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Abstract—To protect privacy of users, sensitive data need to
be encrypted before outsourcing to cloud, which makes effective
data retrieval a very tough task. In this paper, we proposed
a novel order-preserving encryption(OPE) based ranked search
scheme over encrypted cloud data, which uses the encrypted
keyword frequency to rank the results and provide accurate
results via two-step ranking strategy. The first step coarsely
ranks the documents with the measure of coordinate matching,
i.e., classifying the documents according to the number of
query terms included in each document. In the second step,
for each category obtained in the first step, a fine ranking
process is executed by adding up the encrypted score. Extensive
experiments show that this new method is indeed an advanced
solution for secure multi-keyword retrieval.

I. INTRODUCTION

Computable cloud is now prevalent in our daily life here
and there, where customers can remotely store their data so
as to enjoy the convenient and effective services on-demand
[1]. More and more sensitive information such as e-mails
and finance data are professionally maintained in data centers.
While the fact that data owners and cloud server are no longer
in the same trusted domain may put the plain data in risk [2].
So it comes that sensitive data has to be encrypted prior for
data privacy and combating unsolicited access.

However encrypted data obsoletes the traditional data u-
tilization service based on plain text keyword search. The
simplest solution of downloading all the data and decrypting
locally is clearly impractical, due to the huge amount of data
and the super bandwidth cost in cloud scale systems. Taking
the potentially great amount of data users and mass data in
the cloud into consideration, searchable encryption schemes
are necessary. The requirements of balancing the privacy and
confidentiality with efficiency and accuracy is now challenging
the design of searchable encryption schemes.

Traditional searchable encryption [3]- [8] can securely
search through a single keyword and retrieve documents
of interest in symmetric key setting or public key setting.
However, they are not suitable for the large scale cloud data
utilization system as they can not provide high service-level
such as system usability and user searching experience.

Some methods supporting Boolean keyword search [9]- [13]
are designed to enrich the search flexibility such as conjunctive
and disjunctive search. Conjunctive keyword search returns
those documents including all interested keywords, while
disjunctive returns every document that contains even only

one keyword of interest. Obviously, they are not adequate to
provide acceptable results ranked according to relevance.

In practice, to realize effective data retrieval in the large
amount of documents of cloud storage, it is necessary to
perform result relevance ranking. Ranked search can also
significantly save network traffic by sending back only the
most relevant data. Wang et al. [14], [15] proposed secure
ranked search which utilizes keyword frequency to rank result-
s, and key word frequency is protected using order-preserving
encryption (OPE) [16], [17]. In fact, the OPE keeps the order
between the plain texts and cipher texts, so the cloud server
can rank the relevant document according to the encrypted
keyword frequency. However this method [14], [15] only
supports secure ranked search for a single keyword.

Single keyword search often returns coarse results, so it
is necessary to support multiple keywords search for such
ranking system. Cao et al. [18] proposed a scheme for multi-
keyword ranked search over encrypted cloud data. Based on
secure inner product computation, the authors [18] exploit
the similarity measure of “coordinate matching”, i.e., as many
matches as possible, to capture the relevance of data docu-
ments to the search query. In other words, the returned results
are ranked according to the number of interested keywords
included in the documents. However, if two documents include
the same number of query terms, they will not be differenti-
ated. Swaminathan et al. [19] extend the OPE-based scheme
to multi-keyword setting by simply adding up the scores of
all terms. Because the OPE expands the plain data into cipher
data with much greater range, adding up the encrypted scores
can not completely preserve the order and make the scheme
[19] inaccurate. For instance, considering that the expansion
of plain score often makes the weight of each single keyword
deviate from its original value, which obviously should be
avoided in multi-keyword search.

Intuitively, accurate ranked search should depend on the
information from keyword frequency, so OPE-based scheme is
promising, which enables the utility of keyword frequency for
search and protects the distribution of keyword frequency at
the same time. For single keywords search, OPE-based scheme
can achieve the same accuracy for encrypted data as for plain
data by accurately identifying the target. For multi-keyword
search, how to develop accurate scheme based on OPE is still
a problem.

To solve the problem mentioned above, in this paper,
we propose a novel OPE-based ranked search scheme over
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TABLE I
EXAMPLE OF A MODIFIED INVERTED INDEX TABLE(RELEVANCE SCORE)

File ID 𝐹𝑖1 𝐹𝑖2 𝐹𝑖3 𝐹𝑖4 𝐹𝑖5

𝑤1 1.5 0 1.6 0 1.2

𝑤2 0 2.5 0 0 1.5

encrypted cloud data, which uses the encrypted keywords
frequency to rank the results and provide accurate results
via two-step ranking strategy. The first step coarsely ranks
the documents with the measure of coordinate matching,
i.e., classifying the documents according to the number of
query terms including in each document. In the second step,
for each category obtained in the first step, a fine ranking
process is executed by adding up the encrypted score. On the
one hand, compared with the original OPE-based retrieval in
[19], our scheme takes coordinate matching into consideration,
which modify the error caused by expansion of data in OPE.
Additionally, our new idea can free the range of OPE, which
makes a significant difference to the retrieval system. On
the other hand, our method can sort the documents with the
same degree of coordinate matching, which obviously can do
better than the mere boolean retrieval. Extensive experiments
show that this new method can greatly improve the accuracy
of searching results when comparing with the secure inner
product based method [18] and original OPE-based method
[19].

II. PREVIOUS SEARCH SCHEMES BASED ON OPE

A. Basic retrieval scheme

We now introduce some necessary information retrieval
background.
Index Building. In information retrieval, inverted index (post-
ing table) is a widely used indexing structure that stores a list
of mappings from keywords to the corresponding set of files
that contain this keyword, which allows full text search. The
inverted table is then employed to define the relevance score
for rank-ordering documents in a data collection by a scoring
function 𝑆𝑐𝑜𝑟𝑒(𝑖, 𝑗). However, in retrieval scheme based on
OPE, it’s necessary to list all original scores even when they
equal to zero. Example of a modified inverted index table
are shown in Table. I, where each row is determined by the
frequency of a certain keyword in all documents. And such
kind of inverted index structure will be used in original OPE-
based scheme and our scheme.
Scoring Function. Consider a data collection that contains
𝑁𝐷 documents, where there are 𝑁𝑇 unique terms. Here we
choose the 𝐶𝑊 (𝑖, 𝑗) [20] as the scoring function to keep in
accord with [19], which is defined as:

𝐶𝑊 (𝑖, 𝑗) =
𝐶𝐹𝑊 (𝑖)𝑇𝐹 (𝑖, 𝑗)(𝐾 + 1)

𝐾(1− 𝑏+ 𝑏 ⋅𝑁𝐷𝐿(𝑗)) + 𝑇𝐹 (𝑖, 𝑗) (1)

Where 𝐶𝑊 (𝑖, 𝑗) stands for score that the 𝑗𝑡ℎ document gets
based on the 𝑖𝑡ℎ term; 𝑇𝐹 (𝑖, 𝑗) stands for the frequency of 𝑖𝑡ℎ

term in the 𝑗𝑡ℎ document; 𝑁𝐷𝐿(𝑗) = 𝐿(𝑗)/𝐿𝑎𝑣𝑔 represents
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Fig. 1. (a): Original-data distribution; (b):Encrypted-data distribution.

the normalized length of the 𝑗𝑡ℎ document and is obtained by
dividing the length of the 𝑗𝑡ℎ document, 𝐿(𝑗), by the average
document length 𝐿𝑎𝑣𝑔; if 𝑁𝑖 is the number of documents
containing the 𝑖𝑡ℎ term, then 𝐶𝐹𝑊 (𝑖) can be denoted as:

𝐶𝐹𝑊 (𝑖) = 𝑙𝑜𝑔(𝑁𝐷/𝑁𝑖) (2)

What’s more, 𝐾 and 𝑏 are constants chosen to achieve the best
retrieval effect. We also choose 𝐾 = 2, 𝑏 = 0.75 as [19].

B. Brief Introduction of OPE

Since we are not focused on the detail of order-preserving
encryption (OPE) [16], [17], we might as well just talk about
the main property of OPE:
Order-Preserving. Given a set of data {𝑛1, 𝑛2, . . . , 𝑛𝑘} with
the sorted sequence {𝑛𝑖1, 𝑛𝑖2 , . . . , 𝑛𝑖𝑘}, where 𝑛𝑖1 < 𝑛𝑖2 <
⋅ ⋅ ⋅ < 𝑛𝑖𝑘, if we encrypt {𝑛1, 𝑛2, . . . , 𝑛𝑘} with OPE into
{𝑠𝑛1, 𝑠𝑛2, . . . , 𝑠𝑛𝑘} then there must be 𝑠𝑛𝑖1 < 𝑠𝑛𝑖2 < ⋅ ⋅ ⋅ <
𝑠𝑛𝑖𝑘.
Target-Distribution. In order to keep OPE secure, the distri-
bution of the encrypted data must be a designated distribution
independent of the distribution of plain data. In this paper, we
take the uniform distribution as target distribution. An example
on a set of data about 10K integers is shown in Fig. 1 , whose
actual histogram is Fig. 1(a) and the encrypted histogram is
Fig. 1(b).

C. Single Keyword Search with OPE

Considering the difference between traditional retrieval and
secure retrieval, we illustrate a framework for confidentiality-
preserving ranked search in Fig. 2, which includes the data
owner, the data user, the cloud server.

In the secure retrieval scheme, we store the hash-values
instead of keywords in the cloud server, which can keep the
server away from the plain text of keywords. Then we encrypt
the inverted index table with OPE and store it in cloud server,
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Fig. 2. Architecture for search over encrypted cloud data.

too. Encrypted examples corresponding to Table. I are shown
in Table. II.

Wang et al. [14], [15] proposed single keyword search
scheme based OPE, which is outlined as follows.

1) The data owner builds a privacy-preserving index from
a dataset of documents. After the index construction,
the document can be independently encrypted and out-
sourced.

2) User calculates the hash-value of the interested single
keyword 𝑤𝑖 to get 𝑇𝑟𝑎𝑝𝑑𝑜𝑜𝑟(𝑤𝑖) and designate the
number(top-𝑘) of documents wanted, sending both of
them to the cloud server.

3) After receiving the 𝑇𝑟𝑎𝑝𝑑𝑜𝑜𝑟(𝑤𝑖), the cloud serv-
er looks up the matched 𝐻𝐴𝑆𝐻(𝑤𝑖) according to
𝑇𝑟𝑎𝑝𝑑𝑜𝑜𝑟(𝑤𝑖). Then the server sorts all the documents
based on their order-preserving encrypted scores.

4) After getting the sorted files ID of documents, the server
returns the top-𝑘 documents to user in encrypted format
and user can decrypt them to get the needed documents.

D. Encrypted Scores Summing (ESS) Scheme for multi-
keyword search

Swaminathan et al. [19] proposed a multi-keyword search
based on OPE, which simply adds the encrypted score of
every single keyword of each documents with Eq. 3 and then
sorts the documents by the sum of the scores. Given a multi-
keyword query 𝑄 = {𝑞1, 𝑞2, ..., 𝑞𝑛}, the sum of scores can be
defined as:

𝑆𝑐𝑜𝑟𝑒(𝑄, 𝑗) =
∑

𝑖∈𝑄

𝑂𝑃𝐸(𝐶𝑊 (𝑖, 𝑗)) (3)

Where 𝑂𝑃𝐸(𝐶𝑊 (𝑖, 𝑗)) is the encrypted value of 𝐶𝑊 (𝑖, 𝑗)
with OPE. We refer to the method in [19] as Encrypted Scores
Summing (ESS) Scheme. However, there are two ways to
encrypt the inverted index table with OPE, which will make a
great difference to the result in ESS. The first way is to encrypt

TABLE II
EXAMPLE OF ENCRYPTED INDEX TABLE(ENCRYPTED SCORE)

File ID 𝐹𝑖1 𝐹𝑖2 𝐹𝑖3 𝐹𝑖4 𝐹𝑖5

𝐻𝐴𝑆𝐻(𝑤1) 12 3 16 6 9

𝐻𝐴𝑆𝐻(𝑤2) 3 16 6 9 12

the modified inverted index table row by row with different
key, where each row in the table stands for the scores of all
documents corresponding to a certain keyword. Another way
is to encrypt the whole index table by a key. We call the first
way “row by row OPE” and the second way “global OPE”. As
recommended in [19], it’d better to apply row by row OPE. We
also strongly suggest the row by row OPE rather than global
OPE and we will discuss the drawbacks of global OPE later.

However, in ESS scheme [19], adopting row by row OPE
will greatly reduce the accuracy in retrieval. Taking Table. I
and Table. II as an example, we can easily know the row
by row OPE will cause inaccuracy of ESS: First, the largest
cipher data encrypted from 0 of 𝑤2 is 9, which equals to the
smallest cipher data encrypted from nonzero value of 𝑤1. Such
a problem will result in errors in retrieval. Second, considering
the multi-keyword query just contains 𝑤1 and 𝑤2, the sum
of original scores of 𝐹𝑖2 ,𝐹𝑖3and 𝐹𝑖5 are 2.5, 1.6 and 2.7.
However, the sum of encrypted scores of 𝐹𝑖2 , 𝐹𝑖3and 𝐹𝑖5 are
19, 22 and 21, which obviously upsets the original rank of
documents.

To evaluate the retrieval accuracies of the ESS schemes with
different OPE, we conduct experiments on 7594 documents
from CERC document collection, 31 queries and standard
related results used for the TREC 2007 Enterprise Track topics
[21]. Any document that is judged partially relevant or relevant
is taken to be relevant in our test. The recall-precision results
for all 31 queries are collected and the average is shown in
Fig. 3(a). It can be easily noticed that the performance of ESS
with global OPE is relatively better than the performance of
ESS with row by row OPE. However, the drawbacks of global
OPE are more obvious.

The first drawback of global OPE is lower security. From
the perspective of linguistics, the server can know how terms
are distributed across documents according to Zipf Law [22],
which states that the frequency of any term is inversely
proportional to its rank in the frequency table. For example,
assume the frequency of the 𝑖-th most frequent term is 𝑓𝑟𝑒𝑞𝑖,
then there is 𝑓𝑟𝑒𝑞𝑖 ∝ 1

𝑖 . Global OPE may create an access to
the original terms for the server because the server can just
arrange or add up all the cipher data in a row to speculate
the true frequency of a certain term by comparing with other
rows. Also due to the global OPE, the encrypted nonzero-value
are always greater than the encrypted zeros, which gives the
server a chance to sort the whole encrypted table and to know
that the collection of smaller values are encrypted from zero-
values with the help of statistical information in corpus of
human language.

The second drawback of global OPE is the expansion of
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Fig. 3. (a)Recall-precision graphs for ESS with two kind of OPE;(b)Recall-
precision graphs for TSR with two kind of OPE. (”r-r” or ”Global” stands for
scheme with row by row OPE or global OPE; ”& 60” stands for TSR of 𝛼
at 60. All pictures are labeled in this way )

inverted index table. To keep secure, OPE must homogenize
the distribution of plain data into a uniform distribution, which
means that the range of cipher data will increase with the size
of plain data as shown in Fig. 4. Therefore, the space cost of
global OPE will greatly larger than that of row by row OPE.

III. PROPOSED SCHEME

A. Two Step Ranking (TSR) scheme

To improve the searching accuracy of row by row OPE, we
develop a two step ranking (TSR) scheme. In the first step,
classifying the documents according to coordinate matching,
i.e., ranking according to the number of interested keywords
included in the documents. In the second step, we sort the
documents in each class in the same way like ESS with score
summing.

Coordinate matching. After encryption, the inverted in-
dex table cannot tell whether a document contains a certain
word or not, which makes the direct coordinate matching or
boolean multi-keyword search impossible. However, the OPE
preserves the order of plain data. It’s natural to think that in a
row of encrypted scores corresponding to a certain keyword,
documents with greater encrypted scores are more likely to
contain the keyword.

Based on that, In TSR, we develop a new way to calculate
the degree of coordinate matching. In our scheme, in the row
corresponding to a certain keyword, if the encrypted score
of a document is greater than or equal to the 𝐾-th greatest
encrypted score, we assume that the document contains the
keyword and we say that this document is 𝐾-related with
this keyword. In multi-keyword searching, as shown in Fig.
5, in first step, the server classifies and sorts the documents
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Fig. 4. The expansion of encrypted space with the increase of original data
size.

according to how many 𝐾-related keywords they contain.
Denoting the𝐾-th largest encrypted score for the 𝑖-th keyword
(i.e., the 𝐾-th largest encrypted scores in the 𝑖-th row) by
𝑆(𝐾, 𝑖), and we can define the coordinate matching function
of the 𝑗 document as 𝑀𝑎𝑡𝑐ℎ𝑆𝑐𝑜𝑟𝑒(𝑄, 𝑗) :

𝑀𝑎𝑡𝑐ℎ𝑆𝑐𝑜𝑟𝑒(𝑄, 𝑗) =
∑

𝑖∈𝑄

𝐼(𝑂𝑃𝐸(𝐶𝑊 (𝑖, 𝑗)) ≥ 𝑆(𝐾, 𝑖))
(4)

where 𝐼(𝑂𝑃𝐸(𝐶𝑊 (𝑖, 𝑗)) ≥ 𝑆(𝐾, 𝑖)) is a indicative function.
If 𝑂𝑃𝐸(𝐶𝑊 (𝑖, 𝑗)) ≥ 𝑆(𝐾, 𝑖), then 𝐼(𝑂𝑃𝐸(𝐶𝑊 (𝑖, 𝑗)) ≥
𝑆(𝐾, 𝑖)) = 1, otherwise 𝐼(𝑂𝑃𝐸(𝐶𝑊 (𝑖, 𝑗)) ≥ 𝑆(𝐾, 𝑖)) = 0.
In other words, Eq. 4 records the number of interested key-
words that is 𝐾-related with the 𝑗 document. The documents
with the same MatchScore are classified into the same set, and
the sets are sorted in descending order of MatchScores.

Summing scores in class. As shown in Fig. 5, in the second
step, the server sort the documents in the same class by adding
up their scores as Eq. 3. After two steps of sorting, the server
can return the first 𝑘 ranked documents, where 𝑘 is the number
of documents that user wants to get.

Here we go back to Table. I and Table. II again. We
assume 𝐾 = 3 and 𝑄 = {𝑤1, 𝑤2}. According to the first
step of TSR: 𝑆(3, 1) = 9, 𝑆(3, 2) = 9. Now we know
𝑀𝑎𝑡𝑐ℎ𝑆𝑐𝑜𝑟𝑒(𝑄, 5) = 2 and the 𝑀𝑎𝑡𝑐ℎ𝑆𝑐𝑜𝑟𝑒 of all other
four documents are 1 with the help of Eq. 4. The result
of classification will be {𝐹5}, {𝐹𝑖1 , 𝐹𝑖2 , 𝐹𝑖3 , 𝐹𝑖4}. Now we
need to sort documents in the same class based on Eq. 3:
{𝑆𝑐𝑜𝑟𝑒(𝑄, 5) = 21},{𝑆𝑐𝑜𝑟𝑒(𝑄, 3) = 22, 𝑆𝑐𝑜𝑟𝑒(𝑄, 2) =
19, 𝑆𝑐𝑜𝑟𝑒(𝑄, 1) = 15, 𝑆𝑐𝑜𝑟𝑒(𝑄, 4) = 15}. The final rank will
be 𝐹𝑖5 , 𝐹𝑖3 , 𝐹𝑖2 , 𝐹𝑖1 , 𝐹𝑖4 . To make a comparison, we give out
the result of ESS: 𝐹𝑖3(22), 𝐹𝑖5(21), 𝐹𝑖2(19), 𝐹𝑖1(15), 𝐹𝑖4(15),
where the value followed the document’s id is the sum of
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Fig. 5. Model of Two Step Ranking(TSR). The upper comment box shows
how TSR classifies the documents in the first step; the lower comment box
shows how TSR sorts the documents in the same class.

encrypted scores. Obviously the result of 𝐹𝑖3 , 𝐹𝑖5 in TSR is
the right one and TSR truly realizes coordinate matching,
considering that 𝐹𝑖5 contains two keywords while 𝐹𝑖3 just
contains one and the sum of original scores of 𝐹𝑖5 is greater
than 𝐹𝑖3 .

B. Choose the Parameter 𝐾

The purpose of coordinate matching is to enable the docu-
ments containing more keywords to occupy a higher rank. The
𝐾-related can roughly catch this idea, and the search accuracy
will be influenced by the value of 𝐾. If we randomly choose
a 𝐾, in worst cases, all documents will be assigned to one
class, and thus the TSR scheme will degenerate to the ESS
scheme. Obviously, the goodness of fit for the 𝐾 is related to
the number of nonzero-frequency of terms in query. For each
term 𝑤𝑖 in modified inverted index table, we define 𝑁𝑍𝑖 as
the numbers of nonzero-frequency of 𝑤𝑖 in all documents, i.e.,

𝑁𝑍𝑖 = #{𝑇𝐹 (𝑖, 𝑗)∣𝑇𝐹 (𝑖, 𝑗) > 0, 1 ≤ 𝑗 ≤ 𝑁𝐷}, (5)

and denote the collection of 𝑁𝑍𝑖’s as 𝑁𝑜𝑛𝑍𝑒𝑟𝑜 =
{𝑁𝑍1, 𝑁𝑍2, ..., 𝑁𝑍𝑁𝑇 }, which is secret information hold by
the user. Denote 𝑇𝑁𝑍(𝛼) as the 𝛼% quantile (0 ≤ 𝛼 ≤ 100)
of 𝑁𝑜𝑛𝑍𝑒𝑟𝑜. The user can randomly select a 𝛼 ∈ [0, 100]
and 𝐾 = 𝑇𝑁𝑍(𝛼). Note that this strategy will leak a little
information to the server, because the server will know that
max{𝑁𝑜𝑛𝑍𝑒𝑟𝑜} ≥ 𝐾 and min{𝑁𝑜𝑛𝑍𝑒𝑟𝑜} ≤ 𝐾. However,
it is hard for the server to get more other information from
such information leakage. In fact, because the invert index
table is encrypted with OPE, the server can always guess that
the small encrypted values are zeros and large encrypted values
are larger than zero.
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Fig. 6. Recall-precision graphs for TSR with row by row OPE at different
𝛼.

IV. RESULT AND COMPARISON

A. Result of TSR

To show how TSR works and how 𝛼 influences TSR,
we conducted experiments on TSR scheme with the same
TREC data, standard query and evaluation scheme. In the
experiments, we choose 4 different 𝛼: 20,40,60 and 80, which
are uniformly selected from [0, 100]. 0 and 100 are ignored
because these two 𝛼 will classify almost all the documents
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Fig. 7. Recall-precision graphs for plain data retrieval, MRSE scheme, ESS
scheme with global OPE and TSR scheme with row by row OPE of 𝛼 at 60.

into an identical class, in which TSR degenerates to ESS.
As shown in Fig. 6(a), we know that when 𝛼 locates at a

more reasonable range such as [40, 60], TSR with row by row
OPE can always perform better than ESS with row by row
OPE. While when 𝛼 is some extreme value like those larger
than 80 or smaller than 20, TSR will degenerate gradually. In
Fig. 6(b), when 𝛼 is 20 or 80, TSR sometimes works no better
than ESS especially in the first several results. So when 𝛼 is
deviant, the performance of TSR is not so satisfying. However,
as illustrated in Fig. 6(a) and Fig. 6(b), the results of 𝛼 at 20
or 80 actually are close to that of 𝛼 at 40 or 60, which exactly
shows that TSR with row by row OPE works better than ESS
averagely even when 𝛼 varies from 20 to 80.

In Fig. 3(b), we show the result of TRS with global OPE
with result of TSR with row by row OPE and 𝛼 at 60.
Compared with Fig. 3(a), the difference is much smaller in
TSR scheme than in ESS, which exactly indicates that TSR
scheme is independent of the range of OPE while the ESS
scheme is not.

Now we discuss why extreme 𝛼 decreases TSR’s advantage
over ESS. First, if 𝛼 is so small that very close to 0,
the corresponding 𝐾 almost equals to 1, considering that
averagely one in 250 words is extreme rare according to [23].
Consequently, nearly all documents will be classified into one
class. For example, if a multi-keyword query 𝑄 contains three
terms and 𝐾 is 1, then there are at most 3 documents can
get 𝑀𝑎𝑡𝑐ℎ𝑆𝑐𝑜𝑟𝑒 1, while that of all other documents will be
0. Likewise, if 𝛼 is extreme great, for example 100, the 𝐾
related to such 𝛼 probably gets close to 𝑁𝐷, for which the
most frequent terms “the” is a good example. Therefore, such
great 𝛼 causes same problem as extremely small 𝛼. These

TABLE III
RETRIEVAL ACCURACY MEASURES FOR DIFFERENT SCHEME

Metric Plain MRSE ESS Global ESS r-r TSR r-r 60

MAP 0.3033 0.1830 0.2353 0.2304 0.2648

R-PREC 0.3615 0.2373 0.2922 0.2900 0.3242

P@5 0.6322 0.3870 0.5935 0.5742 0.6129

P@10 0.6096 0.3580 0.5839 0.5387 0.5581

P@50 0.4483 0.3290 0.3896 0.3826 0.4019

P@100 0.3225 0.2080 0.2881 0.2710 0.3003

P@500 0.1160 0.0914 0.1072 0.0926 0.1085

deviant 𝛼 will make TSR degenerate to ESS.

B. Comparison

We compared the result of TSR with MRSE scheme in [18]
and ESS scheme in [19]. In Fig. 7, we clearly see that TSR
scheme with row by row OPE of 𝛼 at 80 do much better than
MRSE scheme. Besides, TSR with row by row OPE can do
as well as or better than ESS with global OPE. However, our
scheme is based on row by row OPE, whose advantage over
global OPE has been discussed in detail before. To compare
the search accuracy for multi-keyword one more step, we
compute the Mean Average Precision(MAP) and r-prec for
different scheme. According to Table. III, the MAP for ESS
with global OPE and TSR scheme with row by row OPE
are 0.2353 and 0.2648, which is 12.5% improved. And r-prec
for the two scheme are 0.2922 and 0.3242, which is %10.1
enhanced. It’s reasonable to conclude that our scheme is better
in secure multi-keyword retrieval over encrypted cloud data.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a two step ranking based on
Order-Preserving Encryption(OPE) to achieve effective yet
secure ranked multi-keyword search over encrypted cloud data.
Our scheme takes both of coordinate matching and relevance
score into consideration in multi-keyword search. Extensive
experimental results demonstrate the efficiency of our scheme.
However, to realize our scheme, the parameter 𝐾 is a key
factor of accuracy and a hidden danger of security. Our future
work will be focused on developing a better solution of 𝐾. We
are trying to work out a scheme to enable the server to modify
𝐾 automatically only based on encrypted inverted index table
in each multi-keyword search. In this way, server will return
better results self-adaptively and no information about 𝐾 will
be leaked.
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