus on multi-
keyword search. In this section, we will briefly present two
previous scheme in this field, and discuss whether they com-
plete the retrieval task efficiently while meeting our security
requirements.

A. kNN-based MRSE

The kNN-based MRSE [16] uses inner product similarity to
evaluate the relative score between document and query. Inner
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product similarity is described as follow: If the index 𝐼𝑖 and
query 𝑄 are represented by boolean vectors 𝑝𝑖 and 𝑞, where
the 𝑘-th dimension 𝑝𝑖[𝑘] and 𝑞[𝑘] indicate if 𝐷𝑖 and 𝑄 contain
term 𝑊𝑘, then relative score can be calculated by multiplying
𝑝𝑖 with 𝑞. In such a way, document containing more keywords
get a higher score than document with few keywords. The
kNN-based MRSE takes several steps to enhance security. Its
secret key includes four matrices and a vector. Two matrices,
𝑀1 and 𝑀2, and the vector 𝑆 are used in index construction.
Query generation needs the participation of query key, which
consists of two matrices 𝑀−1

1 ,𝑀−1
2 and the vector 𝑆. We

give a detailed description of the kNN-based MRSE scheme
below.

Assume the dictionary is composed of 𝑛 different terms.
First, 𝑛-dimensional vectors 𝑝𝑖 and 𝑞 are generated from index
𝐼𝑖 and query 𝑄. 𝑈 dummy terms are added into dictionary,
hence the vector 𝑝𝑖 and 𝑞 are extended to (𝑛+𝑈)-dimensional
vectors as 𝑝𝑖 and �⃗�. The values of dummy keywords in 𝑝𝑖 and
�⃗� are independent random variables. 𝑈 is a system parameter
can be adjusted according to user’s demand.

Then, 𝑝𝑖 and �⃗� are both split into two random vectors as
{𝑝𝑖′, 𝑝𝑖′′} and {�⃗� ′, �⃗� ′′}. Here the vector 𝑆 functions as a
splitting indicator. If the 𝑗-th bit of 𝑆 is 0, 𝑝𝑖

′[𝑗] and 𝑝𝑖
′′[𝑗]

are set as the same as 𝑝𝑖[𝑗], while �⃗� ′[𝑗] and �⃗� ′′[𝑗] are set to
two random numbers so that their sum is equal to �⃗�[𝑗]; if the
𝑗-th bit of 𝑆 is 1, the splitting process is similar except that
𝑝 and �⃗� are switched.

The split data vector pair {𝑝𝑖′, 𝑝𝑖′′} is encrypted as {𝑝𝑖′ ⋅
𝑀1, 𝑝𝑖

′′ ⋅𝑀2}, and the split query vector pair {�⃗� ′, �⃗� ′′} is
encrypted as {�⃗� ′ ⋅ (𝑀−1

1 )𝑇 , �⃗� ′′ ⋅ (𝑀−1
2 )𝑇 }.

In the query step, the product of index vector pair and query
vector pair, i.e., (𝑝𝑖 ⋅ �⃗� 𝑇 ), is serving as the indicator of inner
product similarity (𝑝𝑖 ⋅ 𝑞𝑇 ) to select top-k results.

To show the procedure clearly, we make a simple demon-
stration here. Assume the dictionary size 𝑛 = 4, and there
is no dummy keyword. We generate 𝑆 and matrices 𝑀 as
follow:

𝑆 = 1001,

𝑀1 =

⎛
⎜⎜⎝
0.92 0.15 0.7 0.57
0.33 1 0.3 0.48
0.24 0.39 0.03 0.74
0.97 0.54 0.48 0.19

⎞
⎟⎟⎠ ,

𝑀2 =

⎛
⎜⎜⎝
0.57 0.7 0.87 0.13
0.77 0.51 0.83 0.55
0.27 0 0.87 0.75
0.23 0.22 0.03 0.9

⎞
⎟⎟⎠ .

𝑀−1
1 and 𝑀−1

2 are easy to calculate and therefore omitted.
For document 𝐷1, if it contains the first term and the second

term, then there is:
𝑝1 = 1100.

Split it with 𝑆, we get:(
𝑝1
′

𝑝1
′′

)
=

(
0.04 1 0 0.47
0.96 1 0 −0.47

)
.

Multiply 𝑝1
′ and 𝑝1

′′ with 𝑀1 and 𝑀2:

𝐼1 =
(
𝑝1
′ ⋅𝑀1, 𝑝1

′′ ⋅𝑀2

)
=

(
0.82 1.26 0.55 0.59 1.21 1.08 1.65 0.25

)
.

For a query with the second and third term, there is

𝑞 = 0110.

With a similar procedure, we generate �⃗� from 𝑞, split �⃗� to �⃗� ′

and �⃗� ′′, multiply with (𝑀−1
1 )𝑇 and (𝑀−1

2 )𝑇 , then we get the
trapdoor:

𝒯 = (⃗(𝑞)′ ⋅ (𝑀−1
1 )𝑇 , �⃗� ′′ ⋅ (𝑀−1

2 )𝑇 )

=
(
0.06 0.21 −0.59 0.57 2.01 −1.68 0.06 −0.11) .

Calculating the inner product of 𝐼1 and 𝒯 , we get the result
is 1.01.

Without prior knowledge of secret key, neither data vector
nor query vector, after such a series of processes, can be
recovered by analyzing their corresponding ciphertext.

However, this scheme still have some drawbacks which
make it hardly a practical method. The most severe one is
efficiency. Consider applying this scheme to a collection of
𝑚 documents. Assume its text size is 𝑁 , and it consists of 𝑛
unique terms. The time of building index is 𝑂(𝑚𝑛2), generat-
ing trapdoor is 𝑂(𝑛2), querying is 𝑂(𝑚𝑛). The space of index
is 𝑂(𝑚𝑛), query key is 𝑂(𝑛2). Procedure of generating two
matrix pairs is also time-consuming, but in this paper, we just
assume that the kNN-based scheme adopts a fast algorithm so
that its time cost is tolerable.

Large collections comply with Heap’s Law [18]: 𝑛 = 𝛼𝑁𝛽 ,
where 𝛼 and 𝛽 are constants depend on document collections.
Typical values for 𝛼 and 𝛽 are: 10 ≤ 𝛼 ≤ 100, 0.4 ≤ 𝛽 ≤ 0.6.
Then 𝑛2 ≈ 𝑁 . It means that the calculation of index will
be nonlinear and therefore inefficient, and the storage space
of key will be the same or even greater to the document
collection.

Without considering index rebuilding caused by adding new
document, the time cost of index construction and the space
cost of 𝑀1 and 𝑀2 are relatively unimportant, because it
is a one-time operation, and the two matrices 𝑀1 and 𝑀2

can be abandoned afterwards. Index is stored in the server
and hence its space cost can be considered posterior to other
factors, unless it becomes too large. However, the time cost
of query generation and space cost of query key must be
taken into consideration. The vast overhead will neutralize
the convenience brought by cloud service, make it even
no advantages compared to the trivial solution: data owner
can keep a plaintext index and use it to respond to other
users’ request, then data users can retrieve related documents
from server according to the result list returned by the data
owner. Simulation result on a real world dataset is shown and
discussed later.

Another problem involves the updating of index. Due to ef-
ficiency consideration mentioned above, dictionary size should
be set as little as possible. Consider a dataset of 1000 unique
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terms. If we set the dictionary size as 1200, then when new
terms gained from new documents exceed 200, the whole
index should be recalculated to add support for new keywords.
Thus to say, supporting index update will lead to either vast
computation and storage waste, or unendurable expense of
index reconstruction.

B. Bloom Filter Based Scheme

A Bloom filter is a data structure which is used to answer
set membership queries. It is represented as an array of b
bits which are initially set to 0. In general the filter uses r
independent hash functions ℎ𝑡, where ℎ𝑡 : {0, 1}∗ → [1, 𝑏]
for 𝑡 ∈ [1, 𝑟], each of which maps a set element to one
of the b array positions. For each element 𝑒 in the set
𝑆 = {𝑒1, ⋅ ⋅ ⋅ , 𝑒𝑚} the bits at positions ℎ1(𝑒), ⋅ ⋅ ⋅ , ℎ𝑟(𝑒) are
set to 1. To check whether an element 𝑥 belongs to the set
𝑆, we check if the bits at positions ℎ1(𝑥), ⋅ ⋅ ⋅ , ℎ𝑟(𝑥) are set
to 1. If so, 𝑥 is considered a member of set 𝑆. Bloom filters
have a possibility of false positives, because the positions of
an element may have been set by one or more other elements.
With appropriate parameters the false positive probability can
be reduced to a desired error rate.

Bloom filter can be used to construct secure index. For each
document 𝐷𝑖, a bloom filter 𝐼𝑖 is generated. Bloom filter’s
length should be set no less than a value depends on the
quantity of terms in the document, to restrict the false positive
probability. The trapdoor 𝑇 for query {𝑥1, ⋅ ⋅ ⋅ , 𝑥𝑞} consists of
the hash values ℎ𝑗(𝑥𝑘), 1 ≤ 𝑘 ≤ 𝑞. Different from the kNN-
based MRSE scheme, index 𝐼𝑖 doesn’t need to contain a mark
explicitly if 𝐷𝑖 doesn’t contain term 𝑊𝑗 . Then new terms don’t
affect existed index, and adding a document merely needs to
add a new bloom filter to the index set.

However, bloom filter doesn’t satisfy our security demands.
For the same query, bloom filter will generate the same
trapdoor, thus the trapdoor unlinkability is not satisfied. Be-
sides, the server can subtract two bloom filters to deduce the
relationship of two documents. As a example, we make an
experiment on our dataset, and the result is shown in fig. 2.
Assume the difference of two bloom filters is 151. Because
one term corresponds to five hash values in our experiment,
firstly we integer divide the difference by 5 and get 30. Then
we can infer from the figure that the two documents have
about 33 different terms.

IV. PROPOSED SCHEME

In this section, we propose our scheme. Even under strict
privacy requirements, our scheme can achieve ranked multi-
keyword search. We first propose a basic scheme, which is
adapted from kNN-based MRSE scheme [16] and much more
efficient than the original one, and then modify it support
updating.

A. Improving kNN-based Scheme

The essential reason of inefficiency in MRSE scheme is
the large scale of the matrices used in index construction and
query generation. In our more advanced scheme, local matrix
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Fig. 2. The difference between term-document vectors as a function of the
difference between bloom filters. Bloom filters are divided by 5. The error
bar on the fig represents the largest error of 5 continues points.

is adopted rather than global matrix. We can divide the terms
into different subsets, and use a small-scale matrix to mix
them. That’s to say, we can set the matrix 𝑀1 as the product
of a block diagonal matrix 𝑀 ′

1 and a permutation matrix 𝑃 .

𝑀1 =𝑀 ′
1 ⋅ 𝑃,

where
𝑀 ′

1 = 𝑑𝑖𝑎𝑔(𝐵1, 𝐵2, ⋅ ⋅ ⋅ , 𝐵ℎ).

Every 𝐵𝑘 is a 𝑛′ by 𝑛′ random matrix, and 𝑃 is a 𝑛 by 𝑛
random permutation matrix. In the original kNN-based MRSE
scheme, each document requires 𝑛2 floating-point operations,
and this change reduces it to 𝑛 ⋅ 𝑛′ floating-point operations.
For example, when building index for a dataset containing
10,000 unique terms(the pocket oxford dictionary includes
65,000 entries), the proposed scheme will be 100 times faster
than kNN-based MRSE scheme, and the space cost of query
key will be reduced from 1526 MB to 1.9 MB, if we set 𝑛′

to 100.
However, the division will lower security. In the original

scheme, all the 𝑛 dimensions in a vector 𝑝𝑖 is mixed, while
this scheme only mixes 𝑛′ keywords. The server now can pick
random 100 subscript, 𝑗1 to 𝑗100, add corresponding numbers
up to see if the sum 𝑠 = 𝐼𝑖[𝑗1] ⋅𝑇 [𝑗1] + ⋅ ⋅ ⋅+ 𝐼𝑖[𝑗100] ⋅𝑇 [𝑗100]
equals to 0, to analysis the division of keywords and to judge
if the query relates with the 100 keywords. This will weaken
the trapdoor unlinkability severely.

To enhance security, we can multiply another block matrix:

𝑀1 =𝑀 ′
1 ⋅ 𝑃 ⋅𝑀 ′′

1 ,

where 𝑀 ′′
1 is another block diagonal matrix like 𝑀 ′

1. After
this step, different keywords have been mixed, and it is very
difficult for the server to learn about query. 𝑀2 is generated
in the same manner.

To make the procedure clear, we make a demonstration
using dataset the same as the example in section III. If we
set 𝑛′ = 2, then the keywords are divided into ℎ = 4/2 = 2
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groups. The matrices used for encryption can be generated as
follow:

𝑀 ′
1 =

⎛
⎜⎜⎝

0 0.63 0 0
0.92 0.15 0 0
0 0 0.03 0.74
0 0 0.97 0.54

⎞
⎟⎟⎠

𝑀 ′
2 =

⎛
⎜⎜⎝
0.03 0.9 0 0
0.93 0.74 0 0
0 0 0.73 0.97
0 0 0.83 0.01

⎞
⎟⎟⎠

𝑃1 =

⎛
⎜⎜⎝
1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

⎞
⎟⎟⎠ , 𝑃2 =

⎛
⎜⎜⎝
0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

⎞
⎟⎟⎠

𝑀 ′′
1 =

⎛
⎜⎜⎝
0.42 0.57 0 0
1 0.24 0 0
0 0 0.14 0.34
0 0 0.74 0.01

⎞
⎟⎟⎠

𝑀 ′′
2 =

⎛
⎜⎜⎝
0.83 0.45 0 0
0.25 0.81 0 0
0 0 0.13 0.58
0 0 0.43 0.12

⎞
⎟⎟⎠

Denote 𝑀1 = 𝑀 ′
1 ⋅ 𝑃1 ⋅ 𝑀 ′′

1 and 𝑀2 = 𝑀 ′
2 ⋅ 𝑃2 ⋅ 𝑀 ′′

2 .
Encryption of 𝑝1 is realized by multiplying 𝑀 ′

1, 𝑃1 and 𝑀 ′′
1

sequentially. 𝑝2 is encrypted by multiplying 𝑀 ′
2, 𝑃2 and 𝑀 ′′

2 .
The encrypted index is:

𝐼1 =
(
𝑝1
′ ⋅𝑀1, 𝑝1

′′ ⋅𝑀2

)
=

(
0.84 0.63 0.17 0.09 0.4 1.3 0.36 −0.11) .

The trapdoor can be generated in similar ways. We generate
�⃗� from 𝑞, and split �⃗� to �⃗� ′ and �⃗� ′′. Then we multiply �⃗� ′

with (𝑀 ′−1
1 )𝑇 , (𝑃−1

1 )𝑇 , (𝑀 ′′−1
1 )𝑇 , and multiply �⃗� ′′ with

(𝑀 ′−1
2 )𝑇 , (𝑃−1

2 )𝑇 , (𝑀 ′′−1
2 )𝑇 . We get:

𝒯 =
(−0.65 1.1 −0.05 2.03 0.77 −0.27 1.84 −0.43) .

The inner product of 𝐼1 and 𝒯 is 0.99.
However, this scheme doesn’t solve the problem of index

updating. So we adopt the bloom filter to support index
updating.

B. Combining kNN-based Scheme with Bloom Filter

We can make a combination of bloom filter and kNN-based
MRSE scheme to gain the ability of updating.

In this Scheme, we use bloom filter 𝑏𝑓𝑖, instead of the term-
document boolean vector 𝑝𝑖 to represent a document 𝐷𝑖. Then
we can use matrix described previously to encrypt 𝑏𝑓𝑖 and get
𝐼𝑖. To improve efficiency, the length of bloom filters should
be chosen according to the number of terms included in the
document, rather than a fixed length.

However, the same query vector can’t suit index vectors
of different length at the same time. Consider a collection
containing 3 documents. Assume that to guarantee that the

false positive is below 5%, 𝐼1 and 𝐼2 should be longer than
100, 𝐼3 should be longer than 120. If we set 𝑛′ = 10 and
bloom filters as their minimum length, then in the query step,
server will need 2 query vectors, the one’s length is 100, the
other’s length is 120. This setting result in a calculation of
2520 floating operations, 2200 operations in generating two
query vectors, and 320 in calculating the inner product. If we
set all bloom filters’ length to 120, then the calculation of
inner product will increased by 40. However, because there is
no need to generate the query vector of length 100 now, the
calculation of trapdoor generation will reduced by 1000, and
the whole procedure will be faster than former. So the length
of bloom filters should be designed carefully if we want to
minimize the amount of calculation.

In practice, we take an approximate solution instead of the
optimist solution. To guarantee the false-positive, we assume
there are 𝑏𝑖 documents whose bloom filter’s length should be
no less than 𝑙𝑖. We sort the 𝑙𝑖 as 𝑙𝑖 > 𝑙𝑖+1. The algorithm runs
as follow:

Require:
set of length: ℒ = 𝑙𝑖, where 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑟 and 𝑙𝑖 > 𝑙𝑖+1;
corresponding document number: 𝑏𝑖;
the scale of submatrix 𝑛′;

Ensure:
set of chosen length: 𝒞 = {𝑐𝑗} ⊆ ℒ, where 𝑐𝑗 > 𝑐𝑗+1;

1: 𝒞 = {𝑐1}, 𝑐1 = 𝑙1
2: 𝑖 = 1, 𝑘 = 1
3: for 𝑗 = 1 to 𝑟 do
4: if ((𝑙𝑖 − 𝑙𝑗) ⋅ 𝑏𝑗 > 𝑙𝑗 ⋅ 𝑐𝑘) then
5: 𝑖 = 𝑗, 𝑘 = 𝑘 + 1
6: add 𝑐𝑘 = 𝑙𝑖 to 𝒞
7: end if
8: end for
9: return 𝒞;

We can generate bloom filter with 𝒞 = {𝑐𝑖}. If 𝑐𝑗 >= 𝑙𝑖 >
𝑐𝑗+1, then a bloom filter of length 𝑙𝑖 should be extended to
length 𝑐𝑗 .

The whole system is described as follow.

∙ KeyGen
Generate a vector 𝑆 and six pairs of matrices 𝑀 ′

1,
(𝑀 ′

1)
−1, 𝑀 ′′

1 , (𝑀 ′′
1 )
−1, 𝑀 ′

2, (𝑀 ′
2)
−1, 𝑀 ′′

2 , (𝑀 ′′
2 )
−1, 𝑃1,

𝑃−1
1 , 𝑃2, 𝑃−1

2 .
∙ BuildIndex

Generate bloom filter 𝑏𝑓𝑖 from the document 𝐷𝑖, 𝑖 =
1, 2, ⋅ ⋅ ⋅ ,𝑚.
Split bloom filter 𝑏𝑓𝑖 to {𝑏𝑓𝑖

′
, 𝑏𝑓𝑖

′′} with secret vector 𝑆.
Get 𝐼𝑖 by multiplying 𝑏𝑓𝑖

′
and 𝑏𝑓𝑖

′′
with matrices 𝑀 ′

1,
𝑃1, 𝑀 ′′

1 and 𝑀 ′
2, 𝑃2, 𝑀 ′′

2 .
Upload 𝐼𝑖 to the server.

∙ GenTrapdoor
Generate bloom filter 𝑞𝑓 from the query 𝑄.
Split bloom filter 𝑞𝑓𝑖 to {𝑞𝑓𝑖

′
, 𝑞𝑓𝑖

′′} with secret vector
𝑆.
Get 𝑇 by multiplying 𝑞𝑓𝑖

′
and 𝑞𝑓𝑖

′′
with matrices

(𝑀 ′
1)
−1, 𝑃−1

1 , (𝑀 ′′
1 )
−1 and (𝑀 ′

2)
−1, 𝑃−1

2 , (𝑀 ′′
2 )
−1.
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TABLE I
TIME COST (S)

Scheme KeyGen BuildIndex GenTrapdoor Query
kNN-based MRSE 1.64× 105 662 360
Proposed Scheme 18 703 15.1 54.5

TABLE II
SPACE COST (MB)

Scheme QueryKey Index Trapdoor
kNN-based MRSE 4880 2121 0.27
Proposed Scheme 54.8 536 1.88

Request the server with 𝑇 .
∙ Query

Compute the inner product similarity between 𝐷𝑖 and
trapdoor 𝑇 .
Sort and return the result list 𝑅.

∙ Update
Generate bloom filters 𝑏𝑓𝑗 for new document 𝐷𝑗 ,
𝑗 = 𝑚+ 1,𝑚+ 2, ⋅ ⋅ ⋅ ,𝑚+ 𝑡.
Split and encrypt 𝑏𝑓𝑗 to 𝐷𝑗 as building index with secret
key.
Upload 𝐸𝑗 to the server.

V. RESULT AND COMPARISON

In this section, we demonstrate a thorough experimental
evaluation of the proposed technique on the TREC data [19].
We pick a subset randomly, consists of 7594 documents, 16864
different terms, total size is 37.5 MB. The experiment is
implemented by C++ language on a Computer with Pentium
4 3.00 GHz Processor, on Windows XP system. For proposed
scheme, we set 𝑛′ = 100. The performance of our method
is compared with the original MRSE scheme. Bloom filter
doesn’t satisfy our security demands and is hence not in
comparison.

A. Efficiency

The proposed scheme and the kNN-based scheme is de-
scribed in detail as in previous sections, except the KeyGen
algorithm. In our scheme, We adopt Gauss-Jordan elimination
to calculate the matrices’ inverse. The time of generating key is
tolerable because of the small scale of the matrix. The secret
key of kNN-based MRSE scheme includes two large scale
matrix pairs, and its calculation is time-consuming, so we do
not simulate it.

Time cost and space cost are listed as table I and table II.
As shown in the table, our scheme is 200 times as fast as
original scheme when building index, 40 times for generating
trapdoor, and 6 times for querying. The kNN-based MRSE
scheme needs a storage space 80 times as large as proposed
scheme for the query key, and 4 times for the index. The
efficiency of index construction step of proposed scheme is
even comparable with plaintext index, which cost 470s.

Because the proposed scheme need to generate different
trapdoor vectors for bloom filters of different lengths, the
size of trapdoor is larger than the kNN-based MRSE scheme.
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Fig. 3. Retrieval results shown as recall-precision curve.

Larger trapdoor needs a longer time for transmission, however,
this disadvantage can be redeemed by the advantages gained
in trapdoor generation and query step.

B. Precision and Recall

Bloom filter will cause Pseudo-positive in the result. To
evaluate the retrieval result, we adopt recall-precision curve
of the standard results, which is widely used in the traditional
information retrieval field. The result is shown as fig. 3.

For a clear comparison, we don’t add dummy terms in query.
As shown in fig. 3, though bloom filter has false-positive, its
retrieval result is almost the same as kNN.

VI. CONCLUSION

In this paper, we make a overview of the system model and
security demands for cloud service. For meeting the challenge
of supporting multi-keyword semantic without privacy breach-
es while supporting index updating, we make a combination
of kNN-based MRSE scheme and bloom filter, propose a
new multi-keyword search scheme based on inner product
similarity. Experiment results show that our scheme is more
efficient than the kNN-based MRSE scheme.

As our future work, we will try to get access to more
accurate retrieval result on the same security level.
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