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Abstract—Matrix embedding has been used to improve the 
embedding efficiency of steganography, which is an efficient 
method to enhance the concealment security. The privacy 
security of matrix embedding has also been studied under the 
condition of known-stego-object attcack. However, with the 
development of steganalysis, the attacker could obtain the 
estimated cover by the cover restoration technique. 
Consequently, the privacy security under the stronger attack 
condition should be considered.  In this paper we study the 
secrecy security of matrix embedding using information theory 
under the circumstance of known-cover attack from the point 
of the key equivocation. The relation among the wet ratio of 
covers, embedding rate, and key equivocation is presented. We 
also proposed a new differential attack to matrix embedding 
under the circumstance of chosen-stego attack. 
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I. INTRODUCTION

Information hiding is one of the hot spots in the domain 
of information security, of which steganography and 
watermarking are the main branches. The goal of 
steganography is embedding secret message into the 
multimedia data, such as digital images, audios, videos and 
texts, in order to realize the covert transmission.  

The early studies about the security of steganography 
mainly focused on the statistical undetectability of the cover, 
i.e. the concealment security. However, the attacker may not 
only reveal the existence of the secret message but also 
extract the message by recovering the stego key. For 
instance, Fridrich et al. [1][2] analyzed problem of searching 
for stego key from the view of computational complexity. 
Based on the model of information theory, Zhang et al. [3][4]

analyzed the relation among both kinds of securities and the 
relation between security and hidden capacity.  

Matrix embedding [5][6][7][8][9] is an efficient coding 
method for steganography, which can reduce the number of 
embedding changes on the cover. Phillip [10] studied the 
secrecy security of matrix embedding under the condition of 
stego-object-only attack using the method of information 
theory. Based on message equivocation and key 
equivocation, He researched the secrecy security of matrix 
embedding under various key models. 

So far, the relative research mainly focused on the 
security under the condition of stego-object-only attack. 
However, it is necessary to consider the security problem 
under the stronger condition of attacking, such as the known-
stego-object attack.  In general, it is difficult for the attacker 
to get the original cover, but if the attacker can process the 

stego object using the cover restoration technique and get a 
precise estimation of the original cover, the known-stego-
object attack can be available [11]. Accordingly, both sides of 
communication have to consider the secrecy security of 
steganography under the stronger attack condition.

Based on the results in [10], we study the secrecy 
security of matrix embedding under the condition of known-
cover attack by using the method of information theory. We 
prove that matrix embedding has weak security under the 
condition of chosen-ciphertext attack.  

II. THE PRESENTATION OF PROBLEM

A. Symbols 
Throughout the text, italic capital letters denote random 

variables, and boldface small letters denote the instances of 
random variables. Let be the finite set of letters, n be a 
sequence of , the length of which is n. Note that S is the 
cover sequence, C is the stego sequence, K is the shared key 
between sender and recepient, M is the secret message, T is 
the way used to choose the embedding positions. Security 
referred behind represents the secrecy security. 

Considering that both sides of communication use matrix 
embedding to transfer secret message on the multimedia 
channel, such as digital images, audios, and videos, Figure 1 
demonstrates the flow chart of communication. 

Figure. 1 Stegosystem using matrix embedding 

Assume that both sides of communication want to 
transfer message m (m 2

qF
n

) with q bits, using a binary 
cover sequence s (s 2F ) whose length is n, where 0<q n.
The sender maps the cover signal to a binary cover sequence 
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by using the encoding mapping, embeds q bits message m
into s and gets the stego sequence c (c 2

nF ), and then 
generates the stego signal. After getting the stego signal, the 
receiver gets the stego sequence c by using the decoding 
mapping, and extracts the secret message m by using the 
key k, where m=kc(mod2). For example, the encoding 
mapping used widely is getting the LSB sequence of the 
cover signal, and the corresponding decoding mapping is 
using the stego sequence to take place of the LSB sequence 
of the cover signal. 

Especially, as for a good encoding mapping function, the 
2n instances of the cover s are equiprobable. Assume that the 
message has been compressed, and then the 2q instances of 
the message are equiprobable. The key k is a random matrix 
on 2

q nF .
If both sides of communication using wet paper codes, 

assume that there are l dry positions, and then the sender 
embeds message m with q bits by changing some dry 
positions of s, where q l n. Note that the embedding rate 
is ./r q n

The entropy is defined as ( )H , where 
H(S)= .

2

The mutual information is defined as

2Pr( ) log Pr(
nFs

s s)

( )I , where  

I(M;C)=
2 2

2
Pr( ,
( ) Pr

m c)Pr( , ) log
Pr ( )n nF Fm c

m c
m c

.

As for the zero-distortion channel, the channel capacity 
is defined as C=H(C|S), and the information transfer rate is 
defined as Rm=H(M)/n. Define H(C|S)- H(M) as embedding 
redundancy. The unicity distance to a stegosystem is the 
number of objects, where the object is the original cover or 
the couple of original cover and stego cover, which makes 
the expectation of the number of pseudo-keys is 0. 

A binary [n,k] matrix embedding C is a linear subspace 
of 2

nF . Given the key k, define the rank of k as q, and k is 
full rank. Then for any 2

nFb , the vector 2
nFkb

( )C
g = is

called the syndrome of b. The set m

(C m

is called a coset. We have that 
cosets associated with different syndromes are disjoint. Let 
coset , where b is an arbitrary vector of .
Therefore, there are 2n-k disjoint cosets, with each consisting 
of 2k vectors. Let w(s) be the Hamming weight of the vector s,
and d(s,c) be the Hamming distance between vectors s and 
c.Let e(m) be a coset leader, where 

2{ | (monb m kb

(C Cm) = b

d 2)}F

)

( ( )) min{ ( ) |w e wm b ( )}Cb m
coset with the smallest Hamming weight and will 

be denoted as e(m).
( )C m

B. Matrix embedding 
Matrix embedding was firstly proposed to improve the 

embedding efficiency of steganography, which is a typical 
application of linear covering codes. Using matrix 
embedding, we can embed message m with q bits into a 

binary cover sequence s by changing at most R bits. Then 
the embedding algorithm Emb() is  

( , ) ( )Emb es m s m ks c
And the extracting algorithm Ext() is

( )Ext c kc ,
where 

ekc ks k (m ks) ks m ks m
Because m follows the uniform distribution, the average 

change number needed for the embedding process is equal 
to the average Hamming weight of all the coset leaders of a 
code C. The average change number is equal to the average 
distance to code. The distances of two arbitrary codewords 
of the same coset to code is equivalent, both equal to the 
Hamming weight of any coset leader of the coset, i.e. 

( , ) ( , ) ( )d C d C w es c . Consequently, the average 
distance sR  of all the codewords is equal to the embedding 
average change number, i.e.  

-

2

2

-
1

1 1( , ) ( ( ))
2 2

n k

n
s n n k

iF

R d C w e
s

s s

C. Wet paper codes 
Using wet paper codes, the sender can embed message 

when some positions of the cover is restricted not to be 
changed, while the receiver can extract message without the 
information of the restricted positions.  

Assume that the sender chooses l changeable bits sj

{1, 2, }j L n L l from a binary cover s=(s1, …,
sn), while the remaining n-l bits can not be changed. The 
changeable positions are called dry positions and the 
unchangeable positions are called wet positions. The sender 
embeds the message into s by changing some 
sj, {1, 2,j L }n  and gets c, which satisfy  

kc=m (1) 
  Let v=c-s, then  

kv= m-ks (2) 
  Since n-l positions of s are not allowed to change, there are
l unknowns vj, {1,2, }j L n

L
, while the remaining n-l

values vi, i , are zeros. Thus, we can remove n-l unused 
columns from k, and denote the obtained matrix as h. We 
also remove n-l unused elements from v, and denote the 
obtained vector as u. We get the following equation from (2) 

hu= m-ks, (3) 
where h is a binary q×l matrix and u is an unknown l×1
binary vector. The encoding of wet paper codes is completed 
by solving (3). The wet rate of the cover is denoted 

as wet

n l
n

, where 0 wet 1 . The embedding rate of 

wet paper codes is denoted as wetr
q
l

. In fact, the random 

matrix embedding can be viewed as one of the special wet 
paper codes, of which the wet rate is 0. 
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III. SECRECY SECURITY ANALYSIS

The security of matrix embedding under the condition of 
stego-object-only attack has been discussed in [10]. This 
paper will discuss the security under the condition of known-
cover attack and chose-stego-object attack separately. 

A. Key equivocation 
Theorem 1 [10]: For random steganographic codes and 

wet paper codes, under the condition of stego-object-only 
attack, the key equivocation function is bounded as 

( ; ) [ ( )] [ ( ) ( )]I K C q H M H C H S .
  Theorem 1 indicated that, under the condition of stego-

object-only attack, if the embedded message has been 
compressed, i.e. ( )H M q , and the cover sequence 
obtained by the encoding mapping is random, i.e. ( )H S n ,
then ( ) ( )H C n H S  and . Here matrix 
embedding can achieve the perfect secrecy. 

( ; ) 0I K C

 Lemma 1: For wet paper codes, under the condition of 
known-cover attack, we have 

( ; , , , ) ( , ) 0I T K C S M n q ,

where  .
0

( , ) log log
q

q i
n q

i

n q q C C Cq i
n i

Proof: Consider ( ; , , , )I T K C S M . Because the way of 
choosing embedding positions T and the embedded message 
M are not related to the key K. The receiver can extract the 
message without knowing T. Thus, for any given stego 
object S, we have 

( ; , , , ) ( ; , )
( ) ( | , )

I T K C S M I T C S

H T H T C S
,

where 1( ) Pr( ) log log
Pr( )

q
n

t T

H T Ct
t

. The information 

about the way of choosing embedding positions T can only 
be obtained by comparing the difference between the stego 
object C and cover object S, consequently 

,

0

( | , ) Pr( ) ( | )

Pr( ( ) ) ( | ( ) )

c s

q

i

H T C S H T

w i H T w i

c s c s

c s c s
n  Because c is random on 2F , and the Hamming weight 

of is . Then c s (w c s)

0 0

Pr( ( ) )
2

i q i i q i i q i
n n i n n i n n i

q q q q
j q j q j n

n n j n q
j j

C C C C C C
w i

C
C C C C

c s

( | ( ) ) log q i
n iH T w i Cc s .

  As 
0

1
2

i q iq
n n i

q q
i n

C C
C

, according to Jensen Inequation,

we have 

0
( | ) log

2

i q iq
q in n i
n iq q

i n

C C
H T C

C
c s

0 0

0

log log
2 2

log

q q
i q i q i q i q i
n n i n i n q n i

i i
q q q q
n n

q
i q i
q n i

i

C C C C C C

C C

C C q

Then 
( ; , , , ) ( ) ( | )I T K C S M H T H T c s

0
log log ( , )

q
q i q i
n q n i

i

q C C C n q .

According to Vandermonde Identical Equation,

0

n
i k i k
n m n m

i

C C C , for 0 i q , we have  

0 0

0 log log ( , ) log log
q q

q i q i q i q i
n q n q n q n

i i

q C C C n q q C C C q .

As a result, 0 ( , ) ( ; , , ,n q I T K C S M ) .
Theorem 2: For random steganographic codes and wet 

paper codes, under the condition of known-cover attack, the 
key equivocation function is bounded as 

( ; , ) [ ( | ) ( )] ( , )I K S C H C S H M n q .
Specially, I(K;S,C) achieves the maximum value 

when
2
n

q .

Proof:  For the proof, first of all we have  
( , , , , )H C K M T S

0

( , , , ) ( | , , , )H K M T S H C K M T S          

( ) ( ) ( ) ( )H K H M H S H T           (4) 
At the same time, 

( , , , , )H C K M T S

0

( ) ( | ) ( | , )
( | , , ) ( | , , , )

H C H S C H K C S
H M K C S H T K C S M

( ) ( | ) ( | , ) ( | , , , )H C H S C H K C S H T K C S M   (5) 
As a result,  

( ) ( ) ( ) ( )
( ) ( | ) ( | , ) ( | , , ,

H K H M H S H T
)H C H S C H K C S H T K C S M

,

and
[ ( ) ( | )] [ ( ) ( | , )]

[ ( ) ( | , , , )] ( ) ( )
H S H S C H K H K C S

H T H T K C S M H C H M
.

As
( ; ) ( ) ( | )
( ; , ) ( ) ( | , )
( ; , , , ) ( ) ( | , , , )

I C S H S H S C

I K C S H K H K C S
I T K C S M H T H T K C S M

,

we have 
( ; ) ( ; , ) ( ; , , , ) ( ) (I C S I K C S I T K C S M H C H M ) .

Then, from Lemma 1,  
( ; , ) ( ) ( ) ( ; ) ( ; , , , )I K C S H C H M I C S I T K C S M
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( | ) ( ) ( ; , , , )H C S H M I T K C S M

[ ( | ) ( )] ( , )H C S H M n q          (6) 
( , )n q  could not be further simplified to our known. 

The values of typical ( , )n q  is shown in Figure 2(n=30). 
When n is fixed, we have 

(1) When 0r or 1r , the key equivocation 
achieves the maximal upper bound, which is close to 
the hidden capacity; 
(2) When 0.5r , the key equivocation achieves the 
minimal upper bound. 

 
Figure. 2 ( , )n q  for n=30

Consider the relation between the embedding rate  of 
wet paper codes and the key equivocation 

wetr
, )( ;I K C S  for 

different wet rate wet . Generally speaking, we have 
(1) 0.5 1wet . If , the key equivocation 

achieves the minimum value; if , the key 
equivocation achieves the maximum value and is close to 
the embedding redundancy. 

1wetr
0wetr

(2) 0 wet 0.5 . If 0.5(1 )wet wetr
r

, the key 
equivocation achieves the minimum value; If , the 
key equivocation achieves the maximum value and is close 
to the embedding redundancy. 

0wet

(3) 0wet . If , the key equivocation achieves 
the minimum value; If , the key equivocation 
achieves the maximum value and is close to the embedding 
redundancy. Under this circumstance, wet paper codes are 
steganographic codes. 

0.5wetr

wetr 0

Theorem 2 indicates that the channel redundancy should 
be decreased as much as possible to improve the secrecy of 
matrix embedding. In order to decrease the key equivocation, 
the sender should choose a suitable embedding rate 
according to the wet rate. 

B. Unicity distance 
Theorem 3: Under the circumstance of stego-object-

only attack, unicity distance of the stegosystem is
( )

( ) [ ( ) ( )]
H K q

N
H C H M H S

.

Proof: According to Theorem 1 in [10] 

( | , , )
( ) ( | ) ( ; , ) ( ) ( ) ( )

H S K C T

H K H K C I T K C H M H S H C
( | , , )where H S T K C q and , thus we have ( ; , ) 0I T K C

( | ) ( ) ( ) ( ) ( ) ( | , ,
( ) ( ) ( ) ( )

)H K C H K H M H S H C H S T K C
H K H M H S H C q

N

.

Denote N groups of stego objects as ,
and then 

1 2{ , , , }Nc c c c

( | ) ( ) [ ( ) ( ) ( )]NH H K N H M H S H C qk c ,
so we have 

log( 1) ( ) [ ( ) ( ) ( )]pK H K N H M H S H C q ,
at the same time, 

( ) [ ( ) ( ) ( )]2 1H K q N H M H S H C
pK .

So unicity distance is 
( )

( ) [ ( ) ( )]
H K q

N
H C H M H S

.

Theorem 4: Under the condition of known-cover attack, 
unicity distance of the key k is 

( )
( | ) [ ( ) ( ; , , , )]

H K
N

H C S H M I T M C S K
.

Proof: For the proof, denote N groups of covers and 
stego objects as  and 
separately. Given N pairs of covers and stego objects, the set 
of all the possible stego keys is  

1 2{ , , , }N
Ns s s s 1 2{ , , , }N

Nc c c c

( , ) { | , , Pr( ) 0 and }N N
i i i iK K M Tc s k m t m kc mi .

And the expectation of the number of pesudo keys is 

( , ) ( , )

( , ) ( , )

Pr( , )[ ( , ) 1]

Pr( , ) ( , ) 1

N N N N

N N N N

N N N N
p

C S

N N N N

C S

K K

K

c s

c s

c s c s

c s c s
.

We have 
( | , )N NH K c s

N N

( , ) ( , )

Pr( , ) ( | , )
N N N N

N N

C S

H K
c s

c s c s

( , ) ( , )

log Pr( , ) | ( , ) |

log( 1)

N N N N

N N N N

C S

p

K

K

c s

c s c s

and ( | , , , ) 0H C K M T S . As the same time 
( , , , , )H c s m t k

N N N

N N N N

0

( , , , ) ( | , , , )N N N NH Hs m t k c s m t k

[ ( ) ( ) ( )] (N H S H M H T H K )      (7) 
Thus,

( , , , , )N N N NH c s m t k
N N( ) ( | ) ( | , )
( | , , ) ( | , , , )

N N N

N N N N N N N

H H H

H H

s c s k c s
m c s k t m c s k

N N( ) ( | ) ( | , )
( | , , , )N N N N

NH S NH C S H

H

k c s
t m c s k
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[ ( ) ( | ) ( ) ( ; , , , )]N H S H C S H T I T M C S K
N N( | , )H k c s         (8) 

From equation (7) and equation (8), 
( | , ) ( ) [ ( | ) ( ) ( ; , , , )]N NH H K N H C S H M I T M C S Kk c s

Then  
log( 1) ( ) [ ( | ) ( ) ( ; , , , )]pK H K N H C S H M I T M C S K .
Consequently, the expectation value of pesudo-keys is 

( ) [ ( | ) ( ) ( ; , , , )]( | , ) 2 1N N H K N H C S H M I T M C S K
pK H k c s .

So unicity distance is 
( )

( | ) [ ( ) ( ; , , , )]
H K

N
H C S H M I T M C S K

.

C. Differential attack 
Theorem 5: Under the circumstance of chosen-stego-

object attack, the attacker can restore the key, using n
groups of differential equations. 

Proof: For the proof, assume that by some way the 
attacker has already known both sides of communication 
use wet paper codes to transfer the secret message, and here 
wet paper codes can be viewed as an encryption algorithm. 
If the cover group is considered as plaintext and the stego 
group is considered as ciphertext, wet paper codes are a 
block cipher in fact, which uses the same key k to encrypt 
different groups of plaintexts. The length of plaintext group 
is n, the same as the length of ciphertext group. The goal of 
the attacker is to restore the key . Assume that the attacker 
has already had many plaintext-ciphertext pairs, and could 
choose the needful stego image block c  and the 
corresponding message group m , which amounts to making 
a chosen-ciphertext attack. 

k

Then an attack is given under the above circumstance, 
of which the main idea is that some information of the key 
is obtained by using differential attack and a group of 
equivalent keys are found by solving a group of linear 
equations. 

  The following operations are discussed on 2F . Because 
the attacker can choose stego objects, he can get two groups 
of stego images and , where .
Let the corresponding plain messages of them 
are and separately, so differential equations can be 
obtained by 

1c 1 'c 1 1 ' ( ,0)Tc c 1,0,0,

1m 1 'm

1 1 1 1' 'kc kc m m
T

.
Since , we have 1 1 ' (1,0,0, ,0)c c

1 1 ,1 1 1( ') jk c c k m m ' .

Similarly, for ' (0,0, 1, ,0)
i

i i
Tc c , we can get 

differential equations 
, 'j i i ik m m ,

where . Because the attacker can get q bits of 
by solving a group of equations, only n groups of 

differential equations need to be constructed, and then the 
key is obtained. 

1, 2, ,i n
k

k
Theorem 5 indicates that, the security of matrix 

embedding is very weak under the circumstance of chosen-
stego-object attack. 

IV. CONCLUSION

In this paper, the relation between the embedding rate of 
matrix embedding and the key equivocation is given under 
the circumstance of known-cover attack, as well as the 
relation among the wet rate, embedding rate and the key 
equivocation. But it should be pointed out that the cover-
object cannot be exactly estimated, and the restoration of 
cover object is in fact a very difficult problem in 
steganography. We also conclude that for matrix embedding, 
only n groups of differential equations are needed to restore 
the key k  under the condition of chosen-stego-object attack.  
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